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Abstract

This paper presents the filtering, prediction and simulation in univari-
ate and multivariate noncausal processes. A closed-form functional
estimator of the predictive density of noncausal and mixed processes
is introduced for the computation of prediction intervals up to a
finite horizon H. A state space representation of a noncausal and
mixed multivariate VAR process is derived. It is shown that the state
space representation can be obtained from either the partial fraction
decomposition, or the real Jordan canonical form. A recursive BHHH
algorithm for the maximization of the approximate log-likelihood
function is proposed, which also calculates the filtered values of the
unobserved causal and noncausal components of the process. The new
methods are illustrated by a simulation study involving a univariate
noncausal process with infinite variance.
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1 Introduction

In recent literature, there has been a growing number of applications involv-
ing economic time series models with causal and noncausal components. The
time series modelled as noncausal processes range from the macroeconomic
data [Lanne, Saikkonen (2011), Davis, Song (2012), Chen Choi, Escanciano
(2012), Lanne Luoto (2014), Nyberg, Saikkonen (2014)], to the Standard
and Poor (S & P) market index [Gourieroux, Zakoian (2013)], the commod-
ity prices and electronic currency exchange rates [Gourieroux, Hencic (2014)].
The empirical results reported in the literature suggest that the traditional
Box-Jenkins methodology that restricts the temporal dependence in linear
autoregressive processes to the past only, has been often found insufficient.

While the empirical literature on noncausal and mixed processes is quite
recent, the theoretical results have been long established since the seventies
and the eighties [see e.g. Davis, Resnick (1986), or Rosenblatt (2000) for
a general presentation of such processes]. Despite that, over the last four
decades, applied research remained strongly influenced by the Box-Jenkins
methodology, and the normality assumption that underlies the quasi max-
imum likelihood estimation method was used as an integral part of that
methodology. Because the forward- and backward-looking dynamics of a
Gaussian time series are not distinguishable, the forward-looking components
were disregarded and the past conditioning in ARMA models became a stan-
dard practice. Formally, the problem of non-identifiability of the backward
and forward-looking autoregressive polynomials in Gaussian time series was
formulated by Rosenblatt [see, Rosenblatt (2000)-Th 1.3.1, Chan, Ho, Tong
(2006), Breidt, Davis (2008)]. Therefore, for identification purposes, the as-
sumption of normality in models with causal and noncausal components has
to be relaxed.

The existing methods of prediction for noncausal processes focus on point
prediction of processes with finite means. The predictions are based on con-
ditional expectations, which have no closed-form expressions and need to be
approximated by simulations [see Lanne, Luoto, Saikkonen (2012) for uni-
variate processes and Lanne, Saikkonen (2013) for constrained multivariate
specifications].

The objective of this paper is to provide a closed-form functional esti-
mator of the joint predictive density that yields simulation-based prediction
intervals at multiple finite horizons in one step. The proposed method is
computationally less demanding than the methods focused on the optimal



(point) predictor approximation. Moreover, it is valid for non-Gaussian pro-
cesses with heavy tails, including processes with infinite error variances.

The closed-form functional estimator of the predictive density of (yri1, ..., yriw)
given the information set (y1,...,yr) is based on an extension of the look-
ahead density estimator, introduced in Glynn, Hendersen (1998), (2001) and
eliminates the time consuming simulations involved in the prediction method
proposed by Lanne, Luoto, Saikkonen (2012) or estimation of more than 30
additional ”parameters” in the Bayesian method of Lanne, Luomo, Luoto
(2012). Next, drawings in the predictive density are performed by using a
Sampling Importance Resampling (SIR) method [Gelfand, Smith (1990)a,b],
which serve to generate future paths of y and the prediction intervals.

In application to multivariate processes, the proposed prediction method
requires the availability of a state space representation. We consider a state
representation of a noncausal and mixed vector autoregressive (VAR) pro-
cess, which is derived by using either the partial fraction decomposition, or
the real Jordan canonical form, respectively. The latter approach is a mod-
ification of the method introduced in Davis, Song (2012) and based on the
complex Jordan canonical form. We show that the two proposed methods are
equivalent and can accommodate any unconstrained partition of the roots of
the autoregressive polynomial matrix inside and outside the unit circle. In
this aspect, our approach differs from Lanne, Saikkonen (2013) and Lanne,
Luoto (2014), where the autoregressive polynomial matrix is defined a prod-
uct of a causal and a noncausal components of predetermined orders.

Our prediction method is based on the unobserved component represen-
tation of noncausal and mixed processes that distinguishes the latent causal
and noncausal components of y;, and introduced by Lanne, Saikkonen (2011)
for univariate processes. The filtered unobserved components can be obtained
along with the approximate maximum log-likelihood (AML) estimates from
a recursive Berndt, Hall, Hall, Hausman (BHHH) algorithm for maximizing
the AML function. The recursive BHHH algorithm involves inversions of ma-
trices of smaller dimension than, for example, the popular Broyden, Fletcher,
Goldfarb, Shanno (BFGS) algorithm.

The paper is organized as follows. Section 2 describes the unobserved
”causal” and ”"noncausal” component representation of a univariate autore-
gressive process. The nonlinear prediction in univariate processes is discussed
in Section 3. In Section 4, we introduce the filtered component-based recur-
sive BHHH algorithm for maximizing the AML function. Section 5 extends
the filtering and prediction methods to the multivariate framework. A simu-



lation study is presented in Section 6 to analyse the properties of the methods
introduced in Sections 3 and 4 in a noncausal process with infinite variance.
Section 7 concludes. Some proofs are gathered in Appendices 1 and 2.

2 The process and its unobserved components

This section describes the filtering of a univariate autoregressive process (y;)
and introduces the associated unobserved ”causal” and ”noncausal” compo-
nent representation. It also establishes a deterministic dynamic relationship
between the unobserved components and the process y;, and highlights the
equivalence of various filtrations.

The noncausal and mixed processes possess an infinite moving average
representation:

—+00
Yt = E QiE¢—i,

i=—00

where (g;) is a sequence of i.i.d. variables and a;,i = —o0,...,+00 a two-
sided sequence of moving average coefficients [see e.g. Brockwell, Davis

(1991)]. Process (y;) exists almost surely under rather weak conditions, such
+00

as F(|g]°) < oo, for § > 0 and Z |a;)® < co. The above M A(oco) represen-

1=—00

tation differs from the moving average processes considered in the standard
Box, Jenkins approach in the following aspects:

i) The moving average is two-sided, including a ”causal” component
o

Zaist_i, function of the current and lagged values of the error, as well

1=0
-1

as a "noncausal” component Z Qi
1=—00
ii) The error term is a strong white noise, instead of a weak white noise.
iii) The distribution of the error term can have fat tails. In particular, &
can have infinite variance, or even infinite expectation.

2.1 Definition of unobserved components

Let us consider the univariate autoregressive process defined as:



S(L)T(L )y, = &, (2.1)

where the error terms are independent, identically distributed, such that
E(|z]°) < oo, for § > 0,® and ¥ are two polynomials of degrees r and s,
respectively, with roots strictly outside the unit circle and such that ®(0) =
U(0) = 1. The polynomials ® and ¥ can be inverted and the process can be
rewritten as :

1 1
Y = @m&, (2:2)
where 1/®(L) [resp.1/¥(L™')] is an infinite series in L (resp. L™1), and the
equality in (2.2) holds almost surely [see e.g. Brockwell, Davis (1991), Prop.
13.3.1]. Hence, process (y;) admits an infinite two sided moving average
representation, which is the unique strictly stationary solution of recursive
equation (2.1).

Following Lanne, Saikkonen (2011), and Lanne, Luoto, Saikkonen (2012),
we consider the following unobserved ”causal” and "noncausal” components
of process (y;):

uy = O(L)y; +» V(L Yy = &4, (2.3)

and

v, = U(L Yy, < ®(L)v, = &. (2.4)

Let us now consider the filtrations generated by the error term g, =
{e;, 7 < t}, and the filtrations generated by the observations v, = {y,, 7 < t},
respectively. A process is causal with respect to a given filtration if its current
value belongs to the associated information set. Conversely, we can reverse
the time and characterize a process as noncausal if its current value depends
on a future value of the process that generated the filtration. Equations
(2.3)-(2.4) lead to the following proposition :

Proposition 1 : i) u; is e-noncausal and y-causal.
ii) v, is e-causal and y-noncausal.

Process u (resp. v) is called the noncausal (resp. causal) component with
respect to the filtration associated with the error e.



2.2 Filtering

Suppose that we observe y over a period of length 7" and denote by (y1, .. ., yr)
the observed sequence. The values of unobserved components u and v and

errors € can be computed from a set of observations (yi, ..., yr) as follows.
(i) From equation (2.1) fort = r,...,T—s, we obtain the values £,,1,...,e7
as functions of (yi,...,yr).

(ii) From equation (2.3) : w; = ®(L)y;, t = r+1,...,T, we obtain u, 41, ..., ur.

(iii) From equation (2.4) : v; = (L™ Yy,t = 1,...,T — s, we obtain
Viy.ooyUr—s.

When an additional observation y7,; becomes available, the set of unob-
served components can be updated by computing ey 1, uri1 and vp_gy ;.

2.3 Recovering process (y) from unobserved compo-
nents
Conversely, the observable process y can be recovered from the e-causal and

e-noncausal components. Below, we show two methods of recovering y, which
are based on partial fraction decomposition.

i) (u,v)— causal representation of y

We have :
1 L?

®(L)W(L™Y)  S(L)[L (L))

where the denominator is a polynomial in L. That polynomial can be rewrit-
ten as:

1 bi(L) be(L)

LT ~ WD) LT
where the degree of polynomial b; is d°b; < r — 1, and the degree of poly-
nomial by is d°b < s — 1 [see e.g. Van der Waerden (1953) for the existence
and uniqueness of polynomials b; and by, and Kung, Tong (1977) for fast
algorithms for partial fraction decomposition].




It follows that:

1 s [b1(L) by (L)
. [@(L) +LS\II(LIJ

L#bi (L) ba(L)
B(L) (L)

and

(L) | by(L)
yt‘{ (L) wl)] 'f

Next, we use expressions (2.3)-(2.4) that define u and v and get:

Yy — stl(L)Ut + bZ(L)Ut (25)
Equation (2.5) provides a representation of y; as a linear function of cur-
rent and lagged e-causal and e-noncausal components v and u, respectively.

ii) (u,v)—noncausal representation of y

Alternatively, we can use the partial fraction decomposition with polyno-
mials in L~!. We get :

— Lir €
T e

LBEY B

L =sm T e

g, with d%b% < r—1,d%% < s—1,

b* Lfl L~ "bk Lfl
_ N LR

o(L) T(L)

where d° denotes the degree of a polynomial. Next, using the definitions of
u and v in (2.3)-(2.4), we get:

Yy — bT(Lil)'Ut + Lirbz([zil)ut, (26)

which is a representation of process y as a linear function of its current and
future e-causal and e-noncausal components v and u, respectively.
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Below, we illustrate the two representations for a mixed causal-noncausal
autoregressive process of order (1,1).

Example 1 : Let us assume r = s = 1 and consider the mixed autoregressive
model:

(1= ¢L)(1 = ¢L )y = &,
with |¢| < 1, || < 1, or

B L
Il i
, 1 1 & I
The equality A= oL)(L = 0) R (1_¢L+L_w>,1mphes.
1 oL 1
" 1—¢¢(1—¢L+1—wL—1>5t
= 1_1¢w(¢vt1+ut). (2.7)

In this representation, y; is a linear function of the first lag of the e-causal
component v and of the current value of the e-noncausal component u. We
also have:

n (v + Yugyr). (2.8)

1

L — ¢y
In the above representation, y; is a linear function of the current value of the
e-causal component v and of the first lag of the e-noncausal component w.

2.4 Equivalence of information sets

The following proposition establishes the equivalence of various information
sets that contain the unobserved components v and v and the errors €. The
proof given in Appendix 1 is based on the partial fraction decomposition and
provides a simplified alternative to the proof in Lanne, Luoto, Saikkonen
(2012) ™.

!Our proof eliminates the linear transformation 2’ = BAy', where z =
(U1, oo Upy Epgly oy ET— sy UT— 5415 oy U )y Y = (Y1, ..., yr) and B and A are high dimensional

matrix functions of parameters ® and ¥ [see Lanne, Saikkonen (2011) for the expressions
of matrices A and B].




Proposition 2 : The following information sets are equivalent

1) (yb s 7yT);

11) (yla vy Yry Up g1y -e ey 'LLT),

111) (U1 s U=y YT —s+15 - - -5 ?JT);

IV) (Y1se oy Ury Ergls e ooy ET sy UT 541y« -, UT);
V) ('Ula sy Ury Erg1y e ET—sy YT —5415 - -+ yT)a
Vl) (Ula e Ury gy e ET—sy UT—s 15 -+ -y UT)-

The equivalence between (y1, ..., y7) and (v1, ..., Up, Epgty v ey E4o1, UT—541, ---
is of special importance, as the following three sets of variables (vy,...,v,),
(Ert1y---se7-5), and (ur_s41, ... ur) are independent. Intuitively (vy,...,v,)
[resp. (ur_si1,...,ur)] are the initial (resp. terminal) conditions that de-

termine the path of process y over the period {1,...,T}.

2.5 Simulation of a mixed causal-noncausal process

The results of the previous sections can be used for simulating a stationary
mixed or noncausal process. Let us outline below the steps for simulating a
mixed autoregressive process of orders r = s = 1 defined as:

(1=¢L)(1 =Ly =&
The simulation steps are as follows:
step 1: Simulate a long path of i.i.d. errors ;.

step 2: Use formulas (2.3)-(2.4) to simulate the paths of the e-causal and
e-noncausal components :

u; = ¢e; +puyy, t=1,...,2T,

v, =¢;+ov; |, t=-T,..,7T,

starting from a far terminal condition (resp. far initial condition) u, = uy,
say (resp. v®p = vy).

) uT)



step 3: Obtain the simulated values of process y from the partial fraction
representation given in (2.5) [or (2.6)]:

1
;= ——(u] ; t=1,..,T.
Yi 1—¢>@Z)(ut+¢vt’1)’ yeees

3 Prediction

Let us now consider the (nonlinear) prediction of future values of process
y. We proceed in three steps as follows. First, we show that the prediction
of future values of y is equivalent to the prediction of the future values of
the e-noncausal component u. Next, we introduce a closed-form functional
estimator of the joint density of s consecutive future values of u given the
past. In order to generate yr.; or future paths yri1,...,yr+ g, We use a
Sampling Importance Resampling (SIR) method to draw the future values
of the noncausal component from the estimated predictive density and then
deduce the simulated y by applying formula (2.3). The method can be applied
in one step to obtain the forecasts up to a given horizon H > 1.

More specifically, the prediction of interest is the future path (yry1, ..., yren),
given the observations (yi,...,yr). It is accomplished by deriving a closed
form functional estimator of the conditional probability density function
(p.d.f) Uyrs1,---,Yyrem y1,--.,yr), and next by drawing in that density
function in order to obtain the conditional quantiles and prediction intervals.

This approach differs from the traditional point prediction, which will not
be followed for the following reasons:

i) For second-order stationary processes, the optimal predictor is the con-
ditional expectation E(Yrip |y1,...,yr),h =1,..., H. However, this condi-
tional expectation may not exist in non-Gaussian processes if the errors (and
therefore the Y/s) have fat tails 2.

ii) For noncausal and non-Gaussian processes with finite variances, the
formula of the optimal predictor is complicated, in general. While, for Gaus-
sian processes, the conditional expectation E(Yrin|vr,...,yr),h=1,...,H

2For causal autoregressive processes, whose innovation &; have stable symmetric dis-
tributions with fat tails, Stuck (1977) [see also Cline, Brockwell (1985)] proposed a linear
predictor YTHL defined by minimizing E(|Yr4n — YT+h|a), where « is the tail index of the
stable distribution. These predictions could be computed recursively from an extended
Kalman filter. The nonlinear predictors of causal processes computed from minimizing
the a— distance measure turned out to be accurate in a non Gaussian framework.
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is a linear function of the observed values, when the error term is not Gaus-
sian, the best predictor E(Y7ip|yi,...,yr) is a nonlinear function of the
observed values [see e.g. Rosenblatt (2000), Theorem 5.3.1].3

Therefore, it is difficult to define and study point prediction in noncausal
models that are non-Gaussian and include processes with fat tails. Below, we
introduce a prediction method that provides a complete predictive density
rather than only a location parameter of that density.

3.1 Predictive density

In Section 2.4, we showed that the information set (yi,...,yr) is equivalent
to the information set (v1, ..., Up, Epsty - vy ET—s, UT—541y -« -, UT).

Therefore, the information contained in (y1,...,yryy) is equivalent to
the information in (vy, ..., 0r, Eri1y .y ET4H sy UTLH 541, -+, UT+H), and it
is also equivalent to that in (vy,...,0r, &r41, .y ET s, UT 541, ..., UTsH), DE-
cause V(L Y, =g, t =T —s+1,..., T+ H — s by formula (2.3).

Thus, instead of predicting the future value of y, we can equivalently
predict the future value of the s-noncausal component wu, by finding the
conditional p.d.f :

urgr, - uriem|Yi, o Y1)
l(’LLT+1, Ce ey uT+H|U17 ey Upy gty e e 5 ET—s, UT—g 41y - - - ’LLT)
= l(uryr, - urmg|ur —spr, - -5 Uur), (3.1)
given that (up_s11,...,ury ) are independent of the unobserved components
U1,...,v, and errors €,41,...,67_, in the information set.

The conditional p.d.f. in (3.1) can also be written as :

Hursr, - Urpm|Ur—sgts - - Up)
_ Z(UT,5+1,...,’LLT,’LLT+1,...,’LLT+H)
ZS(UT,SJA, Ceey U,T)
(up_ . _ _ .
_ ( T—s5+1, yUT+H s|UT+H s+1, ,UT+H)ls(UT+H75+1;---,UT+H)7
ZS(UT,SJA, Ceey U,T)
(3.2)

3When the error term is integrable with infinite variance, the prediction is linear in the
past value only for errors with symmetric stable distributions [see Cambanis, Fakhre-Zakeri
(1994)].
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where [, denotes the stationary density of s consecutive values of the e-
noncausal component u, denoted by %, si1,...,u,. The above conditional
density given the last s future states is known when polynomials ®, ¥ and
the p.d.f. g of the error £ are known too (see Section 3.2).

Example 2 : If s = 1, we get u; — Yu;y1 = €;. The conditional density in

the numerator of (3.2) is :

Z(UT, e aUT+H71|UT+H)
= uplup)l(urgr|urio) . (ury g1 |urym)

= g(upr —Yupi1)g(ursr — Yurss) ... g(ursm—1 — Yurim).

Example 3 : If s = 2, we get uy — 1upr1 — Youpo = 4. The conditional
density is:

lur-1,- .. uryg—olurym—1, Urim)
= l(UT71|UT7 UT+1) .. -l(UT+H72|UT+H717 UT+H)

= g(UT—1 — Yur — 1/)2UT+1) .- -g(UT+H—2 - 1/)1UT+H—1 - 'QZ)ZUT-i-H)-

Example 4 : In special cases, the predictive density of the e-noncausal
component u admits a closed form. For example, when the error ¢ follows a
Cauchy distribution, the predictive density is:

1 1 L+ (1= [9])*ui
Tl 4+ (up — Yurs )1+ (1 — |1/)|)2u%+1’

l(urii|ur) = (3.3)

1 1 1
72 1+ (ur — Yury1)? 14 (urgr — Yurgs)?
1+ (1 —|])*uz
L+ (1= |9))%ug .y

l(UT+17 UT+2|UT) =

12



3.2 Closed-form estimator of the predictive density

The predictive density of interest in formula (3.2) is generally unknown for
two reasons. First the error density g and the coefficients of autoregressive
polynomials ®, ¥ are usually unknown. Second, the stationary density [ of s
consecutive future values of u is unknown too. So far, it has been considered
that "no closed-form solution exists for (such) a marginal distribution and
that numerical methods are required” [see Lanne, Luomo, Luoto (2012),
Section 4]. In this section we propose a look-ahead-type of estimator for [,
in closed form that eliminates the numerical procedure.

The first difficulty is easily solved, when the p.d.f. g of error ¢ is parametrized
by a parameter denoted by f. The autoregressive parameters in ®, U, and ¢
can be estimated by the approximated maximum likelihood method [see e.g.
Breidt et al. (1991), Lanne, Saikkonen (2011)], possibly by using the recur-
sive BHHH algorithm introduced in Section 4. Then, the conditional density
in the numerator of formula (3.2) can be approximated by replacing the true
current and past u;, ¢t < T, by their filtered values, computed from the ob-
servations on y (see Section 2.2) and ® 4. Let us assume H > s. Then, the
conditional density in the numerator of formula (3.2) can be approximated

by:

l(UTsz, ce UT+H75|UT7H75+17 ce UT+H)

~ l(@T—sH, o Uy Uy e >UT+H—5|UT—H—3+1> S UT+H), say.(3.4)
Let us now focus on the second difficulty concerning the estimation of the
unknown stationary p.d.f. [,. By the Iterated Expectation Theorem, it

follows that the value of the joint density of U, 4,1, ..., U, at any given date

7 and any lagged sequence of values u;_, ,...,u} is given by:
ls (Ui,erl, ] u:)
= E[l(uj’—s—l—l"“7u;k'|U7'+17“‘7U7'+5)]

= E{g(uiferl - 1/)1U15+2 e wSUT‘Fl) te g(uikr - ¢1Ur+1 e T wSUT+S)}7

4As shown in Example 3, the estimates of g and ¥ are also needed at this stage, even
though they do not appear explicitly in formula (3.2).

13



where the expectation is taken with respect to the joint density of (U, 11, ..., Uris).
Let us now approximate this theoretical expectation by its sample-based
counterpart. We get:

l (u'r s+1 7u:)
1 T—s+1
= T —s+1 Z {g Ur 511 /l/)luT s+2* - ¢Sut) (u - wlut - ¢Sut+8—1)}7

and, after replacing g by g, v; by 1/;]', and the current and past e-noncausal
components u by their filtered values, we obtain:

(g ) (3.5)
1 T—s+1
= 7 T Z {g(U:_sH - wlui_s+2 - wsut) .- (U - T/)1Ut ws@tﬂfl)} .
T—s+1 —

The method used here to estimate the stationary p.d.f. [, is a kind of look-
ahead estimator suggested by Glynn, Hendersen (1998), (2001) [see also Gari-
botti (2004)]. The main difference is that the simulation step involved in the
look-ahead approach has been eliminated by using the (asymptotically) sta-
tionary filtered values of the e-noncausal component w.

We can now substitute [ from (3.4) and [, given in (3.5) into the predictive
density of interest, the latter one being evaluated at two sequences u of length
H, starting at times 7 =T —s+1and 7 =T + H — s + 1, respectively.

Proposition 3 : A functional closed-form estimator of the predictive density
is:

L7 i1y oy Uy Uty - o U s U4 o1y - - o Ui ) s (UD 541, -+ -, UT s 1)
Ls(Ur—s41y ..., 0U7)
= M(urqr, ..., urynlip_si, ..., Ur),say. (3.6)

where [, is defined in equation (3.5). Under standard regularity conditions
this functional estimator is consistent .

5As we focus on the filtering and prediction, the regularity conditions that en-
sure the uniform convergence of stochastic function IT on any bounded sets of values
(ur41,...,ursm) is out of the scope of this paper [see, e.g. Hansen (2004), (2008)].
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Let us illustrate the predictive density IT at horizon H for a noncausal process
of order 1.

Example 5 : If s =1, we get :

~

H(’LLT+1, Ceey ’LLT+H|’LALT)

T
gty = dur ) g(urss — Yurys) . g(urpn 1 — burpn) Y (uryn — i)

t=1

T
> gliig — i)
t=1

Expression (3.6) provides a closed-form consistent functional estimator of
the predictive density of interest IT. The look-ahead method used to estimate
the stationary p.d.f. [; allows us to avoid either the simulations of long paths
of future e 1, ..., &7y to recover the future vectors ugq, ...., up, y [Lanne,
Luoto, Saikkonen (2012)], or the estimation of long sequences ey, ..., 71
as additional unknown ”parameters” in a Bayesian framework [Lanne, Lu-
omo, Luoto (2012)]. These two approaches can be compared to our method
as follows: Lanne, Luoto, Saikkonen (2012) and Lanne, Luomo, Luoto (2012)
approximate numerically the predictive density from a large number of sim-
ulations [see, e.g. footnote 11 in Lanne, Luomo, Luoto (2012)] while our
method relies on a closed-form formula of the estimated predictive density
given in Proposition 3. Moreover, their approximation to the predictive den-
sity is based on a truncation up ~ Z]]Vil Bjer4j. If the noncausal polynomial
has a root close to unity, the value of M has to be large enough to avoid a
significant truncation bias [see, footnote 6 in Lanne, Luomo, Luoto (2012)].
The closed-form formula given in Proposition 3 eliminates such a potential
truncation bias.

3.3 Prediction of future y

The approximate predictive density IT of the e-noncausal component wu in
(3.6) can be used to generate the future values or future paths of the observ-
able process y and its unobservable causal and noncausal components over a
given horizon H.

15
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The approach consists of four steps outlined below. The future values of
y are computed from the future values of u that are drawn in II by applying
a SIR method [see Rubin (1988), Geldfand, Smith (1992)], or alternatively a
Metropolis-Hasting algorithm. More specifically, the procedure is as follows:

Step 1 : Use data (yi,...,yr) to compute the filtered values of in-sample

unobserved components u: €,11,...,67 s, U1y, Or—g, Upit, ..., Up.
Step 2 : Compute the approximated predictive density II.
Step 3: Use the SIR method to simulate future u’s: uj.,,...,u%, 5. In the

SIR approach, the first set of simulations is generated from a misspecified
instrumental model and the possible bias due to misspecification is eliminated
by resampling.

Step 4: Use the recursive formulas (2.2)-(2.4) to compute the future values
YTuts - s YTt ET 541y ETHH 50 OT 5415+ VT4 H s

One can draw a large number of future paths of length H in order to
obtain a complete term structure of predictive densities and prediction inter-
vals from T+ 1 up to 7'+ H. From a practical point of view, it is important
to choose a computationally convenient forecast horizon H. Indeed,

i) choosing H > s is advantageous as it simplifies the expression of the
closed-form functional estimator II.

ii) It is computationally less demanding to apply the SIR approach in one
step at horizon H = 10, say, than to apply the method recursively 10 times
at horizon 1.

iii) Drawing entire future paths of length H provides the term structure
of prediction intervals.

4 Filtered components-based algorithm

Let us now discuss the parameter estimation in noncausal and mixed autore-
gressive processes. In recent literature, mixed autoregressive models have
been estimated by the approximated maximum likelihood (AML) method
[see e.g. Breidt et al. (1991), Lanne, Saikkonen (2011), (2013), and Davis,
Song (2012) for the multivariate framework]. The AML estimators of param-
eters 0, ®, ¥ are defined as:
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T—s

> A @L)T(L Yy 0). (4.1)

The filtered values of unobserved components of y can be used in a new
algorithm for computing the AML estimates and based on the updating of
the filtered values of unobserved components until the numerical convergence
of the parameter estimates is achieved.

4.1 The AML estimator as a fixed point

Before introducing the algorithm, let us first describe the fixed point in-
terpretation of the AML estimates. Instead of optimizing the approximate
log-likelihood jointly with respect to all parameters 6, ®, ¥, the AML esti-
mator is defined as the limit of successive optimizations with respect to each
parameter separately.

Let us consider the p'* step of the recursive maximization of the ap-
proximate log-likelihood function in the AML procedure. ®® .. . ¥® g
denote the values of the unknown parameters at step p, and

~(p) 2(p)  ~(p) ~(p)  ~(p) ~(p)
Epflr s Eplgy U1 ey Up Ly Uy lyy e vy U

denote the filtered components computed with the parameter etimates ®®), ¥®) @),
Step 1 : Updating 0

The filtered value of error ¢ is used to update the estimator of the parameter
(vector) € in error density g(6):

T—s

(p+1) — ~(p).
0 arg rmeauctXr;1 log g(£,”; 0).

Step 2 : Updating ¢

Given that ®(L)v, = ¢, [see (2.4)], the filtered component v is substituted
into this causal autoregressive model of ¢; in order to update the estimator
of ®:

T—s
(p+1) _ ~(p). p(p)
o arg mgxz log g[®(L)v,"; 0%].

t=1
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Step 3 : Updating ¥

By analogy, given that W(L™')u, = &; the filtered component v is substi-
tuted into the non-causal autoregressive model of ¢; in order to update the
estimator of U:

T
PP+ = arg max Z log g[U (L") alP); o).
¥
t=r+1
This fixed point of the recursive likelihood-based approach provides the AML
estimates of the parameters (see the discussion in Section 4.2).

4.2 The recursive BHHH algorithm

The back-forecasting method in Section 4.1 requires more optimizations of
the log-likelihood function than the direct maximization of the log-likelihood,
although with respect to smaller numbers of parameters. From a numerical
point of view, these successive optimizations can be facilitated by using a
recursive Berndt, Hall, Hall, Hausman (BHHH) algorithm described below
[see Berndt et al. (1974)]. The algorithm consists of the following steps:

Step 1 : Updating 0
Parameter (vector) 6 at step p+ 1 is :

T—s -1 T—s
(0+1) _ o) 91089 ) »0 21989 ) 4 dlogg ) 4w
0 = 0P+ %0 (&",0") % (&,7,0%)) 50 (&,7,0%)).

t=r+1 t=r+1
Step 2 : Updating ®

We have :

—S

T -1
ol
o =2l — {Z[@5”1,...,@EPL]'[@?L...,@EPL](%@?%e@)?}
t=r+1

S dlogg
Z {['ﬁili)l, ce ,@gli)r]/T(égp), e(p))} .

t=r+1
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Step 3 : Updating ¥

We have :

T—s 2 !
. . . . dlogg , .
wor = W—{Z[u,&f;a,...,u,sffsr[u,&fz,...,ug@s]( - <e,sp>,e<p>>)}

t=r+1

- dlogg
> {[ai’i’l,-..,aiffs]' o (ggm,g(m)}

t=r+1

The above recursive BHHH algorithm converges numerically to the lim-
iting values that are the solutions of the AML likelihood equations.

The adjustment terms in steps 2 and 3 can be interpreted as regression
coefficients. For example, the adjustment term in step 2 is the regression
coefficient in a regression of a vector of ones as the dependent variable on
the following regressor vector:

!

m0logg . () Ologg , .
9218 g 50,2189 0 )

The recursive BHHH algorithm given above differs from the standard
BHHH algorithm that is applied jointly to all parameters. While the standard
algorithm relies on the approximation of the complete information matrix:

log  Ipo  Igw

{ ®0 { P { v |

Iy lve low
say, our approach sets to zero the off-diagonal blocks of the information ma-
trix. It takes a similar number of iterations to get the numerical convergence,
but each iteration involves inversions of matrices of smaller dimensions. By
the same argument, the proposed recursive BHHH argument is computation-
ally less demanding than the popular Broyden, Fletcher, Goldfarb, Shanno
(BFGS) algorithm.

Moreover, this recursive algorithm yields not only the parameter esti-
mates, but also the filtered components. It is easily applicable to stream
on-line data, and allows for continuous updating of the parameter estimates
and filtered components.
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5 Filtering and prediction in multivariate pro-
cesses

The filtering and prediction methods introduced in the previous sections for
univariate processes can be extended to mixed autoregressive moving-average
processes or mixed vector autoregressive processes.

As noted in Lanne, Saikkonen (2013) [see also Lanne, Luoto (2014)], the
state representation involving the causal and noncausal components derived
in Section 2 for univariate processes is also valid in the multivariate frame-
work for a constrained VAR model such that

O(L)y, = (L)W (L™ )y = &,

where det(II(z)) # 0 and det(¥(z)) # 0, for |z| < 1. However, as noted in
Davis, Song (2012), such a decomposition of the matrix polynomial is very
restrictive. For example, for a VAR(1) model, it implies that the model is
either purely causal, or purely noncausal, as these are the two only cases when
the roots of the characteristic equation det®(z) = 0 are either all of modulus
less than 1, or all of modulus greater than 1. This restriction eliminates
the possibility of having a mixed causal - noncausal VAR(1) model with the
number of noncausal roots strictly between 1 and n, where n is the number
of component series.

In this section, we introduce an unconstrained mixed VAR(1) model and
show how the filtering and prediction methods developed in Sections 2.3,
2.4 can be extended to the multivariate framework. First, we derive a state
representation of the mixed process from a partial fraction decomposition
and next from a real Jordan canonical form [see, Davis, Song (2012)].

5.1 The causal and noncausal components by partial
fraction decomposition

Any mixed VAR model can be rewritten as a Vector Autoregressive model
of order 1 (VAR(1)) when the current and lagged values of the process are
stacked in a vector of a larger dimension. Therefore, we consider the following
stationary VAR(1) process y; of dimension n:

(Id—®L)y, = =, (5.1)
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det(Id — ®L) = ¢(L)y(L), (5.2)

where (g;) is a strong white noise of dimension n, and ® is a n x n matrix.
The determinant det(Id — ®(L)) admits r roots strictly outside the unit
circle and s = n — r roots strictly inside the unit circle. Accordingly, ¢ and
) are (scalar) polynomials in the lag operators, with roots strictly outside
and inside the unit circle, respectively, and of the following degrees: d’¢ =
r,d% = s,¢(0) = (0) = 1.

In order to write the (two-sided) multivariate moving average represen-
tation of y, we introduce the adjugate matrix (Id — ®L)* of (Id — ®L), that
is the transpose of the matrix of cofactors, such that :

(Id — ®L)(Id — ®L)* = det(Id — ®L)Id. (5.3)

The stationary, multivariate two-sided moving average representation of pro-
cess y is :

(Id — ®L)*
o(L)y(L)
where 1/¢(L) [resp. 1/t¢(L)] denotes the one-sided convergent (scalar) series

in L [resp. L™'], which is the inverse of ¢(L) [resp. of ¢(L)] .

Equation (5.4) provides the two-sided multivariate moving average rep-
resentation of y; in terms of the strong white noise €.

Next, we apply the partial fraction decomposition to each element of
(Id— ®L)*
¢(L)p(L)

Ye = €t (5.4)

matrix and get:

(Id=9L)" _ Bi(L) Bu(L)
oDu(L) oD | B(D)’

where B; (L) [resp. By(L)] are matrix polynomials of degree s—1 [resp. r—1].
Hence, the multivariate process Y; can be written as:

(5.5)

Y, = v + uy, (5.6)

SLet us recall that (L) = [];_, (1 — A;L), where the eigenvalues ); of ® are of modulus

greater than 1. We have : ¢ (L) = [T;_; MiL*(=1)* [T;_; (1 = 5-L~"). This polynomial in

L is invertible. Tts inverse is equal to 1/¢(L) = (TT;_; X)) ' L*(=1)* T[], (1 -+ L") 1,

where (1 — )\%L_l)_1 =302 oA\ "L™" Thus 1/4(L) is a one-sided series in L™! starting
from h = s.
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By(L) - Bay(L) -
where v, = ¢1((L))5t is a e-causal process, and u; = % is a e-noncausal

process. This extends formula 2.7 [up to a scalar and a shift in time of v].

5.2 Another state space representation?

A multivariate dynamic model has a multiplicity of state space represen-
tations. Let us now consider the state space representation introduced by
Davis and Song (2012) to derive a closed-form expression of the approximate
log-likelihood function [Davis, Song (2012), Section 4.1]. The state variables
are derived from the Jordan representation of the autoregressive matrix &:

(0
om0 )

where J; (resp. Jo) can be written as:

A 0/1 0 -~ 0
0 X 0/1 --- 0
L=\ . 7 / .
0 cer eee e A,

with the eigenvalues of modulus less than 1 on the diagonal (resp. larger than
1), elements equal to either 0 or 1 on the diagonal first above, and where A
is a matrix of change of basis. Davis and Song show that the information in
(Y1, ..., Y7) is equivalent to the information in [(}7171, €91),E2, ey ET—1, (}727T, ELT)s
where Y; = A7'Y}, (resp. & = A~'g;), Y, (resp. Ya,) is the subvector of
the first s components of Y; (resp. the last n — s components of Y;) and E1t
(resp. &,4) is the subvector of the first s components of &, (resp. the last
n — s components of &).

However, this state space representation is inconvenient for simulation
and prediction purposes. Indeed, matrices .Ji, Jo, A as well as the state vec-
tors Yi,, Yo, are complex, in general 7.

Below, we propose to derive a real Jordan canonical form, by putting
together the vectors of the new basis associated with a complex eigenvalue

"The complex valued components are inconvenient for deriving the approximate log-
likelihood function. For example, in Davis, Song (2012), that derivation is based on a
change of variables by the Jacobian formula applied to complex analytic functions, whereas
real transformations are easier to interpret.
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and its conjugate [see, e.g. Perko (2001)] in order to derive a real state space
representation.

Let us focus on the block of a Jordan matrix corresponding to a complex
eigenvalue \ and its conjugate \. Such a block can be written as :

A0/ 0 - 0

O A 0/1 --- 0
JA) = S : : : ,

: : A OZl

O +or eer eer A

where the first m elements of the diagonal above the main diagonal are equal
to zero, and the next M — m elements are equal to one. M is the algebraic
multiplicity order of the eigenvalue and m its the geometric multiplicity order,
that is the dimension of the null space of ® — Ald. Let us denote by ¢;, 1 =
1,...., M the complex vectors of the change of basis associated with . By
construction, they are such that:

de; = Ae;, 1=1,...,m,

(I)€i = )\€i+€i_1, Z:m+1,,M
As matrix ® has real elements, we find that:

q)éi = B j\éi, 1= 1, ey M,

de; = )\éi‘i‘éifl, 2:m+1,,M
For deriving the real Jordan canonical form, we select €;,7 = 1,..., M as the
complex vectors of the new basis associated with eigenvalue \.

Then, instead of using the complex basis (ey, ..., €pr, €1, ..., €pr),we use the

real basis [Re(e;), Im(e;),i = 1,..., M|, where Re(e;) [resp. Im(e;)] is the
vector whose components are the real (resp. imaginary) parts of the com-

ponents of e¢;. Let us now write matrix ® restricted to this new basis. We
get:

®Re(e;) = %(I)(ei + €)
_ %{)\[Re(ei) +iIm(e;)] + MRe(e;) — iIm(e;)]}
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1 - ' -
= Re(e)5(A+2) + Im(ei)%()\ ~)
= Re(e;)Re(N) — Im(e;)Im(N), if 1 < i< m.
Similarly, we have:
®Re(e;) = Re(e;)Re(N) — Im(e;)Im(\) + Re(e;—q), iftm+1<i< M,
®Im(e;) = Re(e))Im(N) + Im(e;)Re(N), if 1 <i<m,
®Im(e;) = Re(e;))Im(N) + Im(e;)Re(N) + Im(e; 1), ifm+1<i< M,
By using the new basis of real vectors [Re(e;), Im(e;),i = 1,...,m], the

initial complex Jordan matrix J(A) can be replaced by the following real
Jordan matrix RJ(A) given by:

R(a, b) 02 02 s 02
0 R(a, b) 02 e 02
: : : R(a,b) Idy
02 R(a,b)

with the following 2 x 2 matrix on the main block-diagonal

a

R(a,b) = < 0 2>,Where)\:a+ib,

either the 2 x 2 matrix of zeros, denoted by 05, or identity matrix /ds, on
the block diagonal first above and blocks of zeros everywhere else.

The subsection below shows that a real state space representation, similar
to the one in Davis, Song (2012), can be obtained by replacing the complex
Jordan forms by their real Jordan counterparts and also in the derivation of
the approximate log-likelihood as detRJ(\) = det.JJ()\). In practice, the true
autoregressive matrix ® is estimated by ® and the probability that ® has a
double root is equal to zero. In this case RJ(A) is reduced to R(a,b).
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5.3 Relationship between the real Jordan canonical
form and the partial fraction decomposition

The two approaches described in Sections 5.1 and 5.2 are closely related. Let
us denote by ® = AJA™! the real canonical form of ® where

(0
=(05),

and J; (resp. Jy) contains all real blocks corresponding to the eigenvalues of
modulus less than 1 (resp. greater than 1).

Let us decompose accordingly A = (A, A) and A~' = (AY, A%)". We
obtain the following result:
Proposition 4 :
The operator Id — ®L is invertible and its inverse is given by:

Ay (Id — J,L)*AY Ay(Id — J,L)* A%
([d_(I)L)fIZ 1( d Jl ) 2( d J2 )
det(Id — J,L) det(Id — J,L)
where * denotes the adjugate matrix.
Proof: see Appendix 2.

The elements of (Id — J;L)* are polynomials of a degree less or equal to
the degree of det(Id — J;L) less one. The equality in Proposition 5 is simply
the multivariate partial fraction decomposition of:

L (ld-oL) (Id — ®L)*
" det(Id— ®L)  det(Id— JiL)det(Id — JoL)’

(Id — ®L)

Thus the multivariate partial fraction decomposition of (Id — ®L)~! fol-
lows from the real Jordan canonical form.

Note that the real Jordan canonical form is not unique, but all forms
lead to the same partial fraction decomposition. Proposition 4 can be used
to show the link between the state variables u and v derived in Section 5.1
and the state variables f/l, 372

Corollary : We have v, = Alffl,t, Uy = AQY/Q,t.

Consequently, all the methods derived in the univariate framework are also
valid for multivariate processes, especially the prediction method based on
a consistent functional estimator of the joint predictive density, outlined in
Section 3.
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6 Simulation Study

To illustrate the implementation of the filtering, prediction and simulation
methods, we perform a Monte Carlo study based on the data generating pro-
cess described below. It is intended to replicate the dynamics observed in
time series such as the commodity prices, Bitcoin/USD exchange rates and
S&P 500 returns. In practice, these processes can be modelled as stationary
noncausal and mixed processes that display short-lived explosive patterns,
called bubbles. A bubble is characterized by a phase of slow or moderate
growth followed by a sudden drop, and can be replicated in practice by as-
suming that the errors of the noncausal model have fat tails [see Gourieroux,
Zakoian (2013)]. We assume that the errors are Cauchy distributed in order
to get both fat tails of the marginal densities of simulated processes and a
closed-form of the approximate likelihood function.

6.1 The Data Generating Process
The process examined is a mixed causal-noncausal autoregressive process of
orders r =1, s = 1:

(1= oL)(1 =YL Ny =&, (6.1)

with Cauchy errors :

1 1 o 1

,(e) = — =2 . 6.2
90() onl+e2/o?2 7mo?4e? (6.2)

We consider four sets of parameter values, in which o and ¢ are constant
while parameter 1) takes on four different values:

c=1,6=03,%=0,0.305,0.9.

Figure 1 shows the simulated trajectories of length 7" = 200 of processes
with the four sets of parameter values given above and with the same vector
of simulated Cauchy-distributed errors.

[Insert Figure 1 : Simulated paths with four sets of ¢ and ]

We observe several positive and negative bubbles of different durations
and magnitudes. We also find that the larger the noncausal autoregressive
parameter ¢, the longer and larger the increasing phase of the bubble.

26



6.2 Parameter estimation

For each DGP defined in (6.1)-(6.2), the AML estimates of parameters ¢, ¥, o
are computed by the standard BFGS algorithm and by the recursive BHHH
algorithm of Section 4.2. The estimated values of the parameters are given
in Table 1. As the limiting distribution of the AML estimators of ¢y and ¢
8 is intractable due to Cauchy errors [see, Andrews, Calder, Davis (2009),
Th. 3.2], the standard errors are computed by bootstrap [Davis, Wu (1997),
Andrews, Calder, Davis (2009) Th. 3.4]. The values of the t-ratios are also
given as measures of the relative accuracies of the estimators.

8The AML estimator of ¢ is asymptotically normal.
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Table 1: AML Estimates of ¢, ¢ and o

Parameter ‘ standard error ‘ t-ratio
standard BFGS

Y =20.0 0.004 0.015 0.285
=03 0.281 0.017 15.646

o= 0.877 0.094 8.721
Y =20.3 0.303 0.014 21.428
=03 0.281 0.017 15.800

o= 0.878 0.095 8.611
Y =20.5 0.505 0.012 39.558
=03 0.280 0.018 15.318
o=1 0.878 0.097 8.467
Y =20.9 0.902 0.006 131.649
=03 0.280 0.018 15.058

oc=1 0.881 0.097 9.041

recursive BHHH

Y =20.0 0.004 0.018 0.226
=03 0.281 0.016 16.725
o=1 0.877 0.086 10.101
Y =20.3 0.303 0.016 18.068
=03 0.281 0.016 16.742
o= 0.878 0.087 10.091
Y =20.5 0.504 0.014 34.341
=03 0.280 0.016 16.732
o= 0.879 0.087 10.048
Y =20.9 0.902 0.006 139.427
=03 0.280 0.016 16.635
oc=1 0.881 0.087 10.057

The results from the two algorithms are close. The accuracy of the es-
timator of parameter ¢ is almost independent of the value of parameter 1,
which controls the length and size of the bubble. The variance of o decreases
when that parameter approaches the unit root.

6.3 Filtering

The filtered causal and noncausal components and errors are calculated from
the simulated y and AML parameter estimates. Figure 2 shows the trajec-
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tories of filtered errors £ and components u and v based on the DGP with
»=0.3,9%=0.9.

[Insert Figure 2 : Filtered component series from process with ¢ = 0.3,¢ =
0.9]

The series of filtered ¢ is close to a series of independent drawings in the
Cauchy distribution. The filtered ¢ series reveals the dates of extreme values
of Cauchy distributed errors. Recall that process (y;) can be represented in
terms of its unobserved e-causal and e-noncausal components as:

Yt (ug + Pvy_1).

1

1— oy
The unobserved components v and v contribute to the formation of bub-
bles. Component u with parameter 1) determines the increasing phase of
the bubble while component v and parameter ¢ determine the bubble burst.
Both components v and v have AR(1) representations in reverse and direct
times, respectively. The high value of parameter ¢» = 0.9 explains the strong
persistence in reverse time of the e-noncausal process u. The sample autocor-
relations of u are statistically significant up to lag 10 and take the following
values:

Table 2: Sample autocorrelations of u
lag| 1 2 3 4 5 6 7 8 9 10
acf | 0.92 1 0.83 | 0.75 | 0.67 | 0.58 | 0.52 | 0.45 | 0.39 | 0.31 | 0.24

As the errors have fat tails, the asymptotic distribution of the sample
autocorrelations differs from the standard Gaussian distribution. The con-
fidence bounds for testing the significance are obtained from the simulated
limiting distribution given in Davis, Resnick (1986). The adjusted upper
bound is 0.23 and is greater than the normality-based upper bound of 0.14.

6.4 Predictive densities

a) Short-term prediction

The predictive density of the e-noncausal component u of the process with
parameters ¢ = 0.3,7 = 0.9 is estimated by the formula given in Example
4, Section 3.1. That density is shifted by a constant equal to ¢y to become
the predictive density of process y. Let us first consider predictions of future

29



values of that process at short horizons H = 1,2. The last in-sample values
used for the prediction are: yr = 16.67,y7r ; = 14.27,ur = 12.39. They
correspond to the last values of the simulated trajectory of y for 7" = 200
with parameters ¢ = 0.3,9 = 0.9 and its last value of filtered component
u. The predictive density at horizon 1 of process (y;) with parameters ¢ =
0.3,% = 0.9 is plotted in Figure 3 below:

[Insert Figure 3: Predictive density at horizon 1, yr = 16.67, ur = 12.39.]

The short term predictive density is peaked around the last observed
value yr = 16.67 and has a long left tail. For example, the probability of an
increase of y between dates 1" and 7"+ 1 is equal to 0.59.

It is also possible to display the joint predictive density at horizon 2 for
Yra1, Yre2 conditioned on yr = 16.67, upr = 12.39. That bivariate density is
shown in Figure 4.

[Insert Figure 4: Contour plot of joint predictive density at horizon 2, yr =
16.67, up = 12.39]

The joint predictive density is peaked and resembles a density encountered
in the joint analysis of extreme events [see e.g. Balkema, Embrechts, Nolde
(2013)]. We observe two risk directions with left tails fatter than right tails
in each direction. Moreover, these directions are affine as the observations
are determined by linear dynamic equations.

b) Future pattern recognition

The joint predictive density at horizon 2 can be used to study the likeli-
hood of various future dynamics of process y with parameters ¢ = 0.3,¢ =
0.9. The simulated data is such that ypr = 16.67 > yp ; = 14.27, which
corresponds to a recent increase in y. From the increasing pattern observed
at the end of the simulated series, one can infer that the prediction origin is
at the beginning of a bubble. Therefore, it is interesting to examine if that
increase will continue in the future, or will be followed by a downturn at a
future date and of what magnitude. The various possible future scenarios at
horizon 2 are displayed in Figure 5.

[Insert Figure 5 : Predicted patterns.]

The plane in yry; and yr,o with the support of the bivariate density
plotted in Figure 4, is divided into eight semi-orthants centered at yr =
16.67,yr_1 = 14.27. The future pattern depends on the semi-orthant, which
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characterizes the future increase or decrease of yri1,yr.o, and their posi-
tioning with respect to the last observed value.

In order to provide more insights on the future patterns, we compute the
probabilities of selected future scenarios, given yr = 16.67,yr_; = 14.27,
which are shown in Table 3.

Table 3: Probabilities of future patterns

pattern probability
yr < Yr—1 < Yr+1 < Yr42 0.176
Yr—1 < Y1, Y1 > Y141 > Y142 0.132
Yyr—1 < Yr < Yr+1s Yr+2 < Yr41 0.520
yr—1 < Yyr < Yr41, Yr+2 < Yre1, Yrie < Yr-a 0.008

If the future values yr 1, Y742 were "uniformly” distributed on (—o0, 00)?,
the first three probabilities would be equal to 1/8=0.125 (corresponding to
a semi-orthant) and 3/8=0.375 (corresponding to three semi-orthants). The
probability of a continuing increase over two next periods, that is of a down-
turn after date T+ 3 is equal to 0.176 and significantly above the benchmark
of 0.125. The probability of a downturn at T + 2 is especially large and
equal to 0.520 for a benchmark of 0.375. To see if that downturn is sharp,
we provide in the fourth row of Table 3 the probability of y returning to the
value prior to the two consecutive increases. This probability is small and
equal to 0.008, hence the downturn cannot be sharp.

¢) Medium-term prediction

When the prediction horizon H is equal or larger than 3, the closed form
expression of the joint estimated predictive density (3.3) cannot be displayed
graphically. However, the closed form of the estimator of the predictive
density can be used jointly with the sampling-importance-resampling (SIR)
method to simulate future paths.

To apply the SIR, we exploit the recursive relationship between the 3; and
the u; and simulate a set of future paths of u. Given that u; — Yu; 1 = 4, we
know that (u;) is a Markov process of order 1 in reverse time. Therefore it
is also a Markov process in calendar time, but with nonlinear dynamics [see
Gourieroux, Zakoian (2013)]. As the instrumental misspecified model in the
sampling step of the SIR, we use a Gaussian AR(1) model:
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Uy = Pl + O&y,

where £, ~ IIN(0,1) and p (resp. &) is the sample autocorrelation of order
1 (resp. residual variance) computed from the series 4y, ¢ = 1,...,7. This
instrumental model is clearly misspecified as the true dynamics of u; is not
linear, and its first-order moment does not exist. Nevertheless, the resam-
pling scheme corrects for misspecification of the instrumental model °.

Figures 6 and 7 display the term structures of predictive density and the
95% prediction interval, respectively. The selected horizons are H = 9 and
H =10, respectively.

[Insert Figure 6: Term structure of predictive density]

[Insert Figure 7: Term structure of prediction interval]

The increase of the width of the prediction interval with respect to the
horizon is not surprising. However, it is interesting to compare the pattern of
the upper bound with the pattern of the upper bound of a causal process with
a unit root (¢ is close to 1) and errors with zero mean and finite variance,
usually proposed to capture permanent explosive behavior. Such a standard
upper bound changes at the rate of v/ H and is a concave function of time *°.
In our framework, there are transitory explosive behaviors and the pattern
is convex. Indeed, the probability of a bubble increases with H and the
prediction interval accounts also for the sustainability of the bubble due to
the large value of 1.

7 Concluding remarks

This paper revisited the filtering, prediction and simulation methods for
mixed causal/noncausal autoregressive processes. We derived a closed-form
estimator of joint predictive densities of future values of the process at multi-
ple horizons, which can be used to obtain prediction intervals for future values
of the processes, in contrast to recent literature on noncausal processes that
has been focused on point forecasts.

9The sample sizes for the sampling and resampling are S = 2000 and S* = 5000,
respectively.

10T the case of a unit root model that may be encountered in financial applications,
the prediction error will be Zthl £¢4 1, that is such that 1/vH Zle gtrn ~ N(0,02) with

0% = vare;.
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The proposed univariate methods of filtering, prediction and simulation
were extended to the multivariate framework. We derived a state space
representation of the mixed VAR process. We showed that the derivation
itself can be based on either the partial fraction decomposition or the real
Jordan canonical form. The state space representation allows us to simu-
late multivariate mixed casaul/noncausal process, which can next be used in
simulation-based estimation methods, such as the indirect inference or the
simulated maximum likelihood. The simulations can also serve to study the
finite sample distributional properties of the AML estimators by bootstrap.
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APPENDIX1

Proof of Proposition 2

i) is equivalent to ii) by applying recursively the first equality of (2.3).
i) is equivalent to iii) by applying recursively the first equality of (2.4).
ii) is equivalent to iv) by applying recursively the second equality of (2.3).
iii) is equivalent to v) by applying recursively the second equality of (2.4).

iv) is equivalent to vi) by applying the (u — v) noncausal decomposition
(2.6).

v) is equivalent to vi) by applying the (u —v) causal decomposition (2.5).

APPENDIX?2

Proof of Proposition 4

Let us follow Davis, Song (2012) but use the real Jordan canonical form
instead of the complex Jordan form. The VAR(1) model can be written as:

Y, = QY+«
— AW, =JAY, + Al
= Y, =JY, ,+ €t

where Y, = A~'Y,, ¢, = A~ l¢,.
This is equivalent to the e-causal and e-noncausal systems:

Yie = JiYig+éy
Y Y ~ Y -1y “1s
Yo, = LYo 1 +6y = Yo, =Jy Yo —Jy €244

It follows that:
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Vi, = (Id—JiL) &y,
Yo, = —(Id—Jy LYy L7y,
or formally %,t = (Id — JoL) 'é;. Note that the equality for %,t proves

the invertibility of the operator Id — J,L and provides the expression of its
inverse as a series in L™!, as follows:

(Id—JL) ' ==Y 1L"L™"
h=1

Then, the above system is equivalent to:

Yi. = (Id—J, L) 'AV¢,
Vi (Id — J,L)*A%¢,.

It implies that:

Y, = Alﬁ,t + AZY/Z,t
Ay(Id — JLL)*AY e, + Ay(Id — J,L) T A% ¢
Ay(Id — J,L)* AV Ay(Id — JoL)* A%
det(Id — J,L) det(Id— J,L) |

The result follows directly.
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