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Abstract

Nash equilibrium presumes that players have expected utility preferences, and
therefore the beliefs of each player are represented by a probability measure. Mo-
tivated by Ellsberg-type behavior, which contradicts the probabilistic representation
of beliefs, we generalize Nash equilibrium in n-player strategic games to allow for pref-
erences conforming to the maxmin expected utility model of Gilboa and Schmeidler
[Journal of Mathematical Economics, 18 (1989), 141–153]. With no strings attached,
our equilibrium concept can be characterized by the suitably modified epistemic con-
ditions for Nash equilibrium.
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1 Introduction

It is well known that Nash equilibrium (Nash, 1951) does not allow players’ action choices
to be correlated; correlated equilibrium (Aumann, 1974), which is a generalization of Nash
equilibrium, does. Any correlated equilibrium exhibiting genuine correlation cannot be a
Nash equilibrium. So the title of this paper sounds paradoxical. Before explaining this
“paradox,” we begin with a well-established paradox in decision theory that motivates this
paper.

The expected utility model (Savage, 1954) has been the standard representation of pref-
erence under uncertainty. A prominent property of expected utility is what Machina and
Schmeidler (1992) call probabilistic sophistication. In essence, probabilistic sophistication
says that a decision maker behaves as if his beliefs are represented by a probability measure.
However, the Ellsberg Paradox (Ellsberg, 1961) and related experimental findings (sum-
marized by Camerer and Weber, 1992) demonstrate that when there is ambiguity (about
the probability law governing the uncertainty), probabilistic sophistication may be unreal-
istic; moreover, a decision maker is typically ambiguity averse, which roughly means that
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he prefers to bet on events with known rather than unknown probabilities. Although the
Ellsberg Paradox only involves a single decision maker facing an exogenously specified en-
vironment, it is natural to think that ambiguity is also common in decision problems where
more than one person is involved.

A natural way to accommodate Ellsberg-type behavior is to allow beliefs to be represented
by not necessarily one probability measure, but a set of them. In fact, “multiple priors” is
a key feature of many generalized expected utility models. Gilboa and Schmeidler’s (1989)
maxmin expected utility, which will be the focus of this paper, has become a classic example.
As its name suggests, the model portrays an ambiguity-averse decision maker who evaluates
any act according to its minimum expected utility, where the minimum is taken over the
probability measures in his set of priors.

Nash equilibrium has been the central solution concept in game theory. Adopting the
modern view that choosing an action in a game is a decision problem under uncertainty, Nash
equilibrium presumes that players’ preferences are represented by the expected utility model.
In order to formally study the implications of ambiguity in strategic situations, we need to
address the following central question: How should the definition of Nash equilibrium be gen-
eralized to allow for maxmin expected utility preferences? A number of answers have already
been given, but none of them is complete. For some of the generalized Nash equilibrium con-
cepts only cover two-player games (e.g., Dow and Werlang (1994), Lo (1999a), Marinacci
(2000), Ryan (2002)); some cover n-player games (e.g., Eichberger and Kelsey (2000), Groes
et al. (1998), Klibanoff (1996), Lo (1999b)), but formal epistemic foundations of those con-
cepts are not given; some provide equilibrium concepts for n-player games with foundations,
but the equilibrium concepts and/or foundations are limited to certain parametric classes of
multiple priors, for example, complete ignorance (Lo, 1996), ε-contamination (Lo, 2000a),
and belief functions (Lo, 2006). Those parametric classes are substantively more restrictive
than the intersection of the maxmin expected utility model and Schmeidler’s (1989) Choquet
expected utility model.1 But even Choquet expected utility, or its intersection with maxmin
expected utility, seems too restrictive. See, for instance, Epstein (1999) and Machina (2007).

This paper provides a complete answer to the question posed in the preceding paragraph.
We allow for any number of players, and impose no extraneous restriction whatsoever on
multiple priors. With no strings attached, our new generalized Nash equilibrium concept is
characterized by—mutual knowledge of rationality, common knowledge of beliefs, and the
common prior assumption—the epistemic conditions for Nash equilibrium (Aumann and
Brandenburger (1995)), which are suitably modified to allow for ambiguity. The charac-
terization supports the equilibrium concept proposed here as a “minimal” generalization of
Nash equilibrium; that is, it deviates from Nash equilibrium only in terms of players’ attitude
towards ambiguity. Consequently, comparing it with Nash equilibrium constitutes a ceteris
paribus study of the effects of ambiguity on how a game is played.

To be sure, Lo (1996, 2000a, 2006) emphasizes the importance for a generalized Nash
equilibrium concept to possess foundations that are comparable to those of Nash equilibrium.
But he also carries the “baggage” that a generalized Nash equilibrium concept must mimic
two hallmark features of Nash equilibrium in games with more than two players: agreement

1In fact, Dow and Werlang (1994), Eichberger and Kelsey (2000), and Marinacci (2000) adopt the inter-
section of maxmin expected utility and Choquet expected utility; Groes et al. (1998) adopt belief functions.
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and stochastic independence of beliefs. (By agreement of beliefs, we mean that for each
player, all the other players hold the same beliefs about the action choice of that player;
by stochastic independence of beliefs, we mean that each player believes that the action
choices of the other players are stochastically independent.) In this paper, we recognize
that it is arguably unnecessary—and even inappropriate—to carry the baggage. As we will
explain in detail, agreement and stochastic independence are predictions generated partly by
probabilistic sophistication. Suppose that the ultimate objective is to investigate whether
ambiguity leads to new predictions on how a game is played. If we start by requiring a
generalized Nash equilibrium concept to mimic the predictions of probabilistic sophistication,
then the purpose of the exercise will be defeated. In any case, for multiple priors, it is not
completely clear how agreement and especially stochastic independence should be defined.

Without the baggage, we are able to see faithfully what the suitably modified epistemic
conditions for Nash equilibrium characterize. The resulting generalized Nash equilibrium
concept is called correlated Nash equilibrium. Correlation is a new prediction. We will
even provide an example in which, from each player’s perspective, there is ambiguity only
about how the action choices of his opponents are correlated. As for the issue of agreement,
correlated Nash equilibrium implies that players must “partially agree.”

The paper proceeds as follows. Section 2 contains a brief review of the maxmin expected
utility model, and how it is adapted to the context of a strategic game. Correlated Nash
equilibrium is defined in Section 3. Section 4 illustrates, with examples, various properties
of correlated Nash equilibrium. The ultimate justification for correlated Nash equilibrium
can be found in Section 5. A by-product of the justification is a formalization of “agreeing to
partially agree.” Section 6 provides weakenings of correlated Nash equilibrium. One of them
is a generalization of Dow and Werlang’s (1994) equilibrium concept, from two-player games
to n-player games, and from the intersection of the maxmin expected utility model and
Choquet expected utility model to the maxmin expected utility model. Section 7 concludes.

The following notational conventions will be adopted throughout the paper. For any
finite set Q, use ∆(Q) to denote the set of all probability measures on Q. For any p ∈ ∆(Q),
let

supp p = {q ∈ Q : p(q) > 0}.

For any P ⊆ ∆(Q), let

supp P =
⋃
p∈P

supp p.

In words, supp p is the support of the probability measure p, and supp P is the union of the
supports of all the probability measures in P .

2 Utility Functions

Let S be a finite set of states, and O a set of outcomes. An act is a function from S to O.
Let � be a preference ordering over acts, and � the induced strict preference relation. The
maxmin expected utility representation for � consists of a von Neuman Morgenstern (vNM)
index u : O → R, and a closed and convex set C ⊆ ∆(S) of probability measures. For any
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act f : S → O, the utility of f is equal to the minimum expected utility

min
p∈C

∑
s∈S

u(f(s))p(s) (1)

of f given C. The intuition of Eq. (1) is as follows. The decision maker does not know the
probability law governing the state space S. Because of this ambiguity, his beliefs over S are
in general represented by a set C of probability measures. Ambiguity aversion is captured
by the property that an act is evaluated according to its minimum expected utility, where
the minimum is taken over the probability measures in C. Of course, if C is a singleton,
then Eq. (1) collapses to expected utility.

In order to isolate the effects of ambiguity aversion, we preserve whatever conventional
preference-based notions that are not directly related to attitude towards ambiguity. In
particular, following Savage (1954), say that an event E ⊆ S is nonnull if there exist acts f
and g such that f(s) = g(s) for all states s 6∈ E, and f � g; otherwise E is null. Roughly
speaking, E is nonnull (null, respectively) if the decision maker is ever (never, respectively)
concerned about what he will receive at states lying inside E. If � is represented by Eq. (1),
then E is nonnull if and only if there exists s ∈ E such that s ∈ supp C. This justifies the
interpretation that the decision maker knows (or “believes with at least probability one”) E
if supp C ⊆ E.

Let (Ai, ui)i∈N be a strategic game, where N = {1, . . . , n} is a finite set of players, Ai is
a finite set of actions (with typical element ai) available to player i, and ui : ×j∈N Aj → R
is a vNM index representing i’s preference over ×j∈NAj. As usual, let A = ×j∈NAj be the
set of action profiles (with typical element a), and A−i = ×j 6=iAj be the set of action profiles
(with typical element a−i) of players other than player i.

There is no difficulty in adapting the maxmin expected utility model to the context of a
strategic game. Since player i is uncertain about the action choices of the other players, the
state space for i is A−i. Every action ai ∈ Ai can be identified as an act over the state space
A−i as follows: If player i chooses the act ai and the true state is a−i, then i receives the
payoff ui(ai, a−i). Consistent with Eq. (1), player i’s beliefs about the action choices of his
opponents are represented by a closed and convex set Φi ⊆ ∆(A−i) of probability measures,
and given Φi, i evaluates ai according to its minimum expected payoff

min
φi∈Φi

∑
a−i∈A−i

ui(ai, a−i)φi(a−i). (2)

The central question can now be precisely stated: How should Nash equilibrium be general-
ized to allow for preferences represented by Eq. (2)? To answer this question, we first present
the relevant equilibrium concepts for expected utility preferences.

3 Equilibrium Notions

Although we are not providing a generalization of correlated equilibrium, it is nevertheless
useful to start with that equilibrium concept. Use σ to denote a probability measure on A,
and define,

σAi(ai) =
∑

a−i∈A−i

σ(ai, a−i) ∀ai ∈ Ai ∀i ∈ N. (3)
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In words, σAi ∈ ∆(Ai) is the marginal of σ on Ai. As usual, define

σ(a−i|ai) =
σ(ai, a−i)

σAi(ai)
∀a−i ∈ A−i ∀ai ∈ supp σAi ∀i ∈ N. (4)

In words, σ(·|ai) ∈ ∆(A−i) is the conditional of σ given ai.

Definition 1. A probability measure σ is a correlated equilibrium (distribution) if it satisfies

ai ∈ arg max
âi∈Ai

∑
a−i∈A−i

ui(âi, a−i)σ(a−i|ai) ∀ai ∈ supp σAi ∀i ∈ N. (5)

The classical story behind correlated equilibrium is as follows. A mediator uses the
probability law σ to generate confidential recommendations for the players. Every player i
knows σ, and if the “message profile” a ∈ supp σ is actually realized, then player i knows
only his component ai of a. Updating σ using Bayes rule, i’s beliefs about the action choices
of his opponents are represented by the conditional probability law σ(·|ai). Eq. (5) then says
that ai maximizes i’s expected payoff given his beliefs σ(·|ai). Correlated equilibrium gets
its name because σ may not be a product measure on A; in other words, (the players believe
that) action choices are correlated. While the classical scenario is intuitive, there is no need
to “take it literally.” Correlated equilibrium can be characterized by common knowledge of
rationality and the common prior assumption (Aumann, 1987).

Turn to Nash equilibrium. For reasons that will be apparent shortly, we present the
concept in a way that is not the most usual. Parallel to σAi , define,

σA−i(a−i) =
∑

ai∈Ai

σ(ai, a−i) ∀a−i ∈ A−i ∀i ∈ N. (6)

In words, σA−i ∈ ∆(A−i) is obtained by marginalizing σ on A−i.

Definition 2. A probability measure σ is a Nash equilibrium (distribution) if it satisfies Eq.
(5), and

σ(·|ai) = σA−i ∀ai ∈ supp σAi ∀i ∈ N. (7)

By Definitions 1 and 2, every Nash equilibrium is a correlated equilibrium. The difference
between the two equilibrium concepts is that Nash equilibrium imposes an extra requirement
in Eq. (7), which says that every conditional σ(·|ai) is equal to the unconditional σA−i ; in
other words, ai tells player i nothing about the action choices of his opponents. Eqs. (3), (4)
and (7) imply

σ(ai, a−i) = σAi(ai)σ
A−i(a−i) ∀ai ∈ Ai ∀a−i ∈ A−i ∀i ∈ N. (8)

Eq. (7), or even Eq. (8), does not (explicitly) say that player i views the action choices of
his opponents as stochastically independent. Nevertheless, by Aumann and Brandenburger
(1995, p. 1169, Lemma 4.6), if Eq. (8) holds, then the probability law

σ(a) =
∏
i∈N

σAi(ai) ∀a ∈ A (9)
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is a product measure, and so player i’s beliefs

σ(·|ai) =
∏
j 6=i

σAj (10)

is a product measure as well. Looking at things this way, Nash equilibrium per se does not
require stochastic independence; stochastic independence is an implication of Eq. (7)—an
implication one may wish to disentangle.2 Eq. (10) further implies agreement, in the sense
that for each player i ∈ N , all the other players hold the same marginal beliefs σAi about i’s
action choice.

We are ready to propose our equilibrium concept. Adopt Eq. (2) as player i’s utility func-
tion over Ai, with the associated set Φi ⊆ ∆(A−i) of probability measures representing his
beliefs about the action choices of his opponents. From now on, call Φi player i’s conjecture.
Use Φ to denote a profile (Φi)i∈N of conjectures.

Definition 3. A pair 〈σ, Φ〉 is a correlated Nash equilibrium if it satisfies

σ(·|ai) ∈ Φi ∀ai ∈ supp σAi ∀i ∈ N, (11)

supp Φi = ×j 6=isupp σAj ∀i ∈ N, (12)

and
ai ∈ arg max

âi∈Ai

min
φi∈Φi

∑
a−i∈A−i

ui(âi, a−i)φi(a−i) ∀ai ∈ supp σAi ∀i ∈ N. (13)

A probability measure σ is a correlated Nash equilibrium distribution if there exist a profile
Φ of conjectures such that 〈σ, Φ〉 is a correlated Nash equilibrium.

If σ is a Nash equilibrium, then 〈σ, ({σA−i})i∈N〉 is a correlated Nash equilibrium; con-
versely, for any correlated Nash equilibrium 〈σ, Φ〉, if Φi is a singleton for all i ∈ N , then
Φi = {σA−i} for all i ∈ N , and therefore σ is a Nash equilibrium.3 This confirms that
correlated Nash equilibrium is a generalization of Nash equilibrium, not correlated equilib-
rium. However, for an arbitrary correlated Nash equilibrium 〈σ, Φ〉, σ may not be a product
measure, and the probability measures in Φi may not be product measures. This explains
the word “correlated” in the name of our generalized Nash equilibrium concept.

Let us describe Definition 3 with the following heuristic story, which is modified from the
classical story behind correlated equilibrium. Once again, imagine that σ is the probability
law used by a mediator to generate confidential recommendations for the players. But now
suppose that player i does not know σ, and in particular, he does not know how the mediator’s
recommendation for him is related to those for the other players. Consequently, when a ∈ A
is the actual message profile generated by σ, and player i knows only his component ai of a,
he is not able to derive the conditional probability law σ(·|ai) governing the action choices of
his opponents. This is why his conjecture is represented by a set Φi of probability measures.

2The desire to disentangle intertemporal substitution from risk aversion (cf. Epstein and Zin, 1989) is, to
some extent, an analogy.

3Recall that Eq. (7) implies Eq. (10). So if every Φi is a singleton, then Eq. (12) is redundant. In general,
Eq. (12) does not follow from Eq. (11); also, since σ may not be a product measure, the right-hand side of
Eq. (12) may not be the same as supp σA−i .
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While player i cannot pin down the actual conditional probability law, Eq. (11) says that he
is “conservative enough,” in the sense that his conjecture contains all the possible conditional
probability laws. According to Eq. (12), from player i’s point of view, an action profile of
his opponents is nonnull if and only if it is contained in ×j 6=isupp σAj . Thus, for each player
i ∈ N , all the other players agree on the set supp σAi of actions that will possibly be taken
by player i. Eq. (13) then says that for every action ai that is nonnull from the point of
view of i’s opponents, ai gives player i his correlated Nash equilibrium payoff, which is his
maxmin expected payoff given his conjecture Φi.

To provide further perspective, consider briefly the following two superficially plausible
alternatives to correlated Nash equilibrium.

Definition 4. A pair 〈σ, Φ〉 is a strong correlated Nash equilibrium if it satisfies Eqs. (9),
(11), (12), and (13).4 A pair 〈σ, Φ〉 is a weak correlated Nash equilibrium if it satisfies Eq.
(12), Eq. (13), and

σA−i ∈ Φi ∀i ∈ N. (14)

A probability measure σ is a strong (weak, respectively) correlated Nash equilibrium distrib-
ution if there exist a profile Φ of conjectures such that 〈σ, Φ〉 is a strong (weak, respectively)
correlated Nash equilibrium.

As a strong correlated Nash equilibrium satisfies all the conditions in Definition 3, it
must be a correlated Nash equilibrium. A correlated Nash equilibrium must be a weak
correlated Nash equilibrium. This is because, by Eqs. (4) and (6), the unconditional σA−i

is a convex combination of the collection {σ(·|ai)}ai∈supp σAi of conditionals. Hence Eq. (11)
and convexity of Φi imply Eq. (14).

Both the strong, and the weak, correlated Nash equilibrium concepts seem to have some
intuition. On the one hand, strong correlated Nash equilibrium captures a stochastically
independent probability law σ, whereas correlated Nash equilibrium may not. On the other
hand, weak correlated Nash equilibrium appears to be more reasonable than correlated Nash
equilibrium, as the former only requires Φi to contain the unconditional σA−i , rather than the
entire collection {σ(·|ai)}ai∈supp σAi of conditionals. Nevertheless, if the ultimate objective is
to provide an equilibrium concept that is different from Nash equilibrium only in terms of
players’ attitude towards ambiguity, then the correct metric to judge the three equilibrium
concepts should be the epistemic conditions for Nash equilibrium. We will prove in Section
5 that, according to this metric, strong correlated Nash equilibrium is too strong, weak
correlated Nash equilibrium is too weak, and correlated Nash equilibrium is just right. In
fact, it should be apparent that the weak correlated Nash equilibrium concept is too weak.
For it does not collapse to Nash equilibrium even when every Φi is a singleton.5

4Equivalently, 〈σ,Φ〉 is a strong correlated Nash equilibrium if it satisfies Eqs. (9), (12), (13), and (14).
Eqs. (9) and (14) together are kind of like Condition (2) in Klibanoff’s (1996, p. 8) equilibrium with uncertainty
aversion.

5For an example, see Eq. (32) in the sequel.
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L R

U 0, 0, 5 0, 0, 0

D 0, 0, 0 0, 0, 0

X

L R

U 2, 2, 2 2, 2, 0

D 2, 2, 0 2, 2, 2

Y

L R

U 0, 0, 0 0, 0, 0

D 0, 0, 0 0, 0, 5

Z

Figure 1: A three-player game (Example 1).

4 Illustrations

Before proceeding to the foundations of correlated Nash equilibrium, it is useful to get a
concrete sense of how the equilibrium concept performs. In this section, we present some
properties of correlated Nash equilibrium, and illustrate them with examples. In all the
figures, unless specified otherwise, player 1 chooses the row, player 2 the column, and if
there is a third player, player 3 the matrix. Payoffs are in terms of vNM utilities.

Say that a correlated Nash equilibrium 〈σ, Φ〉 is proper if at least one Φi is not a sin-
gleton; put it another way, in a proper correlated Nash equilibrium, at least one player is
a genuine maxmin expected utility maximizer. A natural question arises: Why do we have
proper correlated Nash equilibria? Proposition 1 below can be regarded as an answer to this
question. Loosely speaking, correlation “explains” ambiguity.

Proposition 1. Suppose that 〈σ, Φ〉 is a correlated Nash equilibrium, but not a strong cor-
related Nash equilibrium. Then 〈σ, Φ〉 is a proper correlated Nash equilibrium.

Proposition 1 is true because every correlated Nash equilibrium which is not proper is
virtually a Nash equilibrium, and every Nash equilibrium is virtually a strong correlated
Nash equilibrium.

Example 1. Consider the game in Figure 1. If player 3 is an expected utility maximizer,
he will not choose the action Y . We now construct a correlated Nash equilibrium in which
Y is the unique best response for player 3. Let6

σ = (ULY, 1/2; DRY, 1/2) (15)

and

Φ1 = {φ1 ∈ ∆(A−1) : φ1(LY ) + φ1(RY ) = 1} (16)

Φ2 = {φ2 ∈ ∆(A−2) : φ2(UY ) + φ2(DY ) = 1} (17)

Φ3 = {φ3 ∈ ∆(A−3) : φ3(UL) + φ3(DR) ≥ 1/2} . (18)

According to Eq. (16), player 1 believes that player 3 will take the action Y , but he is
ignorant about what player 2 is going to do. Similarly, according to Eq. (17), player 2 also
believes that player 3 will choose Y , but he is ignorant about what player 1 is going to do.

6For any finite set Q, (q1, p1; . . . ; qk, pk) ∈ ∆(Q) denotes the probability measure which assigns probability
p1 to q1, . . . , pk to qk.
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L R

U 0, 0, 5 0, 0, 0

D 0, 0, 0 0, 0, 5

W

L R

U 0, 0, 0 0, 0, 5

D 0, 0, 5 0, 0, 0

X

L R

U 2, 2, 2 2, 2, 2

D 2, 2, 0 2, 2, 0

Y

L R

U 2, 2, 0 2, 2, 0

D 2, 2, 2 2, 2, 2

Z

Figure 2: A three-player game (Example 2).

As for player 3, he believes that the actions of players 1 and 2 are correlated; to be precise,
according to Eq. (18), he assigns probability at least 1/2 to the event that either (U,L) or
(D, R) will be chosen by his opponents.

The probability law σ in Eq. (15) delivers the following conditionals:

σ(·|U) = (LY, 1), σ(·|D) = (RY, 1),

σ(·|L) = (UY, 1), σ(·|R) = (DY, 1), σ(·|Y ) = (UL, 1/2; DR, 1/2).
(19)

It follows from Eqs. (16)–(19) that σ(·|ai) ∈ Φi for all ai ∈ supp σAi and all i ∈ N ; that
is, σ and Φ satisfy Eq. (11) in the definition of correlated Nash equilibrium. Eqs. (15)–(18)
imply supp Φi = ×j 6=isupp σAj for all i ∈ N ; that is, σ and Φ satisfy Eq. (12). Given player
3’s conjecture Φ3 as defined in Eq. (18), his minimum expected payoff of taking the action
Y is equal to 1, whereas his minimum expected payoff of taking any of the other two actions
is equal to 0. So Y is indeed his unique best response given Φ3. Obviously, player 1 is
indifferent between the two actions U and D, and player 2 is indifferent between L and R.
Therefore, Eq. (13) is also satisfied. Hence 〈σ, Φ〉 is a correlated Nash equilibrium. Note
that σ is not a product measure, and 〈σ, Φ〉 is proper, confirming Proposition 1. �

Example 2. Consider the game in Figure 2. If player 3 is an expected utility maximizer,
he will choose neither Y nor Z. But these two actions could be the only best responses for
player 3 in a correlated Nash equilibrium. For instance, let

σ = (ULY, 1/4; DRY, 1/4; URZ, 1/4; DLZ, 1/4) (20)

and

Φ1 = {φ1 ∈ ∆(A−1) : φ1(LY ) = φ1(RZ) and φ1(RY ) = φ1(LZ)} (21)

Φ2 = {φ2 ∈ ∆(A−2) : φ2(UY ) = φ2(DZ) and φ2(DY ) = φ2(UZ)} (22)

Φ3 = {φ3 ∈ ∆(A−3) : φ3(UL) = φ3(DR) and φ3(UR) = φ3(DL)}. (23)
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L R

U 6, 6 2, 7

D 7, 2 0, 0

Figure 3: A two-player game (Example 3).

Player 3’s conjecture, for example, can be understood using the following story inspired by
Aumann (1987, p. 16). Player 3 believes that players 1 and 2 went to the same business
school, but he is ignorant about which one. Nevertheless, he believes that some business
schools taught either “UL” or “DR”, with equal probabilities; the rest taught “UR” or “DL”,
with equal probabilities. He also understands that player 1 would take the action U if she
learned “UL”, and player 2 would take the action L if she learned “UL”, etc. This explains
Φ3 as stated in Eq. (23). Note that Φ3 is not a singleton, but all the probability measures in
Φ3 induce the same marginal (U, 1/2; D, 1/2) on A1, and the same marginal (L, 1/2; R, 1/2)
on A2. So, from player 3’s perspective, there is ambiguity only about how the actions of his
opponents are correlated.

The probability law σ in Eq. (20) delivers the following conditionals:

σ(·|U) = (LY, 1/2; RZ, 1/2), σ(·|D) = (RY, 1/2; LZ, 1/2) (24)

σ(·|L) = (UY, 1/2; DZ, 1/2), σ(·|R) = (DY, 1/2; UZ, 1/2) (25)

σ(·|Y ) = (UL, 1/2; DR, 1/2), σ(·|Z) = (UR, 1/2; DL, 1/2). (26)

Eqs. (21)–(26) imply that σ(·|ai) ∈ Φi for all ai ∈ supp σAi and for all i ∈ N . Eqs. (20)–(23)
imply supp Φi = ×j 6=isupp σAj for all i ∈ N . Given player 3’s conjecture Φ3 as defined in Eq.
(23), his minimum expected payoff of Y or Z is equal to 1, whereas his minimum expected
payoff of W or X is equal to 0. So Y and Z are indeed the only two best responses given
Φ3. Obviously, player 1 is indifferent between U and D, and player 2 is indifferent between
L and R. Hence 〈σ, Φ〉 is a correlated Nash equilibrium. Once again, σ is not a product
measure, and 〈σ, Φ〉 is proper. �

Another natural question is: Does the set of correlated Nash equilibria have any struc-
ture? Answers are provided in Propositions 2 and 3 below. First, it follows immediately from
Definition 3 that, given Φ, the set of correlated Nash equilibrium distributions is convex.

Proposition 2. Suppose that 〈σ, Φ〉 and 〈σ̂, Φ〉 are both correlated Nash equilibria. Then
for any λ ∈ [0, 1], 〈λσ + (1− λ)σ̂, Φ〉 is also a correlated Nash equilibrium.

Example 3. Consider the “Chicken” game in Figure 3. In any proper correlated Nash
equilibrium 〈σ, Φ〉, both U and D are best responses for player 1, and both L and R are best
responses for player 2; to be precise,

min
φ1∈Φ1

[
6φ1(L) + 2φ1(R)

]
= min

φ1∈Φ1

[
7φ1(L)

]
(27)
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and
min

φ2∈Φ2

[
6φ2(U) + 2φ2(D)

]
= min

Φ2∈Φ2

[
7φ2(U)

]
. (28)

Eqs. (27) and (28) can be simplified to

max
φ1∈Φ1

φ1(R) = 1/3 and max
φ2∈Φ2

φ2(D) = 1/3. (29)

Let us consider the largest Φ1 and Φ2 satisfying Eq. (29); that is, let

Φ1 = {φ1 ∈ ∆(A2) : φ1(R) ≤ 1/3} and Φ2 = {φ2 ∈ ∆(A1) : φ2(D) ≤ 1/3}. (30)

Given Φ as specified in Eq. (30), Eqs. (11) and (12) can be reduced to the following system
of inequalities:

σ(U,R) > 0, σ(U,L) ≥ 2σ(U,R) ≥ 4σ(D, R),

σ(D, L) > 0, σ(U,L) ≥ 2σ(D, L) ≥ 4σ(D, R).
(31)

Eq. (31) can be intuitively described as follows. According to any proper correlated Nash
equilibrium distribution σ, the event that both players are chicken is at least twice as likely
as the event that only player 1 (player 2) is chicken, the event that only player 1 (player 2)
is chicken is at least twice as likely as the event that nobody is chicken, and the event that
nobody is chicken is the only nonempty event which could happen with zero probability.
Note that

σ = (UL, 2/3; DR, 1/3), Φ1 = {(L, 2/3; R, 1/3)}, Φ2 = {(U, 2/3; R, 1/3)} (32)

form a weak correlated Nash equilibrium. But the weak correlated Nash equilibrium distri-
bution (UL, 2/3; DR, 1/3) does not satisfy Eq. (31); the correlated equilibrium distribution
(UL, 1/3; UR, 1/3; DL, 1/3) pointed out by Aumann (1974, p. 72) does not satisfy Eq. (31)
either. �

In Proposition 2 above, Φ is given while σ varies. Alternatively, we can do the opposite.
For any two closed and convex sets Φi, Φ̂i ⊆ ∆(A−i), and any λi ∈ [0, 1], define the convex
combination

λiΦi + (1− λi)Φ̂i =
{

λiφi + (1− λi)φ̂i : φi ∈ Φi and φ̂i ∈ Φ̂i

}
.

Then it is also an immediate consequence of Definition 3 that, given σ, the set of correlated
Nash equilibrium conjectures (payoffs) for each player is convex.

Proposition 3. Suppose that 〈σ, Φ〉 and 〈σ, Φ̂〉 are both correlated Nash equilibria. Then for
any (λi)i∈N ∈ [0, 1]n, 〈σ, (λiΦi + (1− λi)Φ̂i)i∈N〉 is also a correlated Nash equilibrium.

Example 1 revisited. Recall σ and Φ from Eqs. (15)–(18). Define Φ̂3 = ∆(A−3). For any
λ3 ∈ [0, 1], 〈σ, (Φ1, Φ2, λ3Φ3 + (1 − λ3)Φ̂3)〉 is a correlated Nash equilibrium of the game in
Figure 1, with player 3’s minimum expected payoff of Y equal to λ3. �

Turn to welfare analysis. Example 4 below shows that a proper correlated Nash equilib-
rium could Pareto dominate (both ex ante and ex post) a Nash equilibrium.

Example 4. Consider the game in Figure 4, which is taken from Aumann (1974, p. 69,
Example 2.3). In any Nash equilibrium, player 1 chooses D and player 2 chooses L, leading
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L R

U 0, 8, 0 3, 3, 3

D 1, 1, 1 0, 0, 0

X

L R

U 0, 0, 0 3, 3, 3

D 1, 1, 1 8, 0, 0

Y

Figure 4: A three-player game (Example 4).

to the payoff profile (1, 1, 1). There exists a correlated Nash equilibrium in which U is the
unique best response for player 1, and R is the unique best response for player 2, leading
to the payoff profile (3, 3, 3). For instance, it can be easily verified that the probability law
σ = (URX, 1/2; URY, 1/2), and conjectures

Φ1 = {φ1 ∈ ∆(A−1) : φ1(RX) + φ1(RY ) = 1} ,

Φ2 = {φ2 ∈ ∆(A−2) : φ2(UX) + φ2(UY ) = 1} , Φ3 = {(UR, 1)}

constitute such an equilibrium. Details are omitted. �

However, as a corollary of Proposition 4 below, in any (not necessarily two-player) zero-
sum game, a correlated Nash equilibrium can never Pareto dominate a Nash equilibrium.

Proposition 4. In any correlated Nash equilibrium of any zerosum game, the sum of the
correlated Nash equilibrium payoffs of all the players is at most zero.

The proof of Proposition 4 is as follows. Recall that every correlated Nash equilibrium
〈σ, Φ〉 satisfies Eqs. (11) and (13). Eq. (11) implies that for all i ∈ N , and all ai ∈ supp σAi ,

min
φi∈Φi

∑
a−i∈A−i

ui(ai, a−i)φi(a−i) ≤
∑

a−i∈A−i

ui(ai, a−i)σ(a−i|ai). (33)

According to Eq. (13), the left-hand side of Eq. (33) is player i’s correlated Nash equilibrium
payoff. The point is that, in any correlated Nash equilibrium of any (not necessarily zerosum)
game, player i is never “too optimistic.” That is, his correlated Nash equilibrium payoff can
never be strictly higher than the right-hand side of Eq. (33), which can be interpreted as his
“real” conditional expected payoff. Weighting each side of Eq. (33) with probability σAi(ai),
and summing over ai ∈ supp σAi , we obtain, for all i ∈ N ,∑

ai∈supp σAi

σAi(ai)

[
min
φi∈Φi

∑
a−i∈A−i

ui(ai, a−i)φi(a−i)

]
≤

∑
ai∈supp σAi

σAi(ai)

[ ∑
a−i∈A−i

ui(ai, a−i)σ(a−i|ai)

]
.

(34)

Obviously, being a weighted average of the same number, the left-hand side of Eq. (34) is
just player i’s correlated Nash equilibrium payoff. The right-hand side of Eq. (34) can be
simplified to

∑
a∈A ui(a)σ(a). Thus, Eq. (34) says that player i’s correlated Nash equilibrium

12



L R

U 1,−3, 2 1, 0,−1

D 0,−3, 3 0, 0, 0

X

L R

U −3, 1, 2 −3, 0, 3

D 0, 1,−1 0, 0, 0

Y

Figure 5: A three-player game (Example 5).

payoff is at most
∑

a∈A ui(a)σ(a). So the sum of the correlated Nash equilibrium payoffs of
all the players is at most

∑
i∈N

∑
a∈A ui(a)σ(a). Of course, for any zerosum game, and any

σ ∈ ∆(A),
∑

i∈N

∑
a∈A ui(a)σ(a) = 0. This completes the proof.

Proposition 4 has another corollary. Suppose that every player i in a zerosum game has
a nonnegative action ai, in the sense that ui(ai, a−i) ≥ 0 for all a−i ∈ A−i. Then, in any
correlated Nash equilibrium, the correlated Nash equilibrium payoff of each player must be
equal to zero.

Finally, we present an important implication of correlated Nash equilibrium, which is an
issue only for games with more than two players. For every nonempty proper subset M ⊂ N ,
define AM = ×i∈MAi (with typical element aM). For every nonempty M with cardinality
|M | ≤ n− 2, and every i ∈ N \M , derive

ΦAM
i =

{
φAM

i ∈ ∆(AM) : ∃φi ∈ Φi such that

for every aM ∈ AM , φAM
i (aM) =

∑
aN\[{i}∪M ]∈AN\[{i}∪M ]

φi(aM , aN\[{i}∪M ])

}

by marginalizing every probability measure in Φi on AM . The set ΦAM
i ⊆ ∆(AM) represents

player i’s marginal conjecture about the action choices of the players in M . It is evident that
in a correlated Nash equilibrium 〈σ, Φ〉, the players may not “fully agree.” To be precise,
player i’s marginal conjecture ΦAM

i may not be the same as player j’s marginal conjecture
ΦAM

j . Nevertheless, the players have to at least “partially agree.”

Proposition 5. Suppose that 〈σ, Φ〉 is a correlated Nash equilibrium. Then for every non-
empty M ⊂ N with |M | ≤ n− 2, ∩i∈N\MΦAM

i 6= ∅.

Correlated Nash equilibrium ensures that, for any subset of players, the marginal con-
jectures of those players (about the action choices of their common opponents) must be
represented by sets of probability measures with a nonempty intersection. To establish
Proposition 5, recall that correlated Nash equilibrium satisfies Eq. (11), which implies Eq.
(14). Eq. (14) implies σAM ∈ ΦAM

i for all i ∈ N \M , where σAM is obtained by marginalizing
σ on AM .

Example 5. Consider the game in Figure 5. While it is zerosum, player 3 does not have a
nonnegative action. So it is not immediately clear what correlated Nash equilibrium payoffs
each player can possibly achieve. To find out the answer, first observe that U is a best

13



X Y

U 1,−1 −3, 3

D 0, 0 0, 0

Figure 6: A two-player game derived from Figure 5.

response for player 1 given conjecture Φ1 if and only if

min
φ

A3
1 ∈Φ

A3
1

[
φA3

1 (X)− 3
[
1− φA3

1 (X)
]]
≥ 0. (35)

Similarly, L is a best response for player 2 given conjecture Φ2 if and only if

min
φ

A3
2 ∈Φ

A3
2

[[
1− φA3

2 (X)
]
− 3φA3

2 (X)
]
≥ 0. (36)

However, Proposition 5 tells us that in any correlated Nash equilibrium 〈σ, Φ〉, we must
have ΦA3

1 ∩ ΦA3
2 6= ∅, implying that Eqs. (35) and (36) cannot hold at the same time. This

is essentially an application of Billot et al. (2000), who prove that partial agreement and
absence of speculation opportunity are equivalent. Because of partial agreement, there is no
speculation opportunity for players 1 and 2 on what player 3 is going to do.

We are now able to see that the only possible correlated Nash equilibrium payoff of each
player is zero. Without loss of generality, consider any correlated Nash equilibrium in which
player 2’s unique best response is R; so his correlated Nash equilibrium payoff is zero. Given
that 2 chooses R for sure, players 1 (the row player) and 3 (the column player) are virtually
playing the game in Figure 6, which is zerosum; moreover, each player has a nonnegative
action. Hence their correlated Nash equilibrium payoffs must be equal to zero as well. �

5 Foundations

In this section, we provide epistemic foundations for correlated Nash equilibrium. Let (Ω, µ)
be a finite probability space, where Ω is interpreted as a set of states of the world, and
µ the probability law governing Ω. Subsets of Ω are called events. Suppose that at every
state ω ∈ Ω, player i does not know µ, and he is averse to ambiguity; as a result, acts on
Ω are ranked according to their minimum expected utilities, where the minimum is taken
over a closed and convex set Πi(ω) ⊆ ∆(Ω) of probability measures. To be precise, i’s
preference at ω is represented by Eq. (1), with Ω in place of S, and Πi(ω) in place of
C. Call Πi(ω) player i’s theory at ω. We impose two standard assumptions on player i’s
theories. First, assume that ω ∈ supp Πi(ω) for all ω ∈ Ω. Second, assume that for every
ω, ω̂ ∈ Ω, if ω̂ ∈ supp Πi(ω), then Πi(ω) = Πi(ω̂). Intuitively, the first assumption says
that player i always regards the true state as nonnull; the second assumption says that i
always knows his actual theory. With these two assumptions, we can define, for every i ∈ N ,
a function Hi : Ω → 2Ω \ {∅}, with the following three properties: first, the range Hi of Hi
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is a partition of Ω; second, Πi : Ω → 2∆(Ω) \ {∅} is measurable with respect to Hi; third,
supp Πi(ω) = Hi(ω) for all ω ∈ Ω. Call Hi(ω) player i’s type at ω.

For simplicity, let (Ai, ui)i∈N be the strategic game played at every ω ∈ Ω. The action
taken by player i at ω is ai(ω) ∈ Ai. Assume that player i knows his own action; that is,
ai : Ω → Ai is measurable with respect to Hi. For every ω ∈ Ω, use a(ω) to denote the action
profile (ai(ω))i∈N ; similarly, for every i ∈ N , a−i(ω) denotes (aj(ω))j 6=i.

Player i’s conjecture Φi(ω) at ω is induced in the natural way from his theory Πi(ω) at
ω, and the action functions a−i of his opponents. That is, for every ω ∈ Ω,

Φi(ω) = {φi ∈ ∆(A−i) : ∃πi ∈ Πi(ω) such that

for every a−i ∈ A−i, φi(a−i) = πi ({ω̂ ∈ Hi(ω) : a−i(ω̂) = a−i})} .
(37)

Use Φ(ω) to denote the profile (Φi(ω))i∈N . For any arbitrary profile Φ of conjectures, define
‖Φ‖ to be the event {ω ∈ Ω: Φ(ω) = Φ}.

Say that player i is rational at ω if the action ai(ω) achieves maxmin expected payoff
given the conjecture Φi(ω); that is,

ai(ω) ∈ arg max
ai∈Ai

min
φi∈Φi(ω)

∑
a−i∈A−i

ui(ai, a−i)φi(a−i).

Define ‖rationality‖ to be the event {ω ∈ Ω: every player is rational at ω}.
If Πi(ω) is restricted to be a singleton for all ω and all i, then the above framework

collapses to the standard one used for studying foundations of game theory (cf. Osborne and
Rubinstein, 1994, p. 76). The following definition will also become standard if all theories
are singleton sets. Say that µ is a common prior if

for every i ∈ N and every ω ∈ Ω, µ(Hi(ω)) > 0 and µ(·|Hi(ω)) ∈ Πi(ω). (38)

According to Eq. (38), the probability law µ assigns positive probability to every type of
every player i, and player i’s theory at any state must contain the conditional of µ given his
type at that state; intuitively speaking, i’s theory “can’t go too wrong.”

Given the assumptions in the first paragraph of this section, interactive belief is equivalent
to interactive knowledge, where the latter is formulated in Aumann (1976).7 For any E ⊆ Ω,
define K1(E) = {ω ∈ Ω: For every i ∈ N,Hi(ω) ⊆ E}. The set K1(E) is interpreted as the
set of all states at which every player knows E. If ω∗ ∈ K1(E), then say that E is mutually
known at ω∗. Given K1(E), recursively define Kt+1(E) = K1(Kt(E)) for every positive
integer t. If ω∗ ∈ ∩∞t=1K

t(E), then say that E is commonly known at ω∗. Aumann (1976)
proves that an event E is commonly known at ω∗ if and only if H(ω∗) ⊆ E, where H(ω∗) is
the smallest event such that

ω∗ ∈ H(ω∗) (39)

and
Hi(ω) ⊆ H(ω∗) ∀ω ∈ H(ω∗) ∀i ∈ N. (40)

Simply put, the smallest commonly known event at ω∗ is the element H(ω∗) in the meet of
{Hi}i∈N that contains ω∗.

7With the common prior assumption, interactive belief and interactive knowledge are also equivalent in
the setting of Aumann and Brandenburger (1995). See Lo (2000b) for details.
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The ultimate justification for correlated Nash equilibrium is presented in Proposition 6. It
shows that correlated Nash equilibrium is the canonical representation of mutual knowledge
of rationality, common knowledge of conjectures, and the common prior assumption.

Proposition 6. Fix a state ω∗ and a profile Φ of conjectures. Suppose that ‖rationality‖ is
mutually known and ‖Φ‖ is commonly known at ω∗, and µ is a common prior. Then 〈σ, Φ〉
is a correlated Nash equilibrium, where

σ(a) =
µ({ω ∈ H(ω∗) : a(ω) = a})

µ(H(ω∗))
∀a ∈ A. (41)

Conversely, fix a probability measure σ and a profile Φ of conjectures. Suppose that 〈σ, Φ〉 is a
correlated Nash equilibrium. Then there exists 〈(Ω, µ), (Hi,Πi, ai)i∈N〉 such that ‖rationality‖
is mutually known and ‖Φ‖ is commonly known at some state ω∗, µ is a common prior, and
σ satisfies Eq. (41).

Since σ in Eq. (41) may not be a product measure, the epistemic conditions in Propo-
sition 6 are not sufficient for strong correlated Nash equilibrium. For weak correlated Nash
equilibrium, the converse direction of Proposition 6 does not hold. Correlated Nash equi-
librium, which is intermediate in strength between strong correlated Nash equilibrium and
weak correlated Nash equilibrium, just fits both directions.

Example 1 revisited. We illustrate (the converse direction of) Proposition 6 with the
following

• set of states of the world

Ω =
{
ωULY , ωURY , ωDLY ωDRY

}
. (42)

• probability law
µ =

(
ωULY , 1/2; ωDRY , 1/2

)
. (43)

• information partitions

H1 =
{{

ωULY , ωURY }, {ωDLY , ωDRY
}}

(44)

H2 =
{{

ωULY , ωDLY }, {ωURY , ωDRY
}}

(45)

H3 =
{{

ωULY , ωURY , ωDLY , ωDRY
}}

. (46)

• theories

Π1

(
ωULY

)
= Π1

(
ωURY

)
=

{
π1 ∈ ∆(Ω): π1

(
ωULY

)
+ π1

(
ωURY

)
= 1

}
(47)

Π1

(
ωDLY

)
= Π1

(
ωDRY

)
=

{
π1 ∈ ∆(Ω): π1

(
ωDLY

)
+ π1

(
ωDRY

)
= 1

}
(48)

Π2

(
ωULY

)
= Π2

(
ωDLY

)
=

{
π2 ∈ ∆(Ω): π2

(
ωULY

)
+ π2

(
ωDLY

)
= 1

}
(49)

Π2

(
ωURY

)
= Π2

(
ωDRY

)
=

{
π2 ∈ ∆(Ω): π2

(
ωURY

)
+ π2

(
ωDRY

)
= 1

}
(50)

Π3 (ω) =
{
π3 ∈ ∆(Ω): π3

(
ωULY

)
+ π3

(
ωDRY

)
≥ 1/2

}
∀ω ∈ Ω. (51)
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• actions

a1

(
ωULY

)
= a1

(
ωURY

)
= U, a1

(
ωDLY

)
= a1

(
ωDRY

)
= D (52)

a2

(
ωULY

)
= a2

(
ωDLY

)
= L, a2

(
ωURY

)
= a2

(
ωDRY

)
= R (53)

a3(ω) = Y ∀ω ∈ Ω. (54)

Eqs. (42)–(51) imply that µ is a common prior. Eqs. (47)–(54) imply ‖Φ‖ = Ω, where
Φ is the profile of conjectures in Eqs. (16)–(18). Eqs. (44)–(46) imply H(ω∗) = Ω for all
ω∗ ∈ Ω. Eqs. (43) and (52)–(54) imply that if we derive σ from µ according to Eq. (41), with
H(ω∗) = Ω, then σ in Eq. (15) is obtained. We already know from Example 1 that 〈σ, Φ〉
is a correlated Nash equilibrium of the game in Figure 1. So if that game is played at every
state, then Eq. (13), Eqs. (52)–(54), and ‖Φ‖ = Ω together imply that ‖rationality‖ = Ω as
well. To sum up, Eqs. (42)–(54) is a foundation of the correlated Nash equilibrium in Eqs.
(15)–(18).

Next, note that 〈σ, Φ〉, where σ is defined in Eq. (15), Φ1 = {(LY, 1/2; RY, 1/2)}, Φ2 =
{(UY, 1/2; DY, 1/2)}, and Φ3 is defined in Eq. (18), is a weak correlated Nash equilibrium
of the game in Figure 1. At first sight, it seems that

Π1

(
ωULY

)
= Π1

(
ωURY

)
=

{(
ωULY , 1/2; ωURY , 1/2

)}
(55)

Π1

(
ωDLY

)
= Π1

(
ωDRY

)
=

{(
ωDLY , 1/2; ωDRY , 1/2

)}
(56)

Π2

(
ωULY

)
= Π2

(
ωDLY

)
=

{(
ωULY , 1/2; ωDLY , 1/2

)}
(57)

Π2

(
ωURY

)
= Π2

(
ωDRY

)
=

{(
ωURY , 1/2; ωDRY , 1/2

)}
(58)

together with Eqs. (42)–(46) and (51)–(54) above, would be a foundation of this weak cor-
related Nash equilibrium. However, a more careful reading reveals that this trick does not
work. Once Eqs. (47)–(50) are replaced by Eqs. (55)–(58), the probability law µ in Eq.
(43) will no longer be a common prior. In fact, the only probability measure that can be a
common prior is the uniform probability measure on Ω. But σ in Eq. (15) is not related to
this probability measure in the sense of Eq. (41). In fact, it is impossible to construct any
〈(Ω, µ), (Hi,Πi, ai)i∈N〉 such that the converse direction of Proposition 6 holds for this weak
correlated Nash equilibrium. �

In the Appendix, which contains the proof of Proposition 6, we first prove that common
knowledge of conjectures and the common prior assumption imply Eq. (11). Recall that, with
more than two players, Eq. (11) implies partial agreement. Therefore, common knowledge
of conjectures and the common prior assumption imply partial agreement.

Proposition 7. Fix a state ω∗ and a profile Φ of conjectures. Suppose that ‖Φ‖ is commonly
known at ω∗, and µ is a common prior. Then for every nonempty M ⊂ N with |M | ≤ n−2,
∩i∈N\MΦAM

i 6= ∅.8

8Proposition 7 supersedes Lo’s (2007, p. 127) Proposition 1. In terms of the framework here, Lo essentially
assumes that ‖Φ‖ is commonly known at ω∗, µ(ω) > 0 for all ω ∈ Ω, and for every i ∈ N , there exist two
partitions Hi and Ii of Ω, such that Ii is a refinement of Hi, and

Πi(ω) = {πi ∈ ∆(Ω): For every Ii ∈ Ii, πi(Ii) = µ(Ii|Hi(ω))} ∀ω ∈ Ω.

The above equation obviously implies that µ is a common prior.
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Proposition 7 formalizes “agreeing to partially agree.” Since partial agreement is equiv-
alent to absence of speculation opportunity, Proposition 7 can explain casual observations
that agents agree to disagree (especially about what other agents are going to do), but do
not speculate. For instance, in almost any public discussion of current affairs, the agents
involved could easily find at least some disagreement on how a political or economic episode
unfold; nevertheless, they may not put their money at stake. It is well known that probabilis-
tic sophistication does not even allow agreeing to disagree (Aumann, 1976). Of course, one
could allow agreeing to disagree by dropping the common prior assumption. But agreeing
to disagree among expected utility maximizers must lead to speculation. In this sense, those
casual observations cannot be explained by standard economic theory.

6 Variations

Let us point out two different ways of defining correlated Nash equilibrium, and if they are
adopted, how Proposition 6 should be modified. (Propositions 1, 2, 4 and 5 will continue to
be valid.) The first way (in Definition 5 below) is just a minor weakening of Definition 3. In
contrast, the second way (in Definition 6 below) is much weaker.

Definition 5. A pair 〈σ, Φ〉 is a correlated Nash equilibrium if it satisfies Eq. (11), and there
exist a profile (Si)i∈N of action sets, where Si ⊆ Ai for all i ∈ N , such that

supp Φi = ×j 6=iSj ∀i ∈ N (59)

and
ai ∈ arg max

âi∈Ai

min
φi∈Φi

∑
a−i∈A−i

ui(âi, a−i)φi(a−i) ∀ai ∈ Si ∀i ∈ N. (60)

Clearly, if Si = supp σAi for all i ∈ N , then Definition 5 collapses to Definition 3. (In
general, Eqs. (11) and (59) only ensure that supp σAi ⊆ Si for all i ∈ N .) Suppose that
correlated Nash equilibrium is defined in terms of Definition 5 instead of Definition 3. Then
Proposition 6 will go through if µ(H(ω∗)) > 0, and Eq. (38) is replaced by

for every i ∈ N and every ω ∈ Ω, if µ(Hi(ω)) > 0, then µ(·|Hi(ω)) ∈ Πi(ω). (61)

Proposition 7 (which is independent of the definition of correlated Nash equilibrium) will
also go through if µ(H(ω∗)) > 0, and Eq. (38) is replaced by Eq. (61). Since Eq. (61) does
not require µ to assign positive probability to every type of player i, it is weaker than Eq.
(38).9

Definition 6. A pair 〈σ, Φ〉 is a correlated Nash equilibrium if it satisfies Eqs. (11), (13),
and (59).

Definition 6 does not require every action in Si to be optimal for player i given Φi.
Therefore, it is weaker than Definition 5. Suppose that correlated Nash equilibrium is defined
in terms of Definition 6 instead of Definition 3. Then Proposition 6 will go through if

9Kajii and Ui (2006) provides a behavioral characterization of Eq. (61).
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µ(H(ω∗)) > 0, Eq. (38) is replaced by Eq. (61), and “‖rationality‖ is mutually known” is
replaced by “supp µ(·|H(ω∗)) ⊆ ‖rationality‖”.10 The interpretation of the last condition
is that all the players are actually rational at every state that is possible according to
µ(·|H(ω∗)). However, because mutual knowledge of rationality may not hold, even at those
states, a player may not know that his opponents are rational.11

Dow and Werlang (1994) consider two-player games and assume that players’ preferences
are represented by the intersection of the maxmin expected utility model and Choquet
expected utility model. They propose an equilibrium concept called Nash equilibrium under
uncertainty. It can be easily verified that, in terms of maxmin expected utility, (Φ1, Φ2) is a
Nash equilibrium under uncertainty if and only if there exists σ such that 〈σ, (Φ1, Φ2)〉 is a
correlated Nash equilibrium (Definition 6). So, with foundations, we obtain a generalization
of Nash equilibrium under uncertainty, from two-player games to n-player games, and from
the intersection of the maxmin expected utility model and Choquet expected utility model
to the maxmin expected utility model.

7 Conclusion

In brief: The aim of this paper has been to identify, using only the suitably modified epistemic
conditions for Nash equilibrium, restrictions of maxmin expected utility preferences in n-
player games. While we focus on a single model of preference, the crux of our paper does not
hinge on every detail of its functional form. Other “multiple priors models” could potentially
be used to formulate similar concepts and results.

Appendix: proof of Proposition 6

Recall the epistemic conditions, which consist of Eq. (38),

Hi(ω
∗) ⊆ ‖rationality‖ ∀i ∈ N, (62)

and
Φi = Φi(ω) ∀ω ∈ H(ω∗) ∀i ∈ N, (63)

where H(ω∗) is the smallest event satisfying Eqs. (39) and (40). We will first prove sufficiency
of the epistemic conditions for correlated Nash equilibrium.

Eqs. (38)–(40) imply µ(H(ω∗)) > 0. So it is legitimate to define σ as in Eq. (41). We

10Since we assume that the same game is played at every state, mutual knowledge of rationality and
common knowledge of conjectures together imply common knowledge of rationality (cf. Polak, 1999), which
is formally H(ω∗) ⊆ ‖rationality‖. Clearly, H(ω∗) ⊆ ‖rationality‖ implies supp µ(·|H(ω∗)) ⊆ ‖rationality‖.

11Suppose that 〈σ,Φ〉 is a correlated Nash equilibrium in the sense of Definition 5. Then every ai ∈ Si is
PMP -rationalizable in the sense of Epstein (1997, pp. 13–14). It is not the case if correlated Nash equilibrium
is defined in terms of Definition 6.
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have, for every i ∈ N , every ai ∈ supp σAi , and every a−i ∈ A−i,

σ(a−i|ai) =
σ(ai, a−i)∑

â−i∈A−i

σ(ai, â−i)
(64)

=
µ({ω ∈ H(ω∗) : ai(ω) = ai and a−i(ω) = a−i})∑

â−i∈A−i

µ({ω ∈ H(ω∗) : ai(ω) = ai and a−i(ω) = â−i})
(65)

=
µ({ω ∈ H(ω∗) : ai(ω) = ai and a−i(ω) = a−i})

µ({ω ∈ H(ω∗) : ai(ω) = ai})
(66)

=

∑
Hi∈Hi(ai)

µ({ω ∈ Hi : a−i(ω) = a−i})∑
Hi∈Hi(ai)

µ(Hi)
, (67)

where

Hi(ai) ≡ {Hi : Hi ∈ Hi, Hi ⊆ H(ω∗), and for every ω ∈ Hi, ai(ω) = ai}. (68)

Eq. (41) implies that Eq. (64) can be rewritten as Eq. (65). The equivalence of Eqs. (66)
and (67) is due to the measurability of ai : Ω → Ai with respect to Hi. Define, for every
i ∈ N , every ai ∈ supp σAi , every Hi ∈ Hi(ai), and every a−i ∈ A−i,

φi(a−i|Hi) =
µ({ω ∈ Hi : a−i(ω) = a−i})

µ(Hi)
. (69)

By Eqs. (37), (38) and (69),

φi(·|Hi) ∈ Φi(ω) ∀ω ∈ Hi ∀Hi ∈ Hi(ai) ∀ai ∈ supp σAi ∀i ∈ N. (70)

Eqs. (63), (68) and (70) imply

φi(·|Hi) ∈ Φi ∀Hi ∈ Hi(ai) ∀ai ∈ supp σAi ∀i ∈ N. (71)

Use Eq. (69) to rewrite Eq. (67) as

σ(a−i|ai) =

∑
Hi∈Hi(ai)

µ(Hi)φi(a−i|Hi)∑
Hi∈Hi(ai)

µ(Hi)
. (72)

In words, for every i ∈ N and every ai ∈ supp σAi , σ(·|ai) is a convex combination of
{φi(·|Hi)}Hi∈Hi(ai). Convexity of Φi and Eqs. (71)–(72) imply σ(·|ai) ∈ Φi for all ai ∈
supp σAi and all i ∈ N ; that is, σ and Φ satisfy Eq. (11).

Eq. (63) implies

supp Φi = supp Φi(ω) ∀ω ∈ H(ω∗) ∀i ∈ N. (73)
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Since supp Πi(ω) = Hi(ω) for all ω ∈ Ω and all i ∈ N , Eqs. (37) and (73) imply

supp Φi = {a−i(ω̂) : ω̂ ∈ Hi(ω)} ∀ω ∈ H(ω∗) ∀i ∈ N. (74)

Eqs. (40) and (74) imply

supp Φi = {a−i(ω) : ω ∈ H(ω∗)} ∀i ∈ N. (75)

Remember that ai : Ω → Ai is measurable with respect to Hi. With this in mind, it is clear
that Eqs. (38)–(41) imply

supp σAi = {ai(ω) : ω ∈ H(ω∗)} ∀i ∈ N. (76)

Obviously,
{a−i(ω) : ω ∈ H(ω∗)} ⊆ ×j 6=i{aj(ω) : ω ∈ H(ω∗)} ∀i ∈ N.

Let us prove that

{a−i(ω) : ω ∈ H(ω∗)} = ×j 6=i{aj(ω) : ω ∈ H(ω∗)} ∀i ∈ N. (77)

If n = 2, the two sides of Eq. (77) are of course identical. Assume n > 2. Without loss of
generality, suppose there exists a−1 ∈ A−1 such that

a−1 ∈ ×n
j=2{aj(ω) : ω ∈ H(ω∗)} (78)

and
a−1 6∈ {a−1(ω) : ω ∈ H(ω∗)}. (79)

Eqs. (78) and (79) imply that for every ω ∈ H(ω∗) with a2(ω) = a2, there exists j ∈
{3, . . . , n} such that aj(ω) 6= aj. Combining this with Eqs. (40) and (74), as well as the
measurability of a2 : Ω → A2 with respect to H2, we have

for each ω ∈ H(ω∗), there exists j ∈ {3, . . . , n} such that aj(ω) 6= aj. (80)

If n = 3, Eq. (80) is equivalent to a3 6∈ {a3(ω) : ω ∈ H(ω∗)}, contradicting Eq. (78). If
n > 3, then Eqs. (78) and (80) imply that for each ω ∈ H(ω∗) with a3(ω) = a3, there exists
j ∈ {4, . . . , n} such that aj(ω) 6= aj. Combining this with Eqs. (40) and (74), as well as the
measurability of a3 : Ω → A3 with respect to H3, we have, for each ω ∈ H(ω∗), there exists
j ∈ {4, . . . , n} such that aj(ω) 6= aj. Repeat this argument as many times as necessary to
arrive at an 6∈ {an(ω) : ω ∈ H(ω∗)}, contradicting Eq. (78). This completes the proof of Eq.
(77). Eqs. (75)–(77) imply supp Φi = ×j 6=isupp σAj for all i ∈ N ; that is, σ and Φ satisfy
Eq. (12).

Eqs. (62)–(63) imply

Hj(ω
∗) ⊆ ‖rationality‖ ∩ {ω ∈ Ω: Φi = Φi(ω)} ∀i ∈ N ∀j 6= i. (81)

Eqs. (12) and (74) imply

supp σAi = {ai(ω) : ω ∈ Hj(ω
∗)} ∀i ∈ N ∀j 6= i. (82)
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Eqs. (81) and (82) imply that every ai ∈ supp σAi maximizes player i’s maxmin expected
payoff given conjecture Φi; that is, σ and Φ satisfy Eq. (13). This completes the proof that
〈σ, Φ〉 is a correlated Nash equilibrium.

Turn to the converse direction. Fix any correlated Nash equilibrium 〈σ, Φ〉. Define

Ω = ×i∈Nsupp σAi , (83)

and define, for every a ∈ Ω (and every i ∈ N),

µ(a) = σ(a), (84)

Hi(a) = {ai} × ×j 6=isupp σAj , (85)

Πi(a) =
{
πi ∈ ∆(Ω): ∃φi ∈ Φi such that

for every â−i ∈ ×j 6=isupp σAj , φi(â−i) = πi(ai, â−i)
}
,

(86)

and
ai(a) = ai. (87)

Eqs. (11) and (12) ensure that Eq. (84) and (86) are well defined. Eqs. (86) and (87) imply

‖Φ‖ = Ω. (88)

Eqs. (13), (83), (87) and (88) imply ‖rationality‖ = Ω. Eqs. (83)–(85) imply

µ(ai, â−i|Hi(a)) = σ(â−i|ai) ∀â−i ∈ ×j 6=isupp σAj ∀a ∈ Ω ∀i ∈ N. (89)

Eqs. (11), (86) and (89) imply µ(·|Hi(a)) ∈ Πi(a) for all a ∈ Ω and all i ∈ N . Eqs. (83)
and (85) imply H(a) = Ω for all a ∈ Ω. Eq. (84) implies that σ satisfies Eq. (41), with
H(ω∗) = Ω.
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