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Abstract

In the independent-private-value model, we allow resale among bidders

following a first-price sealed-bid, second-price sealed-bid, or English auction

with two bidders. We consider two regimes with regard to the disclosure

of the sealed bids: full disclosure and no disclosure. Either the auction

winner or the auction loser chooses the resale mechanism. Thanks to three

key properties our model shares with the common-value model, we obtain

explicit formulas for the equilibria. We circumvent the “ratchet effect,” by

“randomizing” every pure equilibrium under no disclosure into an equivalent

behavioral equilibrium under full disclosure. We compare the auctioneer’s

revenues across auctions and bargaining procedures. We present some n-

bidder extensions.

1. Introduction

Because resale is at least possible after many real-life auctions, we add to

the independent-private-value model a post-auction stage where resale under

incomplete information may take place between bidders. We consider two

1I am grateful to the editor and the two referees for their very judicious and con-
structive comments. I thank Rod Garratt, Thomas Tröger, and Charles Zheng for helpful
discussions. I also thank the participants to the 2005 Econometric Society World Congress
(London), the 2007 North AmericanWinter Meeting of the Econometric Society (Chicago),
the 2007 Conference on Auctions with Resale (UCSB), the 2007 Canadian Economic The-
ory Conference (Montreal), the 2007 Canadian Economic Association Meetings (Halifax),
and the seminars of the departments of economics at the University of Iowa and Brock
University. The Social Sciences and Humanities Research Council of Canada provided
financial support for this research.
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regimes regarding the disclosure of sealed bids: full disclosure, or FD, where

the auctioneer reveals all bids before resale, and no disclosure, of ND, where

the auctioneer defers the publication of the bids and the auction payments,

which may be linked to the bids, until after resale. Although unrealistic for

the second-price auction, or SPA, the ND regime is worth studying because

it provides equilibria that can be transformed into equilibria under the FD

regime. The auction winner in the general case or the only loser when there

are two bidders chooses and implements a secondary auction. The bidders

are risk-neutral and do not discount their future payoffs2.

Under FD, bidders engage in signalling through their bids. Because of a

“ratchet effect,” no perfect Bayesian equilibrium, or PBE, where the bidders

follow different strictly increasing and differentiable bidding functions exists

when there are two bidders. Consequently, no fully-separating PBE exists in

the first price auction, or FPA, with exante heterogeneous bidders, since only

different bidding functions could possibly satisfy the bidders’—different—first-

order conditions, or FOC’s. In the SPA with arbitrary bidders, the only

separating PBE is the only symmetric separating PBE: the truth-bidding

PBE; although, because of the possibility of resale, it is not an equilibrium

in weakly dominant strategies (on this point, see, for example, Gupta and

Lebrun, 1999).

Under ND, because bidders cannot directly signal through their bids3,

there exist one pure separating PBE of the FPA and a multiplicity of such

equilibria of the SPA. We single out the three properties of our model that al-

low to explicitly characterize the PBE’s through methods from the literature

on the common-value model .

Through a “randomization procedure,” we transform every PBE under

ND into an equivalent semi-separating PBE under FD. The procedure con-

sists in having the resale-price taker along the equilibrium path, that is, the

2The results can be extended to the case of arbitrary common discounting with no
consumption between auction and resale (see Footnote 6).

3They can signal only indirectly, through winning or losing the auction.

2



less (more) aggressive bidder when the auction winner (loser) sets the same

resale price, randomize over a range of bids in such a way that the other

bidder sets the resale price he would have chosen had the bids stayed secret.

It produces strategies to which again the methods from the common-value

model apply. There exists no other PBE’s that satisfy some assumptions of

monotonicity, “full support,” and differentiability.

With two exante homogeneous bidders, the PBE of the FPA and the

truth-bidding PBE of the SPA bring the same revenues, which are higher

than the revenues from any other PBE’s of the SPA. With two exante

heterogeneous bidders, some PBE’s of the SPA give higher revenues, and

some others lower revenues.

Changing the resale-price maker from the auction loser to the auction

winner increases the auctioneer’s expected revenues. Under some assump-

tions, the same change does not affect the range of equilibrium revenues from

the SPA.

We extend our results to a family of hybrid auctions, the (k1, k2)-price

auctions.

With n bidders and the auction winner who chooses the resale mecha-

nism, we construct PBE’s of the English auction, or EA, by having bidders

in the stages leading to the last stage drop when the price reaches their val-

ues and having the two bidders remaining at the last stage follow one of the

PBE’s of the SPA with resale between them.

For the FPA with n bidders, the FOC’s and boundary conditions provide

an implicit characterization that is amenable to the methods developed for

the FPA with no resale and heterogenous bidders. We prove the existence

and uniqueness of a differentiable FPA in a “partial-disclosure” regime when

there are one “strong” bidder and n− 1 “weak” and homogeneous bidders.
The strong bidder’s bidding function is smaller and his bid distribution is

larger. The randomization procedure produces a behavioral PBE of the

FPA under FD where the strong bidder randomizes over a range of bids.
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We finally compare the PBE of the FPA with the PBE’s of the EA.

2. The ND Regime
2.1 Theorem 1

One item is being auctioned to one of two risk-neutral bidders, bidder 1

and bidder 2, through a sealed-bid FPA or SPA with reserve price c, manda-

tory participation, and the fair tie-breaking rule4. At the unique resale

stage5, which immediately follows the auction6, either the auction winner or

the auction loser makes a take-it-or-leave-it offer to the other bidder. We

first assume, in this section and the next, that the auction winner proposes

the resale price. Only the identity of the winner is made public after the

auction and before resale.

The bidders’ values for their own consumptions of the item are private and

independently distributed over the interval7 [c, d], with c < d, according to

absolutely continuous probability measures F1 and F2 with density functions

f1 and f2 that are strictly positive and continuous8. We use the same

notations F1 and F2 for the cumulative distribution functions and assume

that the (buyer-) virtual-value functions v− 1−F1(v)
f1(v)

and v− 1−F2(v)
f2(v)

are strictly

increasing.

We call the (seller’s) optimal-resale-price function ρs the function whose

value at (w1, w2) in [c, d]
2 is the resale price that maximizes the expected

4Our equilibria remain equilibria under voluntary participation and any tie-breaking
rule. The results about the SPA easily extend to an arbitrary binding reserve price.

5Alternatively, resale may occur at further stages and the resale-price maker has the
ability to commit. A take-it-or-leave-it offer as in the text is then the resale-price maker’s
optimal “transparent” mechanism (see Section 7).

6Or, equivalently, the bidders use the same discount factor δ = 1. If, instead, bidders
use the same discount factor δ < 1 and resale and consumption occur T periods after the
auction rather than immediately following it, the results go through by multiplying all
bids by δT .

7The results straightforwardly extend to value intervals with different upper extremi-
ties. See Footnotes 18 and 32.

8For many results, these assumptions too can be loosened, for example, to allow den-
sity functions that are defined and strictly positive only over (c, d] (as long as they are
bounded).
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payoff of bidder k with value wk when he initially owns the item and bidder

l’s value is distributed according to the restriction of Fl to [c, wl], where wk

and wl are the lower and higher components of (w1, w2), that is, ρs (w1, w2)

is the solution to the equation below:

wk = ρs (w1, w2)− Fl(wl)− Fl(ρ
s (w1, w2))

fl(ρs (w1, w2))
, (1)

with k and l such that {k, l} = {1, 2} and wk ≤ wl. That equation (1) has

a unique solution follows from the continuity and strict monotonicity of the

virtual-value functions. We denote ρsi the function ρs with bidder i’s value

as the first argument, that is: ρs1 (v, w) = ρs2 (w, v) = ρs (v, w).

A strategy of bidder i includes a bidding strategy βi (.)—a (measurable)

bidding function, if the strategy is pure—and a (measurable) resale-price func-

tion γi (.; .). If bidder i with value vi follows (βi, γi), he bids βi (vi) at auction

and makes at resale the take-it-or-leave-it offer at the price γi (vi; bi) when

he has won the auction with the bid bi. We assume that a bidder accepts

a resale price if and only if it is not larger than his value. We call PBE

any couple of strategies (β1, γ1;β2, γ2) that can be completed into a PBE
9.

When βi is a strictly increasing bidding function, we take the value of its

inverse, which we denote αi, to be d over bids above its range.

In Theorem 1 below, for all i 6= j, when bidder j follows a strictly increas-

ing and continuous bidding function such that βj (c) = c, bidder i follows,

after winning, the following resale-price function:

γi (v; b) = ρsi (v,max (v, αj (b))) , (2)

for all (v, b) in [c, d]× [c,+∞). From the definition of ρsi , γi (v; b) is optimal
for bidder i according to his revised beliefs, which the conditional of Fj on

[c, αj (b)] represents.

9By adding beliefs as functions of the past observed histories.
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Hafalir and Krishna (2008) prove10 Theorem 1 (ii). Our methods of proof,

which we develop in the next section, work across auction procedures and

disclosure regimes and hence provide an alternative proof to this part of the

theorem.

Theorem 1:
(i) SPA: If ϕ be a strictly increasing continuous function over [c, d] such

that ϕ (c) = c and ϕ (d) = d and

β1 (v) = ρs (v, ϕ (v)) ,

β2 (v) = ρs
¡
ϕ−1(v), v

¢
,

for all v in [c, d], and γ1, γ2 are as in (2), then (β1, γ1;β2, γ2) is a PBE of

the SPA under ND and the following equality holds true:

α2β1 = ϕ.

(ii) FPA: If

βi (v) =

R Fi(v)
0

ρs
¡
F−11 (q) , F−12 (q)

¢
dq

Fi (v)
, (3)

i = 1, 2, and γ1, γ2 are as in (2), then (β1, γ1;β2, γ2) is a PBE of the FPA

under ND and the following equality holds true:

α2β1 = F−12 F1.(4)

Moreover, β1, β2 are the unique bidding functions part of a pure PBE that are,

over (c, d], strictly increasing, differentiable, and such that β1 (c) = β2 (c) =

c.

10They even prove the uniqueness among all pure and nondecreasing PBE’s.
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From Gupta and Lebrun (1999), the equilibrium bidding functions (3)

in the FPA are the same as in the simple model where private information

becomes public before resale and the resale price is exogenously determined

from the values according to ρs. Also from Gupta and Lebrun (1999), the

same bid distributions arise at the equilibrium of the symmetric model where

both bidders’ values are distributed according to Gs such that (Gs)−1 (q) =

ρs
¡
F−11 (q) , F−12 (q)

¢
, for all q in [0, 1].

We will illustrate most of our results with the two examples below, where

ϕ = α2β1.

Example 1-Bidder 1 is everywhere more aggressive (Figure 1): β1 (v) >

β2 (v) and hence ϕ (v) > v, for all v in (c, d). In the FPA, this is the case if

and only if F1 (v) > F2 (v) over (c, d), that is, when F2 first-order (strictly)

stochastically dominates F1.

Example 2-The bidding functions cross once (Figure 2): β1 (v) > β2 (v)

and ϕ (v) > v, for all v in (c, z); β1 (z) = β2 (z) and ϕ (z) = z; and β1 (v) <

β2 (v) and ϕ (v) < v, for all v in (z, d). This is the case in the FPA if, for

example, F2 second-order stochastically dominates F1.

2.2 Proof of Theorem 1

Assume β1, β2 are the strictly increasing and continuous bidding functions

the bidders are expected to follow. Bidder i derives some expected utility

us,wi (gross of the auction price) from winning and some utility us,li from

losing. Since bidder j, j 6= i, does not observe bi when he makes an offer

at resale, bidder i’s utility us,li from losing does not depend on bi and we

may, when looking for equilibria, focus on bidder i’s net expected utilityR αj(bi)
c

usi
¡
vi, vj; bi, βj (vj) ;βi, βj

¢
dFj (vj) with respect to the status quo of

his losing with probability one, where his net-value function usi—the difference
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between us,wi and us,li —is as follows (with vi as the first argument of usi ):

usi
¡
vi, vj; bi, bj;βi, βj

¢
= ρsi (vi,max (vi, αj (bi))) , if not larger than vj;(5)

= ρsj (vj,max (vj, αi (bj))) , if not larger than vi;(6)

= vi, otherwise.(7)

When resale could take place at the price one of the two bidders would

offer, bidder i’s net value is equal to the resale price. Otherwise, bidder i’s

net value is, as when resale is forbidden, equal to his value. The net values

are endogenous since they depend on the inverses of the bidding functions

β1, β2.

Because bidder i’s bid bi can enter his net value only as an argument

of his resale price, which he chooses optimally, b0i = bi is a solution of the

maximization problem below:

bi ∈ argmax
b0i≥c

Z αj(bi)

c

usi
¡
vi, vj; b

0
i, βj (vj) ;βi, βj

¢
dFj (vj) . (8)

By an envelope theorem (see Appendix 1), we find Lemma 1 (i) below, which

is the formal expression of the lack of a first-order effect of a bid change on

the expected payoff through the resale price and allows us to focus on the net

value for identical bids. Lemma 1 (ii) comes from the correction by resale of

any inefficient allocation after a tie, which follows from the obvious inequality

ρs (α1 (b) , α2 (b)) ≤ max (α1 (b) , α2 (b)). The monotonicity in Lemma 1 (iii)11
comes from the monotonicity of the reseller’s optimal resale price with respect

to his value.

Lemma 1:
(i) (no direct first-order effect of own bid) For all (vi, bi) in [c, d]×

11The continuity in (iii) is not necessary to prove Theorem 1 (i).
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[c,+∞), Z αj(bi)

c

usi
¡
vi, vj; bi, βj (vj) ;βi, βj

¢
dFj (vj)

=

Z αj(bi)

c

usi
¡
vi, vj;βj (vj) , βj (vj) ;βi, βj

¢
dFj (vj) .

(ii) (common net value for common bid) For all b ≥ c,

us1 (α1 (b) , α2 (b) ; b, b;β1, β2) = us2 (α2 (b) , α1 (b) ; b, b;β1, β2) = ρs (α1 (b) , α2 (b)) .

(iii) (monotonicity and continuity) usi
¡
vi, αj (b) ; b, b;βi, βj

¢
is non-

decreasing with respect to vi in [c, d] and continuous with respect to b ≥ c.

Proof: See Appendix 1.

To simplify the notation, we drop β1, β2 from the arguments of u
s
i . The-

orem 1 follows easily from the properties in Lemma 1. Indeed, from Lemma

1 (i), bidder i’s expected net payoffs (net of the auction price) when his value

is vi and his bid is b are as follows.

SPA:
Z αj(b)

c

¡
usi
¡
vi, vj;βj (vj) , βj (vj)

¢− βj (vj)
¢
dFj (vj) ; (9)

FPA :
Z αj(b)

c

usi
¡
vi, vj;βj (vj) , βj (vj)

¢
dFj (vj)−

Z αj(b)

c

bdFj (vj) . (10)

Since, at an equilibrium, b should be optimal if vi = αi (b), we obtain from
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Lemma 1 (ii) and (iii) the FOC’s (11) and (12)12 below:

SPA: ρs (α1 (b) , α2 (b)) = b. (11)

FPA :
d

db
lnFi (αi (b)) =

1

ρs (α1 (b) , α2 (b))− b
, i = 1, 2. (12)

The bidding functions in Theorem 1 (i) satisfy (11) and, from Gupta and

Lebrun (1999), those in Theorem 1 (ii) form the unique solution to the two

conditions (12)13. These FOC’s together with the “second-order” condition—

Lemma 3 (iii)—imply that any bidder’s expected net payoff reaches its maxi-

mum at the bid his bidding function in Theorem 1 specifies. Since βj (vj) is

equal to usi
¡
αi

¡
βj (vj)

¢
, vj;βj (vj) , βj (vj)

¢
, the integrand in (9) is nonnega-

tive when αjβi (vi) > vj, nonpositive otherwise, and the integral is maximized

at b = βi (vi). For b ≤ βi (vi), the derivative (u
s
i (vi, αj (b) ; b, b)− b) d

db
Fj (αj (b))−

Fj (αj (b)) of (10) is not smaller than its value—zero—at vi = αi (b). Similarly,

the derivative is nonpositive for b ≥ βi (vi). Theorem 1 is proved.

2.3. Properties of the PBE’s

Assume that, in the PBE (β1, γ1;β2, γ2), bidder i is less aggressive at

his value v, that is, βi (v) < βj (v). Let [ϕ− (v) , ϕ+ (v)] be the maximum

interval including v such that bidder i is less aggressive everywhere in its

interior. By continuity, the bidding functions coincide at the extremities

and we have:

ϕ− (v) = max {w ∈ [c, v] |ϕ (w) = w}
ϕ+ (v) = min {w ∈ [v, d] |ϕ (w) = w} ,

12The same FOC’s (12) for the FPA would follow from any other choice of optimal resale-
offer functions. If a resale-offer function ρi is optimal, it must satisfy ρi (αi (b) , αj (b)) =
ρsi (αi (b) , αj (b)) if αi (b) < αj (b). Along a PBE, if αi (b) = αj (b), whether resale occurs
or not, both bidders’ net values for winning are equal to αi (b) = αj (b), which is also equal
to ρsi (αi (b) , αj (b)).
13With the immediate boundary condition β1 (d) = β2 (d).
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where ϕ = α2β1. Everywhere in the interior of the bid interval [βi (ϕ
− (v)) , βi (ϕ

+ (v))],

we have αi (b) > αj (b).

Denote r the function ρs (α1 (.) , α2 (.)). Bidder i’s equilibrium bid βi (v)

belongs14 to the interior of the subinterval15 [βi(ϕ
− (v)), r−1 (v)] of [βi (ϕ

− (v)) , βi (ϕ
+ (v))].

FromCorollary 1 (i) below, all bids, and not only βi (v), in [βi(ϕ
− (v)), r−1 (v)]

are optimal for bidder i, that is, bidder i’s expected payoff is constant in this

interval. The reason is simple: after winning the auction with his equilib-

rium bid b in the interior of this interval, the more aggressive bidder j with

value αj (b) demands r (b) as the resale price, which bidder i accepts since

r (b) < v. Consequently, the first-order effect of a bid change by bidder i

around b on his expected payoff does not depend on his value v, and hence

must vanish, since b is optimal for some value.

In Example 1 all bids in [c, r−1 (v2)] are optimal for bidder 2. In Example

2, all bids in [β1 (z) , r
−1 (v1)] are optimal for bidder 1 with value v1 > z.

In the SPA, from the FOC (11), r (b) = b and the interval of optimal bids

is [ϕ− (v) , v]: bidder i is indifferent between winning and losing against an

opponent who submits a bid b in this interval because he ends up with the

item and pays the same price b in both cases.

FIGURES 1, 2

As stated in Corollary 1 (ii), the equilibrium resale price characterizes the

post-resale equilibrium allocation. If bidder 1’s value is v1, bidder 2 ends up

with the item if and only if his value is above the cut-off λsϕ (v1) below, which

is the resale price bidder 1 requires, when bidder 1 is more aggressive at v1,

and the value at which bidder 2 requires v1, when bidder 1 is less aggressive

at v1 (see Figures 1 and 2):

14βi (ϕ
− (v)) < βi (v) follows from ϕ− (v) < v and βi (v) < r−1 (v) from

ρsi (v, αj (βi (v))) < v, which in turns follows from βi (v) < βj (v).
15Because r (βi (ϕ

+ (v))) = ϕ+ (v) > v.
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λsϕ (v1) = ρs (v1, ϕ (v1)) , if ϕ (v1) ≥ v1;

= ρs
¡
ϕ−1 (.) , .

¢−1
(v1) , if ϕ (v1) ≤ v1.

Corollary 1: For any PBE as in Theorem 1:

(i) All bids in [βi(ϕ
− (v)), r−1 (v)] are optimal for bidder i with value v

in [c, d] if he is less aggressive at v.

(ii) If the bidders’ values v1, v2 are such that v2 <(>)λ
s
ϕ (v1), then the

item eventually goes to bidder 1 (2).

Proof: See Appendix 1.

3. The FD Regime

3.1 The Ratchet Effect and Theorem 2

Bidders get no payoff from resale in any symmetric separating PBE of

the SPA, since such a PBE is efficient, and a standard argument shows that

the common bidding function can then not be different from the identity

function. Haile (1999) already proved that the truth-bidding equilibrium

of the SPA without resale is also a PBE and hence the unique symmetric

separating PBE of the SPA with resale.

When resale occurs in a separating PBE, the auction winner demands

as a resale price the loser’s value, which he infers from the losing bid under

FD. Because of the implied ratchet effect—the asymmetrical consequences of

upwards and downwards deviations—, there exists no separating PBE of the

SPA or FPA where bidders follow different strictly increasing and differen-

tiable bidding functions. In fact, if small upwards deviations, which bring

him no payoff at resale (he would refuse any resale offer), were not prof-

itable to the (locally) less aggressive bidder, downwards deviations would be

strictly profitable, since they would increase his payoff at resale when the

auction allocation is inefficient: a nonpositive right-hand derivative of the

12



payoff would imply a strictly negative left-hand derivative. In particular,

since the same bidding function could not satisfy both bidders’ (different)

FOC’s, there exists no pure separating (symmetric or asymmetric) PBE of

the FPA with strictly increasing and differentiable bidding functions when

F1 6= F2.

Nevertheless, as we now show, there exist semi-separating behavioral

PBE’s where the less aggressive bidder does not completely reveal his value

through his bid. A behavioral bidding strategy of bidder i is a (regular16)

conditional probability measure Gi (.|.) with respect to vi in [c, d]. A resale
strategy is characterized by a (measurable) function δi (.; .). If bidder i with

value vi follows (Gi (.|.) , δi), he chooses his bid according to Gi (.|vi) and, af-
ter winning the auction where bidder j bids bj, demands δi (vi; bj) at resale.

Here, the second argument of the resale function δi of bidder i is not, as in

Section 2, his own bid, but rather bidder j’s bid, which he observes. We

again assume that the auction loser refuses the resale price if and only if it

is strictly larger than his value.

We specify the revised beliefs bidder i holds about bidder j’s value af-

ter he observes bidder j’s bid bj through a (regular) conditional probabil-

ity measure Fj (.|bj). We use the same notation for a probability measure

and its cumulative function and we call a couple of strategies and beliefs

(G1 (.|.) , δ1, F2 (.|.) ;G2 (.|.) , δ2, F1 (.|.)) a PBE if it can be completed into
one. The randomization procedure, mentioned in Theorem 2 below, is an

explicit procedure of construction of PBE’s under FD that we present in the

next subsection.

Theorem 2: Let E be a PBE of an auction under ND as in Theorem
1. Let E 0 be the output of the randomization procedure applied to E. Then:

(i) E 0 is a PBE of the same auction under FD.
16Following the standard terminology in probability theory, this means that Gi (.|vi) is

a probability measure, for all vi, and Gi (b|.) is measurable, for all b.
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(ii) The bid marginal distributions, the interim total expected payoffs,

and the post-resale allocation are the same in E 0 as in E;
(iii) Conditionally on the value of the auction winner, strictly prof-

itable resale takes place with the same probability in E 0 as in E and, when
this probability is different from zero, at the same price;

(iv) If the auction is the SPA, the auction outcomes—the bids and the

allocation before resale—are posterior implemented by E 0 or, for short, E 0 is
posterior implementable.

(v) There exists a PBE of the auction under ND17 with the same

bidding strategies and, along the equilibrium path, the same take-it-or-leave-

it offers from the auction winner as in E 0.

Following Green and Laffont (1987) (see, also, Lopomo 2001), (iv) means

that all bids in the support of bidder i’s bidding strategy conditional on vi

are optimal for bidder i with value vi even after he learns bidder j’s bid.

3.2 The Randomization Procedure

Let E = (β1, γ1;β2, γ2) be a PBE as in Theorem 1 and ϕ = α2β1. The

main idea of the randomization procedure is to have any bidder who bids less

aggressively in E mix over his set of optimal bids (Corollary 1 (i) describes)
in such a way that when the other bidder wins and observes the losing bid,

he chooses the same resale price as in E . This requirement determines

the auction winner’s beliefs conditional on the losing bid. The marginal bid

distribution is taken to be the same as in E . These conditional and marginal

distributions then determine a joint distribution, which, using Milgrom and

Weber (1985)’s terminology, is a “distributional strategy,” that is, such that

its marginal value distribution is the bidder’s actual value distribution.

17(v) actually holds true for any disclosure policy, including, for example, release of
“garbled” information about the bids. When E is asymmetric, the bidding strategies in
E and E 0 differ.
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Revised Beliefs:
C1 If αj (bj) ≤ αi (bj), Fj (.|bj) is concentrated at αj (bj).

C2 If αj (bj) > αi (bj), the support of Fj (.|bj) is [r (bj) , ϕ+ (αj (bj))],

where:

Fj (vj|bj) = 1− exp
Z vj

r(bj)

dw

αir−1 (w)− w
.

Bidding Strategies:
B1 If βi (vj) ≤ βj (vj), Gj (.|vj) is concentrated at βj (vj).
B2 If βj (vj) < βi (vj), the support of Gj (.|vj) is

£
βj (ϕ

− (vj)) , r−1 (vj)
¤
,

where:

Gj (b|vj) = 1−
R r−1(vj)
b

exp
R vj
r(b0)

dw
αir−1(w)−wdFj (αj (b

0))

fj (vj) (vj − αir−1 (vj))
.(13)

Resale Strategies:
RS1 If αj (bj) ≤ αi (bj),

δi (vi; bj)

= max (r (βi (vi)) , αj (bj)) , if βj (vi) ≤ βi (vi)

= max (αj (bj) , vi) , otherwise.

RS2 If αj (bj) > αi (bj),

δi (vi; bj)

= max (r (βi (vi)) , r (bj)) , if βj (vi) ≤ βi (vi) ;

= max (vi, r (bj)) , otherwise.

From Lemma 2 (i) below, C1-C2 indeed define a conditional distribution.

We now illustrate with Example 1 the proof of Lemma 2 (ii), according to

which, if we choose Fjαj as bidder j’s marginal bid distribution, the implied

joint distribution of values and bids has Fj at its value marginal distribution.
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From C2, the support of F2 (.|b2) is [r (b2) , d], for all b2 in (c, β2 (d)), and,
after computing f2 (w|b2) = d

dw
F2 (w|b2), we find:

1 = F2 (w|b2) + f2 (w|b2)
¡
w − α1r

−1 (w)
¢
,

for all w in [r (b2) , d]. Integrating this equation with respect to b2 according

to the marginal F2α2 (b2) from c to r−1 (w), we find that the joint distribution

of values and bids has a marginal value distribution F ∗2 with derivative f
∗
2

such that:

F2α2
¡
r−1 (w)

¢
= F ∗2 (w) + f∗2 (w)

¡
w − α1r

−1 (w)
¢
,

for allw in (c, d). However, by definition of r, we havew = ρs (α1r
−1 (w) , α2r−1 (w))

and hence:

F2α2
¡
r−1 (w)

¢
= F2 (w) + f2 (w)

¡
w − α1r

−1 (w)
¢
.

Subtracting this last equation from the previous one, we find:

d

dw
(F ∗2 (w)− F2 (w)) =

F2 (w)− F ∗2 (w)
w − α1r−1 (w)

.

Consequently, if F ∗2 (w) − F2 (w) was strictly positive at w, it would be

strictly decreasing and strictly positive over [c, w], which is impossible since

F ∗2 (c) = F2 (c) = 0. A strictly negative difference F ∗2 (w) − F2 (w) is sim-

ilarly impossible. The marginal distribution F ∗2 is then equal to the actual

distribution F2 everywhere.

In Example 2, one can easily check that B1-B2 give the conditionals of

the distributional strategies, that is, that Lemma 2 (iii) below hold true.

For example, bidder 2’s conditional must make him bid β2 (v2) if v2 ≥ z and

randomize over [c, r−1 (v2)] if v2 < z. For this latter case, differentiating,

with respect to v2, F2 (v2|b2) from C2, integrating it over [b, r−1 (v2)] with
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respect to b2, distributed according to F2α2, and dividing it by f2 (v2) give

the expression in B218.

Lemma 2:
(i) Fj (.|bj) in C1-C2 is a (regular) conditional distribution . The distrib-

ution in C2. is absolutely continuous, with density function fj (vj|bj) equal to
1

vj−αir−1(vj) exp
R vj
r(bj)

dw
αir−1(w)−w in the interior of the support. Furthermore,

Fj (vj|bj) is continuous with respect to bj, for all vj in (r (bj) , ϕ+ (αj (bj))).

(ii) There exists one and only one distributional strategy of bidder j with

marginal Fjαj (bj) and a conditional that satisfies C1-C2.

(iii) Gj (bj|vj) in B1-B2 is a (regular) conditional distribution of bidder
j’s distributional strategy in (ii).

(iv) δi (.; .) in RS1-RS2 is optimal for bidder i with revised beliefs Fj (.|., .).
(v) For all bj not larger than the maximum of the support of Gi (.|vi),

we have:

δi (vi; bj)

= r (βi (vi)) , if βj (vi) ≤ βi (vi) ;

= vi, otherwise.

Proof: See Appendix 2.

From Lemma 2 (iv) above, the resale prices in RS1-RS2 are optimal for

the auction winner, given his revised beliefs. From Lemma 2 (v), if a bidder

has won the auction by following his bidding strategy in B1-B2, the price he

demands at resale does not depend on the loser’s bid. We check Lemma 2

18In the example with different value upper extremities where v1, v2 are uniformly dis-
tributed over [0, 1] and [0, d], d > 1, the equilibrium bidding strategies under ND are
such that β1 (v) = β2 (dv) = (1 + d) v/4. In an equivalent PBE under FD, bidder
2 bids according to G2 (b|v2) = (2b/v2)

2d/(d−1) (over [0, v2/2]) if v2 ≤ (1 + d) /2 and
G2 (b|v2) = (4b/ (1 + d))2d/(d−1) (over [0, (1 + d) /4]) if v2 ≥ (1 + d) /2. Here, the ran-
domization procedure does not uniquely determine G2 (b|v2) for v2 > (1 + d) /2.
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(iv, v) for bidder 2 in Example 2. RS1-RS2 for bidder 2 with value v2 > z

reduce to:

δ2 (v2; b1) = r (b1) , if b1 ≥ β2 (v2) ;

= r (β2 (v2)) , for all b1 ≤ β2 (v2) .

If bidder 2 observes b1 in (β1 (z) , β2 (v2)) from bidder 1, his revised beliefs

F1 (v1|b1) = 1−exp
R v1
r(b1)

dw
α2r−1(w)−w have support [r (b1) , d] and virtual value:

v1 − 1− F1 (v1|b1)
f1 (v1|b1)

= α2r
−1 (v1) ,

which is larger than v2 if and only if v1 is larger than r (β2 (v2)), and r (β2 (v2))

is bidder 2’s unique optimal resale price. If bidder 2 observes b1 in [c, β1 (z)],

no profitable resale is possible and r (β2 (v2)) is one of bidder 2’s optimal

resale prices.

If, after deviating from his equilibrium bid, bidder 2 wins and observes

b1 in (β2 (v2) , β1 (d)), r (b1) is his unique optimal resale price because it is

the minimum of the support of F1 (.|b1) and is optimal for bidder 2’s larger
value α2 (b1). If bidder 2 observes a bid b1 > β1 (d), r (d) = d is optimal for

bidder 2’s revised beliefs, which are concentrated at d.

3.3 Proof of Theorem 2

Bidder i’s net-value function usi—the difference between his utility us,wi

18



from winning and his utility us,li from losing—is as follows19:

usi (vi, vj; bi, bj)

= δi (vi; bj) , if not larger than vj;

= δj (vj; bi) , if not larger than vi;

= vi, otherwise.

Here, contrary to Section 2, bidder i’s utility in case of winning us,wi de-

pends on bidder j’s bid bj, which bidder i observes after winning, and is

independent of bidder i’s own bid bi. Thus we may consider bidder i’s win-

ning with probability one as his status quo and his net expected utility isR bi
d

R
usi (vi, vj; bi, bj) dFj (vj|bj) dFjαj (bj), where, according to the random-

ization procedure, bidder j’s marginal bid probability distribution in E 0 is
the same—Fjαj—as in E .
Lemma 3 below is similar to Lemma 1 and follows from the randomization

procedure. Lemma 3 (i.1) and (i.2) come from the independence, by Lemma

2 (v), of the resale price on the auction loser’s bid, if the auction winner

follows his bidding strategy in E 0. Lemma 3 (ii) holds true because, although
the bidders use behavioral bidding strategies, resale remedies any inefficient

outcome after a tie. For example, when bidder 2 with value v2 in (z, d) in

Example 2 wins after tying at β2 (v2), he demands the resale price r (β2 (v2)),

which bidder 1 accepts with probability one because it is the minimum of

the support of F1 (.|b1 = β2 (v2)). The monotonicity in Lemma 3 (iii) follows

from the monotonicity of a bidder’s optimal expected payoff at resale with

respect to his value.

Lemma 3:
19Since we only consider βi, βj from a given E, we drop them from the argument of the

net values usi .
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(i.1) For all (vi, bi) in [c, d]× [c,+∞) and all bj ≥ bi:Z
usi (vi, vj; bi, bj) dFj (vj|bj) =

Z
usi (vi, vj; bj, bj) dFj (vj|bj)

(i.2) For all (vi, bi) in [c, d]× [c,+∞):Z bi

d

Z
usi (vi, vj; bi, bj) dFj (vj|bj) dFjαj (bj) =

Z bi

d

Z
usi (vi, vj; bj, bj) dFj (vj|bj) dFjαj (bj) .

(ii) For all b ≥ c:

Z
usi (αi (b) , vj; b, b) dFj (vj|b) = r (b) .

(iii) For all b ≥ c,
R
usi (vi, vj; b, b) dFj (vj|b) is nondecreasing with

respect to vi in [c, d] and continuous with respect to b.

Proof: See Appendix 2.
The proof in Appendix 2 of Theorem 2 (i) is similar to the proof, in

Section 2, of Theorem 1. Consider bidder 1 in Example 1 with value v1 in

(c, d). His expected payoff in the FPA is quasi-concave with respect to his

bid with a maximum at b = β1 (v1). In fact, its derivative is nonnegative

below β1 (v1) and nonpositive above it. For example, the derivative at b in

(c, r−1 (v1)) is, up to the factor F2α2 (b):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R v1
r(b)

v2dF2 (v2|b)
+v2 (F2 (r (β1 (v1)) |b)− F2 (v1|b))
+r (β1 (v1)) (1− F2 (r (β1 (v1)) |b))

−b

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
d

db
lnF2α2 (b)

−1.

The first three terms in the factor between braces above is the net expected

20



utility at b: the first term is the expected resale price bidder 1 saves by

winning at auction rather than buying at resale (bidder 2 demands his value

as the resale price), the second and third terms are the expected payoff

bidder 1 receives from reselling the item (bidder 1 demands r (β1 (v1)) after

winning the auction). Since this net expected utility is nondecreasing in

v1 (see the general proof in Appendix 2), it is not smaller than r (b), what

it would be at α1 (b) < v1. The derivative above is then not smaller than

(r (b)− b) d
db
lnF2α2 (b)− 1, which is equal to zero.

Contrary to Lemma 1 (i), the similar property for the ND regime, Lemma

3 (i.2) does not follow from an envelope theorem, but rather from the identity

(i.1):
R
usi (vi, vj; bj, bj) dFj (vj|bj) is equal to the actual net utility bidder i

receives from submitting bi ≤ bj when his opponent submits bj. The quasi-

concavity (which follows from Lemma 3) of bidder i’s expected payoff20 in

the SPA implies the no-regret property: bidder i wins against all those bids

bj that contribute nonnegatively to his payoff and loses against those that

would contribute nonpositively.

Proof of Theorem 2: See Appendix 2.

Although the final allocations in E 0 and E are identical, the intermediate
allocations, after the auction and before resale, differ with strictly positive

probability if the equilibria are asymmetric. For example, in Figure 1, if

if bidder 1’s value is v1 and bidder 2’s value is in
¡
λsϕ (v1) , ϕ (v1)

¢
, bidder 1

wins the auction in E with probability one and loses it with strictly positive
probability in E 0.

3.4 Multiplicity of PBE’s of the SPA

Beyond the multiplicity in Theorem 2, we construct in Appendix 3 further

PBE’s of the SPA by extending Theorem 1 and the randomization procedure

to nondecreasing, and possibly discontinuous, functions ϕ. For example, in

20Which is, up to a term constant in bi,
R bi ¡R usi (vi, vj ; bj , bj) dFj (vj |bj)− bj

¢
dFjαj (bj).
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the PBE constructed from the function ϕ such that ϕ (v1) = θ∗, for all v1
in [c, θ∗], and ϕ (v1) = v1, for all v1 in [θ

∗, d]: the bidding functions are such

that β1 (v1) = ρs (v1, θ
∗), for all v1 in [c, θ∗], and β1 (v1) = v1, for all v1 in

[θ∗, d]; β2 (v2) = ρs (c, v2), for all v2 in [c, θ
∗), β2 (θ

∗) belongs to [ρs (c, θ∗) , θ∗],

and β2 (v2) = v2, for all v1 in (θ
∗, d]. While our randomization procedure

produces an equivalent behavioral PBE where bidder 2 with value v2 in [c, θ
∗)

randomizes over [c, v2], we can make him bid21 c instead and obtain Garratt et

al (2006b)’s pure PBE under FD and no discounting22. If θ∗ = d, we obtain

the “extreme” PBE where a bidding function takes the constant value d and

the other takes the constant value c23. From Garratt et al (2008), some

lotteries over such PBE’s, for example, the lottery that gives probability

1/2 to each extreme PBE when the values are identically and uniformly

distributed, dominate the truth-bidding PBE with respect to the bidders’

interim payoffs24.

Hafalir and Krishna (2008) prove that the truth-bidding PBE is the only

PBE where no bidder would regret his resale offer, nor his bid, upon learning

the other bidder’s value. Of course, the values being private, a bidder may

actually never learn the other bidder’s value. From Theorem 2 (iv), all our

PBE’s satisfy the weaker no-regret property according to which no bidder

will regret his bid after he learns the other bidder’s bid, which he does if he

wins the auction. Moreover, any of our PBE’s remains a PBE after a change

21Since c is among his optimal bids, bidder 2 has no incentive to deviate. Bidder 1 has no
incentive to deviate from his bidding strategy because by submitting a bid in (c, ρs (c, θ∗)),
where bidder 2’s bid distribution has changed, he now obtains the same expected payoff
he previously obtained by submitting a bid in (ρs (c, θ∗) , θ∗). Deviating to c is also
unprofitable, since bidding slightly above it is at least as advantageous (depending on the
tie-breaking rule).
22A similar construction when the auction loser sets the resale price (see Section 4) gives

the bidding functions β1 (v1) = v1, for all v1 in [c, θ
∗); β1 (v1) = d, for all v1 in (θ

∗, d];
β2 (v2) = v2, for all v2 in [c, θ

∗); β2 (v2) = ρb (θ∗, v2), for all v2 in (θ∗, d].
23This is a PBE for any (voluntary) bargaining at resale.
24Bidders might then want to implement such a combination of PBE’s, if they have

access to a common randomizing device.
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of the value distribution of the more aggressive bidder25.

As in the common-value model (Bikchandani 1988, Klemperer 1998, Bu-

low et al 1999), the multiplicity of PBE’s of the SPA reflects the sensitivity

of the outcome to small changes in the rules or payoffs. For example, as

in k-price auctions, inject an element of FPA by having bidder i, if he wins,

pay the weighted average kibi + (1− ki) bj of his bid and the second highest

bid, where ki is small. We show in Section 6 that the then only differen-

tiable PBE under ND is payoff equivalent to the PBE of the unaltered SPA

that is constructed from ϕ = F−12 F l
1, where l = k1/k2. Furthermore, this

particular PBE of the SPA is the limit of the PBE of the hybrid auction, as

k1 and k2 tend towards zero while the ratio k1/k2 stays constant at l26. The

randomization procedure would also produce PBE’s of the hybrid auctions

under FD.

See Section 7 for selection criteria from the literature on auctions with

common value.

3.5 No Other PBE’s Within a Restricted Class

We now show that the randomization procedure produces all the PBE’s

under FD that satisfy the following assumptions, for all i, j, i 6= j:

A1 Bidder i’s marginal bid distribution has its support equal to an in-

terval
£
c, d
¤
, with d > c, and its cumulative function Gi (bi) is continuously

differentiable over
¡
c, d
¤
.

A2Whenmutually strictly profitable resale is possible according to Fj (.|b),
δi (v, b) is bidder i’s unique optimal resale price.

A3 The support of bidder i’s distributional strategy is the closed set

bordered by the graphs of two functions βui and βli, with βui ≥ βli.

25See Corollary A3.1 in Appendix 3.
26Similar small perturbations in the rules might be used by an auctioneer who would

want to implement a particular PBE (for example, for revenue purposes).
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A4 βui and βli are nondecreasing.

A5 βu1 (c) = βu2 (c) = βl1 (c) = βl2 (c) = c and βu1 (d) = βu2 (d) = d.

A6 βu1 , β
u
2 are differentiable over (c, d] with strictly positive derivatives.

A7 For all open subinterval (v0, v00) of [c, d] such that βui (v) ≥ βuj (v), for

all v in (v0, v00):

A7.0 The support of Gj (.|v) is
£
βlj (v) , β

u
j (v)

¤
A7.1 βui (v) = βli (v); and if β

u
i > βuj everywhere over (v

0, v00), then

βuj > βlj everywhere over the same interval;

A7.2 βll is differentiable over (v
0, v00);

and, for all (vi, b) in (v0, v00)× (βui (v0) , βui (v00)):
A7.3 δi (v; b) is continuous with respect to b at (vi, b) if b ≤ βui (vi);

A7.4 δi (v; b) is continuous with respect to v and differentiable with

respect to b at (vi, b) if b ≤ βui (vi) and (vi, b) belongs to the interior of the

support of bidder j’s distributional strategy.

Because of the rachet effect, there can only exist PBE’s where the less

aggressive bidder follows a behavioral strategy. Moreover if a bidder follows

a pure bidding strategy, the graph of his bidding function cannot intersect

the interior of his opponent’s distributional strategy. If it was the case, he

would be a buyer at resale with a strictly positive probability and the ratchet

effect would make impossible to prevent deviations. Hence, we assume, in

A7.1, that, when the bidders do not use the same bidding function, the less

aggressive bidder randomizes over a range of bids and the more aggressive

bidder follows a bidding function above this range27.

A3, A5, and A7.0 are assumptions of “full support.” A4 is a monotonic-

ity assumption. The uniqueness of the optimal resale price, when profitable

resale is possible, also implies its monotonicity with respect to the price set-

ter’s value. A1, A5, A6, and A7.2 to A7.4 are continuity and differentiability

assumptions. We have the remark and Theorem 3 below.

27We could have shortened A7.1 to only βui (v) = βli (v). The second part of A7.1 would
then have followed from the ratchet effect.
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Remark: A3, A4, A5, and A7.1 imply that βli is continuous at all v < d

such that βui (v) = βuj (v).

Theorem 3: Let E 0 be a PBE of an auction under FD that satisfies

Assumptions A1 to A7. Then, there exists a PBE E as in Theorem 1 of

the auction under ND such that E and the PBE under FD produced by the
randomization procedure applied to E are equivalent, in the sense of (i) and
(ii) in Theorem 2, to E 0.

The main tools of our proof are the ratchet effect and the following “prob-

ability invariance,” which is a direct consequence of the envelope theorem. It

states that, in the interior of the support of bidder i’s distributional strategy,

the probability Pri (w, b) that he becomes the eventual owner of the item is

independent of his bid b.

Proposition: (Probability Invariance) If (w,w0)× (b, b0) is included in
the interior of the support of bidder i’s distributional strategy in a PBE, then

Pri (w
00, b00) = Pri

³
w00,eb´, for all b00,eb in (b, b0) and almost-all w00 in (w,w0).

Proof:28 From the assumptions above, within the interior of the support
of his distributional strategy, the less aggressive bidder’s expected payoff is

a continuous function of his bid29. From A7.0, all bids in (b, b0) must give

the same optimal payoff Pi (w
00) to bidder i with value w00 in (w,w0).

Let vi, v0i be in (w,w
0). Since, for all (w00, b00) in (w,w0) × (b, b0), bidder

i with value w00 obtains Pi (w
00) from submitting b00, we have, from Myerson

(1981):

Pi (v
0
i)− Pi (vi) =

Z v0i

vi

Pr
i
(w00, b00) dw00,

28In the proof, we only make use of the continuity of a bidder’s expected payoff with
respect to his bid.
29The expected payoff from the auction stage is obviously

continuous. The expected payoff from the resale stageR R
I (bj > b; v0 < vj < v00)max (vi − δj (vj ; b) , 0) dFj (vj |bj) dGj (bj) is also continu-

ous since the function inside the integral is continuous at b, for all vj (from A7.3) and
almost all bj , and is bounded.
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and, consequently:Z v0i

vi

³
Pr
i
(w00, b00)− Pr

i

³
w00,eb´´ dw00 = 0,

for all b00,eb in (b, b0) and vi, v0i in (w,w0), which implies Pri (w00, b00) = Pri ³w00,eb´,
for almost-all w00 in (w,w0). ||

We sketch below the remaining main steps of the proof, whose details can

be found in Appendix 4.

Step 1: After winning a tie at auction, the more aggressive bidder de-
mands a resale price that is accepted with probability one. (Lemma A4.1)

Sketch of the proof: Otherwise, there would be values for which
the less aggressive bidder randomizes that are smaller than the resale price.

Since he would refuse resale offers, this bidder could then obtain the item

only by winning the auction, the probability of which is not constant (since

it decreases with his bid), and it would contradict probability invariance (See

Figure A1).

Step 2: If the couple formed by the resale price of the more aggressive
bidder and the less aggressive bidder’s bid belongs to the interior of the support

of this latter bidder’s distributional strategy, the resale price is independent

of the bid (Lemma A4.2).

Sketch of the proof: Otherwise, the graph of the resale price, as
function of the less aggressive bidder’s bid, would not be vertical and some

changes of bids, within the support of the distributional strategy, would cross

these graphs and result in different probabilities of the less aggressive bidder’s

getting the item (see Figure A2).

From Steps 1 and 2, as the bid from the less aggressive bidder decreases

starting from a tie, the graph of the resale price starts from the upper bound-

ary of the support of his distributional strategy, may follow this upper bound-
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ary, is vertical after it enters the interior of the support, and may then follow

the lower boundary (Lemma A4.3).

Step 3: For a fixed value of the more aggressive bidder, the graph of the
resale price he demands does not follow the upper boundary of the support of

the less aggressive bidder’s strategy (Lemma A4.4).

Sketch of the proof: Otherwise, a “modified” ratchet effect would
exist: although deviations from the same bid starting from couples in the

interior and on the upper boundary of the bid support would have the same

effect—proportional to the difference between the resale price (which the less

aggressive bidder accepts, from Step 1) and the bid—through the change of

auction outcome, a deviation from the interior has an effect through the

resale price when the less aggressive bidder keeps losing, while an upward

deviation from the upper boundary does not (since the less aggressive bidder

refuses any resale price) (See Figure A3).

Step 4: The lower boundary of the less aggressive bidder’s support is

flat (Lemma A4.5).

Sketch of the proof: Otherwise, a ratchet effect would exist: a

downward bid deviation from a point on the lower boundary would change

the less aggressive bidder’s payoff from resale, while an upward deviation

would not (See Figure A4).

From Steps 3 and 4, if bidder i is more aggressive at vi, the resale price

bidder i demands is equal to αu
jβ

u
i (vi), where α

u
j is the inverse of β

u
j , and is

independent of his opponent’s bid when profitable resale is possible. Since

αu
j (βi (vi)) ≥ vi, we then have:

αu
j (βi (vi)) ∈ argmax

p
(p− vi) (1− Fj (p|b)) ,

for all b ≤ βi (vi). Integrating the objective function over this range of bids

27



with respect to bidder j’s marginal bid distribution Gj, we find:

αu
j (βi (vi)) ∈ argmax

p
(p− vi) (Gj (βi (vi))− Fj (p)) . (14)

The final step of the proof is Step 5 below.

Step 5: (“Inverse randomization procedure”) The PBE is equivalent to
the PBE under ND with bidding functions β∗1, β

∗
2 where β∗i = G−1i Fi (thus

β∗i (vi) = βi (vi), if bidder i is more aggressive at vi), where Gi is bidder i’s

marginal bid distribution (Lemmas A4.6 and A4.7).

Sketch of the proof: From (14) above andGj (βi (vi)) = Fj

¡
α∗j (βi (vi))

¢
,

we have αu
j (βi (vi)) = ρsi

¡
vi, α

∗
jβi (vi)

¢
. Because resale always occurs after

an inefficient resolution of a tie, the functions β∗1, β
∗
2 then satisfy the same

FOC’s as the PBE’s under ND.

FromTheorem 2 and Subsection 3.4, there exist PBE’s of the SPA that are

not differentiable or even exhibit discontinuities, and nonconvex bid supports,

and hence that do not belong to the restricted class of this subsection. We

do not address the existence of PBE’s of the FPA outside this class.

3.6 Revenue Comparisons Across Auctions

Since none of our PBE’s gives a positive payoff to any bidder with the

smallest value c, the auctioneer’s expected revenues are, fromMyerson (1981),

the expectation of the eventual owner’s virtual value. Without loss of gen-

erality, assume that bidder 1 has the higher virtual value when both bidders’

values are c or, equivalently, f1 (c) ≥ f2 (c). Let ψ be the function that links

the bidders’ values with the same virtual value, that is, such that:

ψ (v)− 1− F2 (ψ (v))

f2 (ψ (v))
= v − 1− F1 (v)

f1 (v)
, (15)

for all v in [c, d]. From Corollary 1 (ii), a PBE’s final allocation is charac-

terized by the function λsϕ, with ϕ = α2β1. If λsϕ was equal to ψ, the PBE
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would maximize revenues. Under the assumption of differentiability of ψ,

it is simple to prove (Lemma A6.1 in Appendix 6) that, when the bidders

are heterogeneous, this is not the case for the FPA, where, from Theorem

1, ϕ = F−12 F1. Thus, there exists an interval where λ
s
ϕ, with ϕ = F−12 F1, is

everywhere different from ψ. By slightly moving ϕ over this interval, while

keeping it continuous and strictly increasing, towards and away from ψ, one

makes λsϕ move in the same direction and Corollary 2 follows.

Corollary 2: When ψ is differentiable and F1 6= F2, the revenues from

the PBE of the FPA are strictly smaller than the revenues from some PBE’s

of the SPA and strictly larger than the revenues from some others30.

With homogeneous bidders, the PBE of the FPA and the truth-bidding

PBE of the SPA are efficient and maximize revenues.

4. The Other Bargaining Procedure at Resale

When the seller-virtual-value functions v+ F1(v)
f1(v)

and v+ F2(v)
f2(v)

are strictly

increasing, we can apply the methods above to auctions after which the

auction loser sets the resale price by using, instead of ρs, the buyer’s optimal-

resale-price function31 ρb, whose value at (w1, w2), is the unique solution to

the equation below:

wl = ρb (w1, w2)− Fk(wk)− Fk(ρ
b (w1, w2))

fk(ρb (w1, w2))
,

with k and l such that {k, l} = {1, 2} and wk ≤ wl. Results similar to all

the results above (including Corollary 2) hold true. The final equilibrium

30Obviously, an extreme PBE of the SPA as in Subsection 3.4 gives lower revenues—c—
than the PBE of the FPA.
31(2) becomes γi (v; b) = ρbi (v,min (v, αj (b))).
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allocation is characterized by λbϕ (instead of λ
s
ϕ) such that::

λbϕ (v1) = ρb (v1, ϕ (v1)) , if ϕ (v1) ≤ v1;

= ρb
¡
ϕ−1 (.) , .

¢−1
(v1) , if ϕ (v1) ≥ v1.

The randomization procedure makes the more aggressive bidder, who is here

the equilibrium resale-price taker, randomize over his set of optimal bids—h¡
rb
¢−1

(v) , βi(ϕ
+ (v))

i
, where rb = ρb (α1, α2), if his value is v. In the

definition of the restricted class in Subsection 3.5, within which we charac-

terize all PBE’s, Assumptions A6b, A7b below should replace A6, A7.

A6b βl1, β
l
2 are differentiable over (c, d] with strictly positive derivatives.

A7b For all open subinterval (v0, v00) of [c, d] such that βli (v) ≥ βlj (v), for

all v in (v0, v00):

A7.0 The support of Gi (.|v) is
£
βli (v) , β

u
i (v)

¤
A7.1 βuj (v) = βlj (v); and if β

l
i > βlj everywhere over (v

0, v00), then

βui > βli everywhere over the same interval;

A7.2 βui is differentiable over (v
0, v00);

and, for all (vj, b) in (v0, v00)×
¡
βlj (v

0) , βlj (v
00)
¢
:

A7.3 δj is continuous with respect to b at (vj, b) if b ≥ βlj (vj);

A7.4 δj is continuous with respect to v and differentiable with respect

to b at (vj, b) if b ≥ βlj (vi) and (vj, b) belongs to the interior of the support

of bidder i’s distributional strategy.

5. Revenue Comparisons Across Bargaining Procedures

In this section, we assume that f1 (c) ≥ f2 (c) and that both seller-

virtual-value-functions and buyer-virtual-value-functions are strictly increas-

ing. When the bidders are homogeneous, the PBE of the FPA under both

bargaining procedures reduces to the equilibrium of the FPA with no resale

allowed, and we have Corollary 3 (i) below. Although, as simple examples

30



show (see Appendix 5), the equilibrium bid distributions do not generally

dominate those when the auction loser sets the resale price, we prove below

that the expected revenues are strictly higher when the auction winner sets

the resale price following the FPA and the bidders are heterogenous32.

Corollary 3:
(i) When F1 = F2, the revenues from the FPA are the same whether the

auction winner or the auction loser sets the resale price.

(ii) When F1 6= F2, the revenues from the PBE of the FPA are strictly

higher when the auction winner sets the resale price.

Proof: (ii) The PBE of the FPA allocates the item according to the

function λs
F−12 F1

, if the auction winner sets the resale price, and λb
F−12 F1

, if

the auction loser sets it. According to Lemma 4 below, wherever the final

allocations differ, the PBE under the former bargaining procedure chooses

the bidder with higher (buyer-) virtual value as the eventual owner of the

item. Moreover, combined with Lemma A6.1 in Appendix 6, according to

which λs
F−12 F1

6= ψ, it also implies that the allocations do differ. (ii) then

follows from Myerson (1981). ||

Lemma 4: For all v in [c, d], if F1 (v) = F2 (v) then λb
F−12 F1

(v) =

λs
F−12 F1

(v) and if F1 (v) 6= F2 (v):

λb
F−12 F1

(v) < ( > )λs
F−12 F1

(v) if and only if λs
F−12 F1

(v) < ( > )ψ (v) .

Proof: See Appendix 6.
32In the uniform example of Footnote 18, we have, under ND: β1 (v) = β2 (dv) =

(1 + d) v/4, if v ≤ 2/ (1 + d); 1 − 1/ (v (1 + d)), if v ≥ 2/ (1 + d) (in the formula
similar to (3), the optimal resale price ρb

¡
F−11 (q) , F−12 (q)

¢
is the corner solution 1

when q > 2/ (1 + d)). The randomization procedure makes bidder 1 bid, under FD,
over [v/2, d/ (d+ 1)] according to: G1 (b|v1) = 1 − (v/2b)2/(d−1), if v/2 ≤ b ≤ 1/2;
1− v2/(d−1) {d+ 1− 1/ (1− b)} / (d− 1), if 1/2 ≤ b ≤ d/ (d+ 1).
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We now present assumptions under which the equilibrium revenues from

the SPA have the same range under both bargaining procedures. Assume

the auction winner sets the resale price. If there exists a nondecreasing

function ϕ∗ such that λsϕ∗ = ψ, then the PBE of the SPA constructed from a

strictly increasing and continuous function ϕ, with ϕ (c) = c and ϕ (d) = d,

that is close to ϕ∗ gives revenues close to the optimal revenues since its final

allocation λsϕ is close to ψ. Assumption As below, which extends Zheng

(2002)’s “Resale Monotonicity Assumption” to unranked hazard rates in the

two-bidder case, is adapted from Lebrun (2008) and guarantees the existence

of such a function ϕ∗. According to Assumption As, when the optimal

allocation is biased in favor of bidder 1, for example, for some value v, there

exists an intermediate allocation that is further biased in favor of this bidder

and is defined by a nondecreasing function such that, after receiving the item

at the intermediate stage, he offers ψ (v) as the resale-price.

Assumption As:

(i) The unique continuous function µs2 defined overC = {v ∈ [c, d] |ψ (v) ≥ v}
and such that µs2 (v) ≥ ψ (v) and ρs (v, µs2 (v)) = ψ (v), for all v in C, is non-

decreasing.

(ii) The unique continuous function µs1 defined overD = {v ∈ [c, d] |ψ (v) ≤ v}
and such that µs1 (v) ≥ ψ−1 (v) and ρs (µs1 (v) , v) = ψ−1 (v), for all v in D, is

nondecreasing.

The existence of the functions µs1, µ
s
2 as defined above comes from the

continuity and strict monotonicity of ρs. The function ϕ∗ can be constructed

as follows: ϕ∗ = µs2 over C and ϕ∗ = (µs1)
−1 over µ1 (D). Corollary 4 below

follows.

Corollary 4: Let the auction winner set the resale price and let As-

sumption As be satisfied. Then, for any incentive-compatible and individu-

ally rational mechanism that sells the item with probability one, there exist

PBE’s of the SPA that give either higher or arbitrarily close revenues.
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Assumption Ab, again adapted from Lebrun (2008), and Corollary 5 below

are relevant to the other bargaining procedure at resale33.

Assumption Ab: Let f1 (c) and f2 (c) be equal.

(i) The unique continuous function µb1 defined over C and such that

µb1 (v) ≤ ψ−1 (v) and ρb
¡
µb1 (v) , v

¢
= ψ−1 (v), for all v in C, is nondecreasing.

(ii) The unique continuous function µb2 defined over D and such that

µb2 (v) ≤ ψ (v) and ρb
¡
v, µb2 (v)

¢
= ψ (v), for all v in D, is nondecreasing.

Corollary 5: Let the auction loser set the resale price and let Assump-
tion Ab be satisfied. Then, for any incentive-compatible and individually ra-

tional mechanism that sells the item with probability one, there exist PBE’s

of the SPA that give either higher or arbitrarily close revenues.

6. (k1, k2)-Price Auctions.

For k in (0, 1), Güth and van Damme (1986) define the k-price auction,

or k-PA, as the auction where the highest bidder wins and pays the weighted

average of his bid and the second highest bid with respective weights k and

1− k. If k = 0, the k-PA is the SPA and if k = 1 it is the FPA. We further

extend the definition to allow discriminatory auction rules. In a (k1, k2)-price

auction, or (k1, k2)-PA, the auction price is computed with the weights k1 and

1− k1 when bidder 1 wins and k2 and 1− k2 when bidder 2 wins.

The analysis of the FPA easily extends to such (k1, k2)-PA’s, where k1, k2
belong to (0, 1]. For example, under FD, the FOC becomes, where x = s

33If f1 (c) > f2 (c), then ψ (c) > c and there exists no ϕ∗ such that λbϕ∗ = ψ. In fact,
if there existed such a function ϕ∗, one would have c ≤ (ϕ∗)−1 (v) = µb1 (v) ≤ ψ−1 (v), for
all v in E = {v ∈ [ψ (c) , d] |ψ (v) ≥ v}, and thus ϕ∗ (c) = ψ (c) > c. Consequently, bidder
2 with value ψ (c) > c would choose, as a buyer at resale, the price c when he believes
that bidder 1’s value is distributed over [c, d]. Since this resale price would never be
accepted, it would clearly not be optimal. In Assumption Ab, we rule out the inequality
f1 (c) > f2 (c) by assuming rather f1 (c) = f2 (c). Note that ϕ∗ should then be defined as¡
µb1
¢−1

over C and µb2 over D.
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if the auction winner sets the resale price or b if the auction loser sets the

resale price:

d

db
lnFi (αi (b))

1/kj =
1

ρx (α1 (b) , α2 (b))− b
, i, j = 1, 2, 6= j, (16)

which34 implies F 1/k2
1 (α1) = F

1/k1
2 (α2), or, equivalently:

α2β1 (v) = F−12
³
F1 (v)

k1/k2
´
.(17)

The equilibrium biding function are then:

βi (v) =

R Fi(v)1/kj
0

ρx
¡
F−11

¡
qk2
¢
, F−12

¡
qk1
¢¢

dq

Fi (v)
1/kj

, i, j = 1, 2, i 6= j.(18)

A theorem similar to Theorem 1 can be proved along the same lines. Our

randomization procedure produces a PBE under FD that is equivalent to the

PBE under ND.

From (17), the function ϕ that determines the post-auction allocation and

hence the function λxϕ that determines the final allocation depend only on

the ratio k1/k2. Consequently, all k-PA’s, where k1 = k2 = k, give the same

payoffs as the FPA. As another particular consequence, for all ς in (0, 1),

the (k1, k2)-PA and the (ςk1, ςk2)-PA give the same payoffs to the bidders

and the auctioneer as the SPA where the bidders follow the PBE that is

constructed from the function ϕ = F−12 F
k1/k2
1 . In Appendix 7, we prove

that, if ζ tends towards zero, the PBE of the (ςk1, ςk2)-PA tends towards

this payoff-equivalent PBE of the SPA.

7. N-Bidder Extensions

We extend the model to n bidders with values independently distributed

over [c, d] according to distributions F1, ..., Fn that satisfy the same assump-

34With the boundary condition β1 (d) = β2 (d).
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tions we made in the two-bidder model. In order to avoid the problem

of competing principals, we only consider the bargaining procedure where

the auction winner selects some bidders to take part in his “Myerson mecha-

nism,” that is, his optimal resale mechanism among all “transparent” (whose

rules can be applied independently of his private information) mechanisms

that forbid resale35.

7.1 EA

Consider the standard English auction, or EA, with irrevocable exit and

full information about the bidder’s activities, identities, and drop out prices36,

where the price starts rising from c. Assume that even the inactive bidders

observe the entire public history of the auction.

If, as it is customary, we interpret a bidder’s bid as the price at which

he exits the auction if the other bidder has not yet, all our PBE’s of the

SPA under FD with n = 2 bidders are also PBE’s of the EA. It is then

straightforward to construct a multiplicity of PBE’s with n > 2 bidders by

having all bidders follow the standard strategy—to drop out when the price

reaches one’s value—until all biders but two have dropped out. At this final

stage, when the price rises from the last drop out price w, the two remaining

bidders follow (if they have not previously deviated) one of our PBE’s when

the values are distributed over the truncated interval [w, d]37. The function

ϕw used to construct this PBE may depend on the drop out price w and also

on the entire previous public history.

The revised beliefs about the value of a bidder who dropped out before

the final stage are concentrated at his drop out price. From the random-

ization procedure, the virtual value of either of the two remaining bidders

conditional on his bid is at least equal to w and hence to the virtual value of

35In footnotes, we show that the auction winner, if able to commit, can implement this
mechanism even when further resale (among the auction losers) is allowed.
36Version (1) in Bikhchandani and Riley (1991).
37The (seller) virtual values remain strictly increasing after such a truncation.
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any bidder who dropped out earlier. Consequently, the auction winner, even

if he has previously deviated from his strategy, wants to include in his resale

mechanism only his opponent in the final stage. In particular, it is optimal

for any two remaining bidders who have not previously deviated to follow

the 2-bidder PBE38. In this final stage PBE, the equilibrium and hence the

optimal payoff of any bidder with value w is zero.

For a bidder’s deviation in a stage prior to the last stage to have an effect

on his payoff, it must either:

(i) make him active at the final stage while he is supposed to drop out

earlier;

or

(ii) make him drop out while he is supposed to be active in the last stage.

In (i) his actual value is not larger than the level w of the price at the

start of the final stage, following his deviation. The most he can obtain in

this final stage can then not exceed his optimal payoff if his value was equal

to this larger level. Since this optimal payoff is zero39, no such deviation is

profitable. In (ii), the deviation, since it brings him no payoff, cannot be

profitable. Consequently, such strategies and beliefs form a PBE.

7.2 FPA

Consider the subclass of models where:

(i) F1 = ... = Fn−1 = F ;

(ii) Fn = H with density h that is continuously differentiable over (c, d]

and such that h
H
is nondecreasing and the derivative of v − 1−H(v)

h(v)
is strictly

positive over (c, d];

38Since the bidders who have previously dropped out have smaller values than the two
remaining bidders’, the winner’s resale mechanism is robust to the existence of further
resale stages.
39He can obtain this optimal payoff by immediately dropping out.
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(iii) H/F is nondecreasing;

(iv) d
dv

H
F
(d) > 0.

(iii) is the assumption of reverse-hazard-rate stochastic dominance of H

—the distribution of bidder n’s value—over F—the common distribution of bid-

ders 1 to n−1’s values (from (i)): bidders 1 to n−1 are homogeneous “weak”
bidders, while bidder n is “strong.” From (ii), the reverse hazard rate of H is

nondecreasing, that is, H is logconvex. (iv) rules out the simple symmetric

case where F = H (and where the PBE is equivalent to the equilibrium with

no resale allowed).

Here, a PBE under the FD regime is obtained by applying the randomiza-

tion procedure to the PBE under a “partial disclosure,” or PD, regime, where

only the bids from bidders 1 to n− 1 are publicly disclosed. We look for a
pure PBE where bidders 1 to n− 1 follow the same bidding function β and

bidder n+ 1 follows a bidding function δ such that β ≥ δ; β (c) = δ (c) = c;

β (d) = δ (d); and the derivatives β0 and δ0 exist and are strictly positive over

(c, d]. Let α and γ be the inverses of β and δ. We denote ρ (v, w), with

v ≤ w, the optimal resale price ρs (v, w) defined as in (1) with F1 = F and

F2 = H and we denote r the function ρ (α, γ).

Assume bidder 1, for example, with value v1 wins with the bid b1 such

that γ (b1) > v1 and observes that bidder j with bid bj is the highest bidder

among bidders 2, ..., n − 1. If α (bj) ≤ v1, he offers to resell to bidder n at

the price ρ (v1, γ (b1))40. Otherwise, he implements his Myerson mechanism

by making sequential make-it-or-leave-it offers: first to bidder n at the price

ρ (α (bj) , γ (b1)), and, if bidder n refuses, next to bidder j at the price α (bj)41.

If profitable resale is possible, bidder n upon winning resells to the bidder

who has submitted the second highest bid b at the price α (b).

As we show in Appendix 8, the FOC’s can be written as the following

40This mechnaism is robust to further resale.
41If further resale is allowed, bidder 1 resells at the price α (bj)H (ρ (α (bj) , γ (b1))) +

ρ (α (bj) , γ (b1)) (H (γ (b1))−H (ρ (α (bj) , γ (b1)))) to bidder j, who will then offer to resell
to bidder n at the price ρ (α (bj) , γ (b1)).
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system of differential equations:

d

db
lnH (γ (b))

=
1

r (b)− b½
1− n− 2

n− 1
(α (b)− b)H (r (b)) + (r (b)− b) (H (γ (b))−H (r (b)))

(r (b)− b)H (γ (b))

¾
; (19)

d

db
lnF (α (b)) =

1

(n− 1) (r (b)− b)
.(20)

Moreover, these FOC’s, along with the boundary conditions β (c) = δ (c) =

c, β (d) = δ (d), the strict monotonicity of β, δ, and the inequality β ≥ δ are

sufficient for an equilibrium. We also show in Appendix 8 that bidder n

with value v is indifferent among all bids in [c, r−1 (v)].

Although the FOC’s are the same as in a common-value model42, the

literature on this model is less useful here, since it does not provide explicit

expressions for the equilibrium strategies43. It is rather the methods devel-

oped for the FPAwithout resale and with heterogeneous bidders that allow us

to prove Theorem 4 (i,ii) below. The proof in Appendix 9 of the existence

in (i) proceeds by studying the solution to the system (19,20) with initial

condition α (d) = γ (d) = η, where η is a parameter such that η < d and

which, when the inverses β, δ form a PBE, is the bidders’ common bid at d .

Because the system (properly rewritten) is locally Lipchitz at such an initial

condition, the standard theory of ordinary differential equations applies and

implies that any solution, where defined, is strictly monotonic, and such that
H(γ(b))
F (α(b))

is nondecreasing and α ≤ γ. Moreover, the functions α, γ and the

lower extremity b (η) of their largest definition interval are monotonic with

respect to η. We then prove that there exist some values η of the parameter

42Where the common value as a function of the signals is
ρ (max1≤i≤n−1 vi,max1≤i≤n vi).
43From (19,20), if the bid distributions were identical, F and H would be equal, which

is impossible by assumption (iv).
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such that b (η) > c and others such that b (η) < c. Finally, we show that

there exists an intermediate value of the parameter such that b (η) = c and,

the remaining sufficient condition for a PBE, α (c) = γ (c) = c is satisfied.

To this end, we rule out jumps, due to small decreases of η, of the graphs

of the functions α, γ from common points on the 45-degree line, where they

end up when b (η) > c, to points to the vertical of and away from (c, c).

To prove the uniqueness in (i), we transform in Appendix 9 the system

(19,20) into a differential system in ϕ = γβ and β. We then show that, if

there existed two PBE’s, the function ϕ that would correspond to the higher

value of the parameter η would be smaller. Then, the value β (d), through its

positive relation with ϕ (obtained by integrating (20)) would also be smaller,

which would contradict the initial condition β (d) = η.

In Appendix 8, we also prove Theorem 4 (iii). The randomization pro-

cedure constructs an “equivalent” behavioral bidding strategy for bidder n

and keeps the other bidders’ bidding strategies unchanged. Under FD, af-

ter bidder 1, for example, with value v1 wins and observes that bidder n’s

bn is the second highest bid, he offers to resell to bidder n at the price

max (r (bn) , r (β (v1)))
44. If bidder j, 2 ≤ j ≤ n − 1, has submitted the

second highest bid bj with α (bj) > v1 bidder 1 (who must have deviated

from his biding strategy) offers to resell first to bidder n at the price r (bj),

and, if the offer is rejected, to bidder j at the price α (bj)45. If α (bj) < v1,

bidder 1 offers to resell to bidder n at the price r (β (v1)).

Theorem 4:
(i) (existence and uniqueness under PD): Under PD, there exists one

and only one PBE where the bidding functions β, δ are strictly increasing,

44Bidder 1 does not include the other bidders in his optimal mechanism because, ac-
cording to the randomization procedure, bidder n’s virtual value conditional on bn is at
least equal to α (bn) and hence to the other bidders’ values. This mechanism is robust to
further resale.
45When further resale is allowed, the implementation of the optimal mechanism is similar

to the one in Footnote 41.
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such that β (c) = δ (c) = c, β (d) = δ (d), β ≥ δ, and their inverses α, γ

satisfy (19,20).

(ii) (stochastically larger bid from the strong bidder): At the PBE in

(i), H(γ(b))
F (α(b))

is nondecreasing over (c, d].

(iii) (PBE under FD) The randomization procedure applied to the PBE

in (i) produces an equivalent PBE under FD.

Proof: See Appendices 8 and 9.

The revenue comparisons in Corollary 2 also extend46. Let the function

ψ be defined as in (15) with F and H instead of F1 and F2 and let it be

differentiable at d. At a PBE with bidding functions β, δ as in Theorem 4,

the eventual owner of the item is either the bidder with the highest value

among bidders 1 to n − 1 or bidder n, depending on whether vn is smaller
or larger than λ (max1i≤n−1 vi) = ρ (max1i≤n−1 vi, ϕ (max1i≤n−1 vi)), where

ϕ = γβ. Since λ (max1i≤n−1 vi) ≥ max1i≤n−1 vi, the eventual owner is always
among the two bidders with the highest values and is hence present at the

last stage of the EA in all the PBE’s from the previous subsection. In

particular, the PBE where the function ϕw that defines the strategies at the

last stage approximates ψ over [w, d] if bidder n is one of the two remaining

bidders and is the identity function otherwise brings more revenues47. On

the other hand, a PBE constructed from a function ϕw that approximates a

function further away from ψ than ϕ is brings less revenues48.

8. Relations with the Literature
46To prove this extension, contrary to Theorem 4, we use our assumption of strict

monotonicity of v − 1−F (v)
f(v) .

47In fact, λ is different from ψ in every neighborhood of d since, from (19) and (20),
ϕ0 (d) = f(d)

h(d) , which is strictly smaller than 1 by our assumption (iv), and hence, from the

definitions of ψ and λ, λ0 (d) = 1+ϕ0(d)
2 < 1 = ψ0 (d).

48So also does the “extreme” PBE, where the two last remaining bidders follow an
extreme PBE as in Subsection 3.4, and where the auction price is then the third highest
value.
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The common-value methods for the SPAwere introduced and used byMil-

grom (1981), Bikhchandani (1988), Bikhchandani and Riley (1991), Klem-

perer (1998), and Bulow et al (1999). In a common-value model, Mares

(2005) obtains the optimal mechanism as an equilibrium of the SPA, which

he selects among the multiplicity of equilibria of the SPA49. In a common-

value model with two bidders and affiliated signals, Parreiras (2006) selects,

among the infinity of equilibria of the SPA, the equilibrium that is the limit

of equilibria of k-price auctions, as k tends towards zero50. The FPA with

common value is studied in Wilson (1969, 1977), Ortega-Reichert (1968),

Rothkopf (1969), Reece (1978), Milgrom (1979 a, b), Milgrom and Weber

(1982 a); and symmetry (of at least some degree) at the equilibrium of asym-

metric common-value FPA’s was encountered in Wilson (1967), Engelbrecht-

Wiggans et al (1983), Hendricks and Porter (1988), Hendricks et al (1994),

Campo et al (2003), Parreiras (2006), and Cheng and Tan (2008). The

model of common value is a special case of the model of affiliation Milgrom

and Weber (1982 b) introduced.

While resale brings an endogeneous positive externality, auctions with

exogenous externalities are investigated in Jehiel et al (1996, 1999), Jehiel

and Moldovanu (2000), and Das Varma (2002). Kamien et al (1989) con-

sider, in a complete information model, Bertrand duopolists who compete for

a contract and bargain, under the same procedures as in the present paper,

for the terms of the subcontract.

Bikhchandani and Huang (1989) consider a common-value model with

affiliated signals where the bidders are speculators who resell the item to

final consumers with no private information. They and, in a more general

model, Haile (1999) show that signalling during the SPA may prevent the

49If we applied Mares (2005)’s selection criterion to our model, we would obtain the
revenue-superiority of the SPA over the FPA when the bidders are heterogeneous.
50If we applied this selection criterion to our model, we would obtain revenue-equivalence

between the SPA and the FPA. Parreiras (2006) obtains the revenue-superiority of the
SPA because the signals in his model are strictly affiliated, while here the values are
independently distributed.
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existence of a separating equilibrium under FD. Signalling at auctions also

appeared in Ortega-Reichert (1968), Hausch (1986), Whaerer (1999), Goeree

(2002), and Katzman and Rhodes-Kropf (2002). The ratchet effect is the

cause of the nonexistence of a separating equilibrium of the FPA in Whaerer

(1999), where the auctioneer and the auction winner engage in bargaining.

Under complete information throughout, Milgrom (1987), Campos e Cunha

and Santos (1995), and Gale et al (2000) study resale in auctions. Ausubel

and Cramton (1999) assume the post-auction resale to be efficient. In Haile

(2000, 2001, 2003), bidders are uncertain about their own values. Haile

(2000, 2001) assumes the values become public knowledge before resale.

Haile (2003) considers the case where only the private uncertainty is lifted

before resale and obtains expressions for the equilibria, conditional on their

existence. Haile (2003) goes on to compare different auction formats and

bargaining procedures at resale.

Gupta and Lebrun (1999) also assume that information becomes com-

plete before resale and consider arbitrary exogeneous resale-price functions.

Through the net values for winning, their model reduces to a common-value

model. Due to the incomplete information at resale, the model of the present

paper is not equivalent to such a model.

Cheng and Tan (2008) appeal to Hafalir and Krishna (2008)’s character-

ization of the equilibrium of the FPA with resale under ND and note that

its bidding strategies form an equilibrium of a common-value model. In the

present paper, we isolate (in Lemmas 1 and 3) the properties that our model

shares with the common-value model and use them to prove our results,

including explicit characterizations of PBE’s under both disclosure regimes.

Garratt and Tröger (2006a) add to the bidders of a symmetric model

one “speculator,” whose has no consumption value for the item, and allow

for discounting. They describe an infinite class of PBE’s of the SPA and

one PBE of the FPA. The results for the SPA are extended in Garratt

et al (2006b) to the two-bidder case where all biders have strictly positive
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values (they also describe n “extreme” PBE’s in the n-bidder case). Garratt

et al (2008) construct correlated equilibria of the EA with n bidders that

dominate, from the bidders’ point of view, the truth-bidding equilibrium.

Bose and Deltas (2002, 2004) show the presence of a winner’s curse in

auctions between one final consumer and several speculators who are not

allowed to use the information from the auction. Pagnozzi (2007 a) shows

that resale may occur at the equilibrium of a SPA that awards a project with

random cost to one of two heterogenous bidders, one with limited liability and

none with private information. Pagnozzi (2007 b) studies the effects of resale

in a multi-unit auction when bidders have flat demands and information is

complete.

Our model is closest to the model of Krishna (Chapter 4, 2005) and

Hafalir and Krishna (2007, 2008), where resale follows an auction between

two bidders with independent values that remain private. Krishna (Chapter

4, 2005) shows that, if the average values differ across bidders, there exists no

pure PBE of the FPA under FD that results in an efficient final allocation.

Hafalir and Krishna (2007, 2008) focus on the ND regime. Hafalir and

Krishna (2008) obtain the same unique pure PBE’s of the FPA we obtain

for the two bargaining procedures at resale under this regime51. They show

that, if the bidders are heterogeneous, the equilibrium of the FPA gives higher

expected revenues than the truth-bidding equilibrium of the SPA. For classes

of value distributions for which the equilibria of the FPA without resale can

be characterized explicitly, Hafalir and Krishna (2007) compares the FPA’s

with and without resale.

Zheng (2002), in the standard independent-private-value model with n

bidders, and Calzolari and Pavan (2006), in a discrete two-bidder model,

51In addition to the two ultimatum procedures Hafalir and Krishna (2008) consider
“probabilistic” procedures, where the resale-price maker is chosen at random according to
exogeneous probabilities. From our Corollary 3, the auctioneer’s revenues are increasing
in the probability with which the auction winner is the resale-price maker.
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design optimal mechanisms when resale is possible52.

9. Conclusion

In the independent private value with 2 bidders, we gave explicit formu-

las for PBE’s of the FPA, SPA, and EA with resale under the ND and FD

regimes. We proved our results by using three key properties our model

shares with the common-value model. We designed the randomization pro-

cedure, which allows to circumvents the ratchet effect by constructing, for

each pure PBE under ND, an equivalent behavioral PBE under FD. We com-

pared the auctioneer’s revenues across auctions and bargaining procedures

at resale. We finally extended some of our results to n-bidder models.

Appendix 1

Lemma A1: For all bi ≥ c and vi in [c, d], the function eusi (vj) =
usi
¡
vi, vj; bi, βj (vj)

¢
of vj is continuous at vj = αj (bi) and almost all other

vj in [c, d].

Proof: From the definition of usi and the continuity of ρ
s and αi, eusi

is continuous at vj if vj 6= ρsi (vi,max (vi, αj (bi))). Assume vj is such that

vj = αj (bi) and vj = ρsi (vi,max (vi, αj (bi))). Then, vj = vi. Since the

function eusi always lies between vi and vj, it is continuous if vj = vi and

Lemma A1 follows. ||

Proof of Lemma 2: (i): Through the change of variables wj = αj (bi),

(8) implies

wj ∈ arg max
w0j∈[c,d]

Z wj

c

usi
¡
vi, vj;βj

¡
w0j
¢
, βj (vj)

¢
dFj (vj) , (A1.1)

for all wj in [c, d]. For all w0j in [c, d], the objective function in (A1.1), as an

integral, is absolutely continuous with respect to wj. From Lemma A1 and

52Here, we focus on how resale changes particular auction procedures.
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the continuity of fj, the integrand is continuous with respect to vj almost

everywhere in [c, d]. Consequently, the derivative of the objective function

at wj exists and is equal to usi
¡
vi, wj;βj

¡
w0j
¢
, βj (wj)

¢
fj (wj), for almost all

wj in [c, d]. Since usi and fj are bounded, the assumptions of a variant53 of

Theorem 2 in Milgrom and Segal (2002) are satisfied. From this variant and

the change of variables wj = αj (bi), (i) follows for all bi in
£
c, βj (d)

¤
.

(8) implies that the objective function is constant with respect to b0i and

bi in
£
βj (d) ,+∞

¢
. (i) then follows.

(ii): (ii) follows from (5, 6) and ρs (α1 (b) , α2 (b)) ≤ max (α1 (b) , α2 (b)).
(iii): usi (vi, αj (b) ; b, b) is, from (5-7), equal to ρsi (vi, αj (b)) if vi < αj (b),

to αj (b) if vi = αj (b), and to min
¡
vi, ρ

s
j (αj (b) ,max (αj (b) , αi (b)))

¢
if vi >

αj (b). (iii) follows. ||
Proof of Corollary 1: (i) Assume, for example, that bidder 2 is less

aggressive at v, that is, β1 (v) > β2 (v), or, equivalently, ϕ (v) > v (the proof

is similar in the other case). Since bidder 2 with value v wins the auction

only if bidder 1’s value is smaller than v, no trade occurs after bidder 2

wins. Let b be a bid in (β1(ϕ
− (v)), r−1 (v)). Then, α1 (b) < α2 (b) and

r (b) < min (v, α2 (b)).

By continuity, for all v1 in a neighborhood of α1 (b), ρs (v1, α2 (β1 (v1))) is

smaller than v and α2 (b) and hence is equal to both net values us2 (v, v1;β1 (v1) , β1 (v1))

and us2 (α2 (b) , v1;β1 (v1) , β1 (v1)). Consequently, from (9) and (10), the

first-order effect54 of a bid change from b on bidder 2’s expected payoff when

his value is v is the same as when his value is α2 (b). From the optimality

of b for this latter value, this first-order effect vanishes at b. Since this is

53This is the variant (which can be proved as Theorem 2 in Milgrom and Segal 2002
from their Theorem 1) where the requirement that f (x, .) be differentiable for all x ∈ X
is replaced by the requirement that f (x∗ (t) , .) be differentiable, for any selection x∗ (.) ∈
X∗ (.) and almost all t ∈ (0, 1).
54From (9) and Lemma 1 (iii), the derivative with respect to α1 (b) of bidder

2’s expected payoff in the SPA is (us2 (v, α1 (b) ; b, b)− b) f1 (α1 (b)), which is equal to
(r (b)− b) f1 (α1 (b)) in a neighborhod of b. From (10) and Lemma 1 (iii), the derivative
with respect to b of the expected payoff in the FPA is (us2 (v, α1 (b) ; b, b)− b) d

dbF1 (α1 (b))−
F1 (α1 (b)), equal to (r (b)− b) d

dbF1 (α1 (b))− F1 (α1 (b)) in a neighborhood of b.
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true for all b in the interval (β1(ϕ
− (v)), r−1 (v)), bidder 2’s expected payoff

must be constant over the closure of this interval. Because it contains the

equilibrium bid β2 (v), all its elements are optimal bids.

(ii) For example, assume ϕ (v1) ≥ v1 (the proof is similar for the reversed

inequality). From the definitions of ϕ and λsϕ, λ
s
ϕ (v1) ≤ ϕ (v1) = α2β1 (v1).

If v2 < λsϕ (v1), bidder 2 loses the auction and refuses bidder 1’s resale offer.

If λsϕ (v1) < v2 < ϕ (v1), bidder 2 loses the auction and accepts bidder 1’s

resale offer. If ϕ (v1) < v2, bidder 2 wins the auction and no mutually

advantageous resale is possible. ||
Appendix 2

Lemma A2: ∂l
∂vi

ρs (v, v) = 1
2
, for all v in (c, d].

Proof: Let v1, v2 be such that c < vi < vj ≤ d, with i 6= j. Subtracting

the definition (1) of ρs (v1, v2) from vj and dividing by vj − vi, we find:

1 =
vj − ρs (v1, v2)

vj − vi

µ
1 +

1

fj (ρs (v1, v2))

Fj(vj)− Fj(ρ
s (v1, v2))

vj − ρs (v1, v2)

¶
.

From the continuity of fj at vj and the continuity of ρs, fj (ρs (v1, v2)) tends

towards fj(vj), when vi tends towards vj from below. Since the derivative of

Fj at vj is equal to fj (vj), the limit of the ratio
Fj(vj)−Fj(ρs(v1,v2))

vj−ρs(v1,v2) is equal to

fj (vj). Consequently, the factor between parentheses in the equation above

tends towards 2 and the lemma follows. ||
Proof of Lemma 2: (i) Since the sets of bj’s for which the formu-

las in C1-C2 apply are Borel sets and since C1 obviously defines a distri-

bution, we only have to prove that the formula in C2 defines a probabil-

ity distribution, that is, that exp
R vj
r(bj)

dw
αir−1(w)−w is nonincreasing in vj over

[r (bj) , ϕ
+ (αj (bj))] and is equal to zero at vj = ϕ+ (αj (bj)), for all bj such

that αj (bj) > αi (bj). The first result follows from the strict negativity of

αir
−1 (w) − w, which itself follows from the strict inequality αi (w) < r (w)

over
£
βj (ϕ

− (αj (bj))) , βj (ϕ
+ (αj (bj)))

¤
. Only the second result, which is

equivalent to
R ϕ+(αj(bj))
r(bj)

dw
αir−1(w)−w = −∞, remains to be proved.
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Since, as it is well known,
R ϕ+(αj(bj))
r(bj)

dw
ϕ+(αj(bj))−w = +∞, it suffices to prove

that ϕ+(αj(bj))−w
ϕ+(αj(bj))−αir−1(w) , which is equal to 1/

³
w−αir−1(w)
ϕ+(αj(bj))−w + 1

´
, is bounded

away from zero. Through a change of variables, this is equivalent to prov-

ing that ϕ+(αj(bj))−rβi(w)
ϕ+(αj(bj))−w is bounded away from zero when w tends towards

ϕ+ (αj (bj)) from below.

This last ratio is equal to the sum of the nonnegative ratio
ρsi(w,ϕ+(αj(bj)))−ρsi (w,αjβi(w))

ϕ+(αj(bj))−w

and the ratio
ϕ+(αj(bj))−ρsi(w,ϕ+(αj(bj)))

ϕ+(αj(bj))−w . From Lemma A2 above, the latter

ratio tends towards 1
2
as w tends towards ϕ+ (αj (bj)). Consequently, the

sum is bounded away from zero and C2 defines a probability distribution55.

From C2, the derivative with respect to vj of the function Fj (vj|bj) is
equal to 1

vj−αir−1(vj) exp
R vj
r(bj)

dw
αir−1(w)−w , for all vj in [r (bj) , ϕ

+ (αj (bj))). It

is bounded in any closed subinterval of this semiopen interval. Moreover,

we have already proved that Fj (vj|bj) is continuous at the upper extremity
ϕ+ (αj (bj)) (where it is equal to 1). Consequently, it is absolutely continu-

ous.

(ii) Let F ∗j be the marginal distribution of values of the joint distribution
of values and bids obtained from the marginal distribution Fjαj of bids and

the conditional distribution Fj (.|.) of values on bids, defined, in C1-C2. We
want to prove F ∗j = Fj.

If βj (vj) ≥ βi (vj), then Fj (vj|bj) = 1, for all bj ≤ βj (vj), and Fj (vj|bj) =
0, for all bj > βj (vj). From C1, these equalities are immediate if αj (bj) ≤
αi (bj). Assume bj ≤ βj (vj) or, equivalently, αj (bj) ≤ vj, and αj (bj) >

αi (bj), which implies βi (αj (bj)) > βj (αj (bj)) (bidder i is more aggressive

at αj (bj)). Consequently, ϕ+ (αj (bj)) ≤ vj. From C2, Fj (vj|bj) = 1. If

bj > βj (vj), then bj > βi (vj) and αi (bj) > vj. If, moreover, αj (bj) > αi (bj),

we have r (bj) > αi (bj) > vj. C2 again then implies Fj (vj|bj) = 0. Conse-
quently, F ∗j (vj) = Fjαj

¡
βj (vj)

¢
= Fj (vj).

Assume next βj (vj) < βi (vj). From C2, if vj ≤ r (bj) and αj (bj) <

55The proof for the other bargaining procedure (see Section 4) is similar and makes use
of ∂r

∂vj
ρbj (ϕ

− (αi (bi)) , ϕ− (αi (bi))) = 1
2 .
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ϕ+ (vj), then Fj (vj|bj) = 0. The previous paragraph and βi (ϕ
+ (vj)) =

βj (ϕ
+ (vj)) imply Fj (vj|bj) = Fj (ϕ

+ (vj) |bj) = 0, for all bj > βj (ϕ
+ (vj)).

Consequently,

F ∗j (vj) =
Z
[c,r−1(vj)]

Fj (vj|bj) dFjαj (bj) .

The previous paragraph and βi (ϕ
− (vj)) = βj (ϕ

− (vj)) imply Fj (vj|bj) = 1,
for all b ≤ ϕ− (vj) and hence:

F ∗j (vj)− Fj

¡
ϕ− (vj)

¢
=

Z
[ϕ−(vj),r−1(vj)]

Fj (vj|bj) dFjαj (bj) .(A2.1)

From (i), the derivative with respect to vj of Fj (vj|bj) inside the integral
in (A2.1) is not larger than 1

vj−αir−1(vj) , which is bounded in a neighborhood

of vj (since rβj (vj) > vj). Consequently, F ∗j is differentiable at vj and the

derivative can be taken under the integral sign, that is:

d

dvj
F ∗j (vj) =

Z
[ϕ−(vj),r−1(vj)]

d

dvj
Fj (vj|bj) dFjαj (bj) .(A2.2)

Again from (i), d
dvj

Fj (vj|bj) in (A2.2) is equal to 1
vj−αir−1(vj) exp

R vj
r(bj)

dw
αir−1(w)−w ,

which is also equal to 1
vj−αir−1(vj) (1− Fj (vj|bj)). As a consequence,

Fj (vj|bj) +
¡
vj − αir

−1 (vj)
¢ d

dvj
Fj (vj|bj) = 1.(A2.3)

Integrating (A2.3) with respect to bj according to Fjαj over [ϕ− (vj) , r−1 (vj)]

and using (A2.1) and (A2.2), we find:

F ∗j (vj) +
¡
vj − αir

−1 (vj)
¢ d

dvj
F ∗j (vj|bj) = Fjαjr

−1 (vj) .(A2.4)
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By definition of r, we have vj = ρsi (αir
−1 (vj) , αjr

−1 (vj)) and hence:

Fj (vj) +
¡
vj − αir

−1 (vj)
¢ d

dvj
Fj (vj|bj) = Fjαjr

−1 (vj) .(A2.5)

Subtracting (A2.5) from (A2.4), we find:

d

dvj

¡
F ∗j (wj)− Fj (wj)

¢
=

Fj (wj)− F ∗j (wj)

wj − αir−1 (wj)
,(A2.6)

at wj = vj. Since βi (wj) > βj (wj) and thus rβi (wj) > wj, for all wj in

(ϕ− (vj) , ϕ+ (vj)), the equality (A2.6) holds true everywhere in this interval.

From (A2.1), we have:

F ∗j
¡
ϕ− (vj)

¢
= Fj

¡
ϕ− (vj)

¢
. (A2.7)

Suppose F ∗j (vj)−Fj (vj) > 0. Then, from (A2.6), d
dvj

¡
F ∗j (wj)− Fj (wj)

¢
would be strictly negative everywhere in (ϕ− (vj) , vj) and, since the cumula-

tive functions are continuous from the right, F ∗j (ϕ
− (vj)) − Fj (ϕ

− (vj)) >

F ∗j (vj) − Fj (vj) > 0, which contradicts (A2.7). The strict inequality

F ∗j (vj)− Fj (vj) > 0 is similarly impossible. The equality F ∗j (vj) = Fj (vj)

follows.

(iii) Let emj be the distributional strategy from (ii). Its support S is the

closure of
©
(vj, bj) ∈ [c, d]×

£
c, βj (d)

¤ |vj belongs to the support of Fj (.|bj)
ª
.

From C1-C2, S is then as follows56:

S =

⎧⎪⎨⎪⎩
(vj, bj) ∈ [c, d]×

£
c, βj (d)

¤ |
bj = βj (vj) if βj (vj) > βi (vj) ;

and bj ∈
£
βj
¡
ϕ−
¡
v−j
¢¢

, r−1 (vj)
¤
if βj (vj) ≤ βi (vj)

⎫⎪⎬⎪⎭ (A2.8)
56S is also

⎧⎪⎨⎪⎩
(vj , bj) ∈ [c, d]×

£
c, βj (d)

¤ |
vj = αj (bj) if αj (bj) < αi (bj) ;

and vj ∈
h
r (bj) , ϕ

+
³
αj (bj)

+
´i

if αj (bj) ≥ αi (bj)

⎫⎪⎬⎪⎭, where ϕ+ (v+)
is the right-hand limit limw→>v ϕ

+ (w) and is equal to inf {w ∈ {d} ∪ (v, d] |ϕ (w) = w}.

49



, where ϕ− (v−) is the left-hand limit limw→<v ϕ
− (w) and is equal to sup

(
w ∈ {c} ∪ [c, v) |

ϕ (w) = w

)
.

Notice that, when βj (vj) = βi (vj), r
−1 (vj) = βj (vj).

Let eGj (.|.) be one of the regular conditional distributions such that, for all
vj, the support of eGj (.|vj) is included in the section at vj of the support S ofemj (such a conditional can be obtained by changing any conditional at all vj
in a measurable set of Fj-measure zero). We show that eGj (.|vj) = Gj (.|vj),
for Fj-almost all vj or, since Fj is absolutely continuous (with respect to the

Lebesgue measure), for almost all vj. Since ϕ− is nondecreasing, and hence

has at most a countable number of discontinuities, we may assume that ϕ−

is continuous at vj, that is, in particular, ϕ− (vj) = ϕ (vj).

Assume vj in (c, d) is such that βj (vj) ≥ βi (vj). From (A2.8), eGj (.|vj)
is concentrated at βj (vj) if βj (vj) > βi (vj). This is also the case if

βj (vj) = βi (vj), since then r−1 (vj) = βj
¡
ϕ−
¡
v−j
¢¢
= βj (ϕ

− (vj)) (since

vj is a continuity point of ϕ−) and βj (ϕ
− (vj)) = βj (vj). From B1, eGj (.|vj)

is equal to Gj (.|vj).
Assume next vj in (c, d) is such that βj (vj) < βi (vj) and let wj be in

(ϕ− (vj) , ϕ+ (vj)). From βj (wj) < βi (wj) and ϕ− (wj) = ϕ− (vj), the section

at wj of S is
£
βj (ϕ

− (vj)) , r−1 (wj)
¤
. From (i), Fj (.|bj) is absolutely continu-

ous, for all bj in
¡
βj (ϕ

− (vj)) , r−1 (wj)
¢
. Consequently, 1− eGj (b|wj) is equal

to
R
(b,r−1(wj))

fj (wj|bj) dFjαj (bj) /fj (wj), for all b in
¡
βj (ϕ

− (vj)) , r−1 (wj)
¢

and Fj-almost all wj in (ϕ− (vj) , ϕ+ (vj)). Substituting its value from (i)

to the density function fj (wj|bj), we find, from B2., eGj (b|wj) = Gj (b|wj).

Since the expression (13) is obviously equal to 1 (and continuous from the

left) at b = r−1 (wj) and is continuous from the right (the exponential is

not larger than 1) at b = βj (ϕ
− (vj)), this equality holds true for all b in£

βj (ϕ
− (vj)) , r−1 (vj)

¤
.

There remains to prove that (13) defines a probability distribution over

the specified support for all vj that satisfies the condition of B2. Since the

exponential is nonnegative, the expression (13) is obviously nondecreasing
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over
£
βj (ϕ

− (vj)) , r−1 (vj)
¤
. We have already noticed that it is equal to 1 at

the upper extremity of the specified support. Consequently, we only have to

prove that it is nonnegative at βj (ϕ
− (vj)). However, we have already proved

that (13) defines a probability distribution (since it is equal to eGj (.|wj))

and hence that (13) is nonnegative at βj (ϕ
− (vj)), for Fj-almost all wj in¡

βj (ϕ
− (vj)) , r−1 (vj)

¢
. Since (13) is continuous over this interval, its value

at βj (ϕ
− (vj)) must be nonnegative everywhere over it and, in particular, at

vj.

(iv) From C1, under the assumption of RS1 the distribution Fj (.|bj) is
degenerate at αj (bj). If vi < αj (bj), bidder i appropriates all the gains

from trade by setting the resale price at αj (bj). If wj < vi, no mutually

profitable resale exists and any price that results in no resale, such as vi, is

optimal. If βj (vi) ≤ βi (vi), we have vi ≤ αjβi (vi) and hence r (βi (vi)) =

ρsi (vi, αjβi (vi)) ≥ vi. The definition in RS1 then gives optimal resale prices

when βj (vi) > βi (vi) and when βj (vi) ≤ βi (vi) and r (βi (vi)) ≤ αj (bj).

If βj (vj) = βi (vi), we have r (βi (vi)) = vi and RS1 defines optimal resale

prices.

Assume βj (vi) < βi (vi), that is, bidder i is more aggressive at vi. The

case that is left to examine in RS1 is αj (bj) < r (βi (vi)). In this case,

αj (bj) < αjβi (vi) ≤ αjβi (ϕ
+ (vi)) = ϕ+ (vi). Since αj (bj) ≤ αi (bj) and

then βi (αj (bj)) ≤ bj = βj (αj (bj)), we have αj (bj) ≤ ϕ− (vi) ≤ vi. No

profitable resale is possible and r (βi (vi)) is optimal.

FromC2, under the assumption of RS2, Fj (wj|bj) is equal to 1−exp
R vj
r(bj)

dw
αir−1(w)−w

over its support [r (bj) , ϕ+ (αj (bj))]. Computing the “conditional virtual

value,” the virtual value for this conditional distribution, we find, using (i):

wj − 1− Fj (wj|bj)
fj (wj|bj)

= αir
−1 (wj) ,

for all wj in (r (bj) , ϕ+ (αj (bj))).
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If βj (vi) ≤ βi (vi), δi (vi; bj) = max (r (βi (vi)) , r (bj)) is at least equal to

vi since r (bj) ≥ vi. Consequently, it is optimal when there is no gain from

trade. We may then assume that there exist positive gains from resale, that

is, vi < ϕ+ (αj (bj)). The virtual conditional value at wj is larger than vi if

and only if wj > max (r (βi (vi)) , r (bj)), and δi (vi; bj) is the unique optimal

resale price.

Lastly, since max (vi, r (bj)) ≥ vi, in order to prove the optimality of

δi (vi; bj) in RS2 when βj (vi) > βi (vi) (bidder j is more aggressive at vi)

we may also assume that gains from resale are possible, that is, that vi <

ϕ+ (αj (bj)). In RS2, αj (bj) > αi (bj) and hence βi (vj) > bj ≥ βj (vj),

for all vj in (αi (bj) , αj (bj)], that is, bidder i is more aggressive over this

interval. Consequently, vi < ϕ− (αj (bj)) ≤ αi (bj) ≤ r (bj) and, for all wj in

(r (bj) , ϕ
+ (αj (bj))),

vi < αi (bj)

≤ αir
−1 (wj) .

Consequently, max (vi, r (bj)) = r (bj) is the unique optimal resale price.

(v) Assume first βj (vi) ≤ βi (vi). From B1, Gi (.|vi) is concentrated
at βi (vi) and hence bj ≤ βi (vi). Then, δi (vi; bj) = r (βi (vi)) is immediate

in RS2. It is also immediate in RS1 when βj (vi) = βi (vi), since then

bj ≤ βi (vi) implies αj (bj) ≤ vi = r (βi (vi)). Under the assumption of

RS1, assume βj (vi) < βi (vi), that is, bidder i is more aggressive at vi.

From bj ≤ βi (vi), we have αi (bj) ≤ vi and hence αj (bj) ≤ vi. Moreover,

αj (bj) ≤ αi (bj) implies βi (αj (bj)) ≤ bj = βj (αj (bj)). Consequently,

αj (bj) ≤ ϕ− (αj (bj)) = r (βi (ϕ
− (αj (bj)))) ≤ r (βi (vi)). The formula in

RS1 then also gives δi (vi; bj) = r (βi (vi)).

Assume next βj (vi) > βi (vi), which implies αiβj (vi) > vi and vi <

r
¡
βj (vi)

¢
= ρsi

¡
αiβj (vi) , vi

¢
, or, equivalently, αjr

−1 (vi) < vi. From B2,

the maximum of the support of Gi (.|vi) is r−1 (vi) and hence bj ≤ r−1 (vi).
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Consequently, αj (bj) ≤ αjr
−1 (vi) < vi and the formula in RS1 implies

δi (vi; bj) = vi. The inequality bj ≤ r−1 (vi) immediately implies that the

formula in RS2 also gives δi (vi; bj) = vi. ||
Proof of Lemma 3: (i) From Lemma 2 (v), the resale price and hence

the net value of the auction loser do not depend on his bid. (i.1) follows,

which immediately implies (i.2).

(ii) If αj (b) ≥ αi (b), after bidder i with value vi = αi (b) wins a tie at b,

he demands at resale δi (αi (b) ; b) = r (βi (αi (b))) = r (b) (from Lemma 2 (ii)

and βj (αi (b)) ≤ b = βi (αi (b))). From C1-C2, r (b) is the minimum of the

support of the conditional distribution Fj (vj|b). Therefore, bidder j accepts
this resale price with probability one and both bidders’ net values are equal

to r (b).

(iii) From the definition of the net utility and, in RS1-RS2, of δi (vi; bj),R
usi (vi, vj; b, b) dFj (vj|b) is equal to:
(a) If αj (b) > αi (b):

(a.1) If vi ≤ αi (b): r (b).

(a.2) If αi (b) < vi ≤ r (b): viFi (r (βi (vi)) |b)+r (βi (vi)) (1− Fi (r (βi (vi)) |b)).
(a.3) If r (b) < vi < ϕ+ (αj (b)):

R vi
r(b)

vjdFj (vj|b)+vi (Fj (r (βi (vi)) |b)− Fj (vi|b))+
r (βi (vi)) (1− Fj (r (βi (vi)) |b)).

(a.4) If ϕ+ (αj (b)) ≤ vi:
R
vjdFj (vj|b).

(b) If αj (b) < αi (b):

(b.1) If vi ≤ αj (b): αj (b).

(b.2) If αj (b) < vi < r (b): vi
(b.3) If r (b) ≤ vi : r (b).

(c) If αj (b) = αi (b): αj (b).

Within the domains above, the expected net utility is a nondecreasing

function of vi. The expression in (a.3) is the value of the maximization

problem below:

max
p

Z vi

r(b)

vjdFj (vj|b) + vi (Fj (p|b)− Fj (vi|b)) + p (1− Fj (p|b)) ,
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whose solution is r (βi (vi)) ≥ vi. It is then also equal to the value of the

different maximization problem below:

max
p≥vi

½Z p

r(b)

min (vj, vi) dFj (vj|b) + p (1− Fj (p|b))
¾
.

In fact, the two objectives functions coincide for p ≥ vi and the latter ob-

jective function is not larger than the former for p < vi. Since the latter

objective function is nondecreasing in vi, for all p, so is the value of the

problem. The proof for (a.2) is similar (and simpler).

Moreover, the expressions above coincide at the boundaries of the dif-

ferent domains. The net expected utility is continuous in vi and hence

nondecreasing in vi everywhere.

Reorganizing the different expressions above with respect to b, we find,

when βj (vi) 6= βi (vi), the values below for
R
usi (vi, vj; b, b) dFj (vj|b):

(I) If b ≤ βi (ϕ
− (vi)):

(I.1) If αi (b) < αj (b):
R
vjdFj (vj|b).

(I.2) If αi (b) ≥ αj (b): r (b).

(II) When βj (vi) < βi (vi):

(II.1) If βi (ϕ
− (vi)) < b ≤ r−1 (vi):

R vi
r(b)

vjdFj (vj|b)+vi (Fj (r (βi (vi)) |b)− Fj (vi|b))+
r (βi (vi)) (1− Fj (r (βi (vi)) |b)).

(II.2) If r−1 (vi) < b < βi (vi): viFj (r (βi (vi)) |b)+r (βi (vi)) (1− Fj (r (βi (vi)) |b)).
(II.3) If βi (vi) ≤ b ≤ βi (ϕ

+ (vi)): r (b).

(III) When βj (vi) > βi (vi):

(III.1) If βi (ϕ
− (vi)) < b ≤ βi (vi): min (r (b) , vi).

(III.2) If βi (vi) < b ≤ βi (ϕ
+ (vi)): αj (b).

(IV) If βi (ϕ
+ (vi)) < b:

(IV.1) If αi (b) < αj (b): r (b).

(IV.2) If αi (b) ≥ αj (b): αj (b).

When βj (vi) = βi (vi), ϕ
− (vi) = ϕ+ (vi) = vi and only (I) and (IV)

apply. The continuity with respect to b follows from the continuity within
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the domains above as well as the agreement among the definitions at the

boundaries of their domains. ||
Proof of Theorem 2: Up to terms constant in bi, bidder i’s expected

net payoffs can be written as follows:

FPA:
Z bi

d

Z
usi (vi, vj; bj, bj) dFj (vj|bj) dFjαj (bj)−

Z bi

c

bidFjαj (bj) ;(A2.9)

SPA:
Z bi

c

µZ
usi (vi, vj; bj, bj) dFj (vj|bj)− bj

¶
dFjαj (bj) .(A2.10)

From (12), in the FPA Fjαj is continuously differentiable and hence, from

Lemma 3 (iii), the derivative with respect to b of the first term in (A2.9) is

the value at b of the integrand.

Proceeding as in the proof of Corollary 1, we obtain that the optimal bids

in E of bidder i are also optimal under FD when bidder j follows his strategy
in E 0. Since these bids form the supports of the bidding strategies Gi (.|.),
i = 1, 2, E 0 is a PBE under FD and Theorem 2 (i) is proved.

From (A2.10), Lemma 3 (i.2), (ii), and (iii), and the equality r (b) = b, any

of a bidder’s equilibrium bids in the SPA wins against bids that contribute

nonnegatively to his net expected payoff and loses against those that would

contribute nonpositively. Consequently, even if he was allowed to, a bidder

would have no incentive to change his bid after learning his opponent’s bid,

and we have proved Theorem 2 (iv).

The final allocation in E 0 is the same as in E . Assume, for example, that
bidder 1’s value v1 is such that ϕ (v1) ≥ v1. Then, bidder 1 bids β1 (v1) and

v1 ≤ λsϕ (v1) = ρs (v1, ϕ (v1)) ≤ ϕ (v1). If v2 ≤ λsϕ (v1), B1-B2 imply that

bidder 2 with value v2 bids at most max (β1 (ϕ
− (v1)) , r−1 (v2)), which is not

larger than β1 (v1). Consequently, neglecting ties, bidder 2 loses the auction

and refuses bidder 1’s offer. If v2 > λsϕ (v1), bidder 2 accepts bidder 1’s
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resale offer when bidder 1 wins and there is no profitable resale when bidder

2 wins.

Any bidder with the lowest possible value c obtains the same expected

payoff—zero—in both PBE’s. From Myerson (1981), the interim expected

payoffs are then the same in E 0 as in E . From the randomization procedure,
the marginal bid distributions are the same. We have proved Theorem 2

(ii).

Since the strictly more aggressive, conditional on his value, bidder faces

the same bid distribution in both PBE’s and, from B1, submits the same bid,

his expected payoff from the auction stage and his probability of winning are

also the same. From Lemma 3 (v), he demands the same resale price, which

is strictly larger than his value. In order to generate the same interim

expected payoffs, the probability of resale must be the same in both PBE’s

and we have proved Theorem 2 (iii).

If the bids are not fully disclosed, a deviation from E 0 by a bidder after
which he loses the auction has the same result as under FD, since, even under

FD, the resale price the auction winner demands does not depend on the bid

from the auction loser (from Lemma 3 (v)). A deviation after which he

wins the auction is at most as profitable, since less information is available

to make an optimal proposal at resale. Theorem 2 (v) follows. ||

Appendix 3

The PBE’s of the SPA are somewhat independent of the value distribution

of the equilibrium resale-price maker. When, for example, ϕ (v) > v and the

auction winner chooses the resale price, the bidding strategies remain part

of a PBE if the probability distribution of bidder 1’s value is changed in a

neighborhood of v. In fact, in Theorem 1, the bids and the resale prices

the bidders submit along the equilibrium path depend only on the values of

the optimal resale price function ρs at (v1, v2) with ϕ (v1) = v2. However,

ρs (v1, v2), with v2 > v1, is bidder 1’s optimal resale price and hence depends
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only on the distribution of bidder 2’s value. The randomization procedure

only uses the probability distribution of the equilibrium resale-price taker in

order to transform his bidding function into a behavioral bidding strategy.

Moreover, when ϕ (v) = v, whatever the value distributions are, both bidding

strategies are pure and equal (to ϕ) at v. Corollary A3.1 below follows. In

Corollary A3.1, we assume that the buyer(seller)-virtual-value functions are

strictly increasing when the auction winner (loser) sets the resale price.

Corollary A3.1: In the SPA where the auction winner (loser) sets

the resale price, let E be a PBE as in Theorem 1 (modified as explained in

Section 4). Then the bidding strategies in E remain part of a PBE when

the bidders’ values are distributed according to F 0
1 and F 0

2 if F 0
1 is equal to

F1 over {v1 ∈ [c, d] |ϕ (v1) < v1} ({v1 ∈ [c, d] |ϕ (v1) > v1}) and F 0
2 is equal

to F2 over {v1 ∈ [c, d] |ϕ (v1) > v1} ({v1 ∈ [c, d] |ϕ (v1) < v1}).

As it can be easily checked, the results about the SPA go through when

ϕ is only assumed to be nondecreasing, instead of strictly increasing and

continuous. Corollary A3.2 below holds true when an inverse ϕ−1 of ϕ is

a function such that v lies between the limits57 of ϕ (w) for w tending from

below and from above to ϕ−1 (v), for all v in [c, d]. Although ϕ may be

constant or discontinuous in Corollary A3.2, β1 and β2 are strictly increasing

and their inverses α1 and α2 are uniquely defined and continuous. Minor

adjustments of some definitions in the previous proofs are necessary to carry

over to such a more general ϕ. For example, Corollary 1 now applies to

bidder 1 with value v such that58 limu→<v ϕ (u) < v, in which case the lower

extremity ϕ− (v) of the set of optimal bids [ϕ− (v) , v], over which bidder

1 randomizes under FD, is the largest fixed point w smaller than v of the

correspondence Φ (w) = [limu→<w ϕ (u) , limu→>w ϕ (u)].

57With the conventions limw→c
<

ϕ (w) = c and limw→d
>

ϕ (w) = d.
58It applies to bidder 2 with value v such that limu→<v ϕ

−1 (u) < v.
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Corollary A3.259: The results about the SPA hold true if the function ϕ

from [c, d] to [c, d] is only required to be nondecreasing and if, in the formulas,

ϕ−1 denotes an inverse of ϕ.

We showed in Subsection 3.4 an application of Corollary A3.2 to the

function ϕ such that ϕ (v1) = θ∗, for all v1 in [c, θ∗], and ϕ (v1) = v1, for all

v1 in [θ∗, d]. From Corollary A3.1, the bidding strategies of our behavioral

PBE under FD for this function remain part of a PBE if F1 is changed to

any distribution F 0
1 (with increasing buyer virtual value)

60.

Appendix 4

We denote αu
i the inverse of β

u
i . When β

u
i = βli, we use the same notation

βi for both functions. Let (v
0, v00) be a maximum open interval where bidder

i is more aggressive. Then, by continuity of βui and βuj and the remark in

the main text, we have βuj (v
0) = βui (v

0) = βli (v
0) = βlj (v

0); βuj (v
00) = βui (v

00);

and βli and βlj are continuous at v
0.

Lemma A4.1: For all vi in (v0, v00), δi (vi;βi (vi)) = αu
j (βi (vi)).

Proof: Suppose δi (vi;βi (vi)) > αu
j (βi (vi)). From Assumptions A6,

A7.1, A7.2, and A7.3, there exists a neighborhood (w0, w00)×(b0, b00) of (w, βi (vi))
that is included in the interior of the support of bidder j’s strategy and such

that vj < δi (vi; b), for all (vj , b) in this product (see Figure A1). From the

uniqueness A2 of bidder i’s optimal price, we find

vj < δi (v
0
i; b) ,(A4.1)

59The supports of the bid distributions are not convex (intervals) when ϕ is constant or
discontinuous. Under FD, a bidder’s revised beliefs are not uniquely determined when he
observes a bid in one of the gaps of his opponent’s equilibrium bid distribution. Taking
for these beliefs off the equilibrium path the particular distributions in our formulas, which
depend on the (uniquely defined) inverses α1 and α2, ensures the equilibrium is perfect
Bayesian.
60If F 01 is concentrated at c, they still remain part of a PBE and the alternative con-

struction presented in Subsection 3.4 gives the equilibrium with no discounting in Garratt
and Tröger (2006a).
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for all (vj, b) in (w0, w00)× (b0, b00) and all v0i ≥ vi.

Consider the bids βi (vi) and b in (βi (vi) , b
00). From (A4.1), bidder j

with value vj in (w0, w00) and any of these bids does not buy the item at

resale. Since, being the less aggressive bider, he does not sell it neither, the

probability that such a bidder j receives the item is the probability that he

wins the auction. Obviously, this probability is higher with the bid b then

with the bid βi (vi). This contradicts probability invariance (the proposition

in Subsection 3.5) and we have proved Lemma A4.1. ||

FIGURE A1

Lemma A4.2: Let vi be in (v0, v00) and b0 be in (βui (v
0) , βui (vi)). If

(δi (vi; b
0) , b0) belongs to the interior of the support of bidder j’s distributional

strategy, then ∂δi
∂b
(vi; b

0) = 0.

Proof: Assume (δi (vi; b0) , b0) belongs to the interior of the support of

bidder j’s distributional strategy. Then, αu
j (b

0) < δi (vi; b
0) and, from Lemma

A4.1, αi (b
0) < vi.

Let (w0, w00) ×
³
b00,eb´ be a neighborhood of (δi (vi; b0) , b0) in the interior

of bidder j’s distributional strategy such that eb < βui (vi) (which is possible;,

since b0 < βui (vi)). Suppose ∂δi
∂b
(vi; b

0) = σ 6= 0. If σ > 0, there exists b, b

such that b00 < b < b0 < b < eb:
δi
¡
vi; b

¢
= δi (vi; b

0) + σ
¡
b− b0

¢
+ o

¡¯̄
b− b0

¯̄¢
> δi (vi; b

0)

> δi (vi; b
0) + σ (b− b0) + o (|b− b0|)

= δi (vi; b) .

Consequently, there exist a subinterval (w,w) of (w0, w00) such that (see Fig-

ure A2)

δi
¡
vi; b

¢
> w > w > δi (vi; b) .
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By continuity, there exists ε0 > 0 such that w > δi (wi; b), for all wi < vi+ ε0.

If bidder j with value w > w bids b, he receives the item when bidder i’s

value is smaller than vi + ε0: when he does not win the auction, he accepts

bidder i’s resale offer. Consequently, Prj
¡
w, b

¢ ≥ Fi (vi + ε0). If he bids

b instead, he loses the auction and refuses the resale price when bidder i’s

value is equal to or larger than vi and hence Prj
¡
w, b

¢ ≤ Fi (vi) < Prj
¡
w, b

¢
,

for all w in (w,w), which contradicts probability invariance. The proof for

σ < 0 is similar. ||

FIGURE A2

Lemma A4.3: For all v in (v0, v00), there exists eb in [βi (v0) , βi (v)],
such that:

(i)61 δi (v; b) is equal to αu
j (b) for b larger than eb and equal to αu

j

³eb´ for
b smaller than eb and not smaller than βlj

³
αu
j

³eb´´;
(ii) For all b < βlj

³
αu
j

³eb´´ such that profitable resale is possible, βlj (δi (v; b)) =
b.

(iii) δi (v; b) is nondecreasing in b over (βi (v
0) , βi (v)).

Proof: Lemmas A4.1 and A4.2 and continuity imply62 that there existseb in [βi (v0) , βi (v)], such that δi (v; b) is equal to αu
j (b) for b larger than eb

and equal to αu
j

³eb´ for b in ³βi (v0) ,ebi and strictly larger than βlj ³αu
j

³eb´´.
By continuity, if βlj

³
αu
j

³eb´´ > βi (v
0), then δi

³
v, βlj

³
αu
j

³eb´´´ = αu
j

³eb´.
A simple application of the mean value theorem shows that, when de-

creasing b, once (δi (v; b) , b) reaches the graph of β
l
j, then it does not go back

in the interior of the support. (ii) follows. (iii) is a consequence of (i) and

(ii). ||
61If eb is one of the extremities of [βi (v0) , βi (v)], then only one of of the statements

apply over the interval (βi (v
0) , βi (v)).

62It is simple to prove that, when decreasing b, once (δi (v; b) , b) has left the graph of β
u
j

it does not come back. It follows from the strict monotonicity of βuj and the independence
of δi (v; b), when in the interior, with respect to b.
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Lemma A4.4: For all vi in (v0, v00):
(i) there exists no ε > 0 such that δi (vi; b) is equal to αu

j (b), for all b in

(βi (vi)− ε, βi (vi));

(ii) δi (vi; b) = αu
jβi (vi), for all b in

£
βlj
¡
αu
jβi (vi)

¢
, βi (vi)

¤
.

Proof: (i) Suppose there exists ε > 0 such that, for all b in (βi (vi)− ε, βi (vi)),

δi (vi; b) = αu
j (b). Let b be in (βi (vi)− ε, βi (vi)) (see Figure A3). If bidder

j with value vj = αu
j (b) submits b

0 > b, he will not accept any resale offer,

since, for all wi ≥ αi (b
0), δi (wi; b

0) ≥ δi (αi (b
0) ; b0) = αu

j (b
0) (from Lemma

A4.1). Consequently, his expected payoff comes only from the auction stage.

We obtain the FOC’s:

FPA :
∙
d

db
(vj − b)Fi (αi (b))

¸
vj=αuj (b)

≤ 0. (A4.2)

SPA :
¡
αu
j (b)− b

¢ d

db
Fi (αi (b)) ≤ 0 (A4.3).

Since, when profitable resale are possible δi (v, b0) is nondecreasing in v,

we have

δi (v, b
0) = αu

j (b
0) ,

for all b0 in (βi (vi)− ε, βi (vi)) and all v < vi such that resale is possible.

Let wj > αu
j (b) be such that the couple (wj, b) belongs to the interior of

the support of bidder j’s strategy. Then, the expected payoff Pj (wj; b
0) of

bidder j with value wj if he submits b0 in (βi (vi)− ε, b] is equal to:

Pj (wj; b
0) =

FPA: (wj − b0)Fi (αi (b
0)) SPA:

Z b0

(wj − bi) dGi (bi)

+
¡
wj − αu

j (b
0)
¢ ¡

Fi

¡
αi

¡
min

¡
βuj (wj) , βi (vi)

¢¢¢− Fi (αi (b
0))
¢

+

Z βi(wj)

min(βuj (wj),βi(vi))
max (wj − δi (αi (b

00) ; b0) , 0) dFiαi (b
00) . (A4.4)
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In fact, no resale is possible after bidder i wins by bidding above βi (wj).

Since, from Lemma A4.3, the last term in (A4.4) is nonincreasing in b0,

the derivatives of the first two terms give an upper bound on the rate of

increase of Pj (wj; b
0). We find:

lim sup
ς→>0

Pj (wj; b)− Pj (wj; b− ς)

ς
≤

FPA :
∙
d

db
(vj − b)Fi (αi (b))

¸
vj=αuj (b)

SPA:
¡
αu
j (b)− b

¢ d

db
Fi (αi (b))

− ¡Fi

¡
αi

¡
min

¡
βuj (wj) , βi (vi)

¢¢¢− Fi (αi (b
0))
¢ d

db
αu
j (b)

< 0,

from (A4.2, A4.3). Consequently, bidder j with value wj is better off devi-

ating from b, which cannot occur at an equilibrium.

(ii): (ii) follows immediately from (i) and Lemma A4.3. ||

FIGURE A3

Lemma A4.5: For al v in (v0, v00):
(i) d

dv
βlj
¡
αu
j (β

u
i (vi))

¢
= 0;

(ii) βlj (v) = βlj (v);

(iii) δi (v; b) = αu
j (βi (v)), for all b ≤ βi (v) such that strictly (mutually)

profitable resale is possible.

Proof: (i) Assume d
dv
βlj
¡
αu
j (β

u
i (vi))

¢
> 0 (see Figure A4). Then,

there exists vj < αu
j (β

u
i (vi)) such that β

l
j (vj) < βlj

¡
αu
j (β

u
i (vi))

¢
. From

Lemma 4.3 (ii), for all b in
¡
βlj (vj) , β

l
j

¡
αu
j (β

u
i (vi))

¢¢
, (δi (vi; b) , b) belongs

to the graph of βlj. Then, βlj is strictly increasing over
¡
vj, α

u
j (β

u
i (vi))

¢
,

otherwise δi (vi; b) could not be continuous in b, contradicting Assumption

A7.3; and δi (vi; b) is strictly increasing in b, otherwise β
l
j could not be contin-
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uous, contradicting Assumption A7.263. From the mean value theorem and

Assumption A7.2, there exists wj in
¡
vj, α

u
j (β

u
i (vi))

¢
such that d

dv
βlj (wj) > 0.

From Lemma A4.4 (ii), the expected payoff Pj (wj; b
0) of bidder j with

value wj if he submits b0 in
¡
βlj (wj) , β

u
j (wj)

¢
is equal to:

Pj (wj; b
0) =

FPA: (wj − b0)Fi (αi (b
0)) SPA:

Z b0

(wj − bi) dGi (bi)

+

Z βuj (wj)

b0

¡
wj − αu

j (b
00)
¢
dFiαi (b

00) .

In fact, from Lemma A4.4 (ii), for all b00 in
¡
βi (v

0) , βuj (v
00)
¢
, bidder i with

value αi (b
00) demands αu

j (b
00) after observing b in

¡
max

¡
βi (v

0) , βlj
¡
αu
j (b

00)
¢¢

, b00
¢
.

We obtain the FOC’s at b = βlj (wj):

FPA :
¡
αu
j (b)− b

¢ d

db
Fi (αi (b))− Fi (αi (b)) ≤ 0. (A4.5)

SPA :
¡
αu
j (b)− b

¢ d

db
Fi (αi (b)) ≤ 0 (A4.6).

There exists ε, ε0 > 0 such that, for all b0 in
¡
βlj (wj)− ε0, βlj (wj)

¢
, the

63Since, according to Fj (.|b), there is zero probability that bidder j’s value is strictly
larger than the value αlj (b) of the inverse of β

l
j at b, α

l
j (b) must be a mas point of Fj (.|b)

in order to be an optimal resale price for bidder i.
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expected payoff Pj (wj; b
0) is:

Pj (wj; b
0) =

FPA: (wj − b0)Fi (αi (b
0)) SPA:

Z b0

(wj − bi) dGi (bi)

+

Z βlj(wj)+ε

b0

¡
wj − αu

j (b
00)
¢
dFiαi (b

00) ,

+

Z βi(wj)

βlj(wj)+ε

max (wj − δi (αi (b
00) ; b0) , 0) dFiαi (b

00)

+

Z βi(αuj (βui (vi)))

βi(wj)

¡
wj − αl

j (b
0)
¢
dFiαi (b

00) .

as, from Lemma A4.4 (ii), δi (αi (b
00) , b0) = αu

j (b
00), for all b00 in a neigh-

borhood of βlj (wj), and, from the first paragraph of the present proof,

δi (vi, b
0) = αl

j (b
0) and hence δi (v0i, b

0) = αl
j (b

0) for all v0i > vi, in a particular

for v0i in
¡
wj, α

u
j (β

u
i (vi))

¢
.

Since, from Lemma A4.3, the third term above is nonincreasing in b0, we

find, at b = βlj (wj):

lim sup
ς→>0

Pj (wj; b)− Pj (wj; b− ς)

ς
≤

FPA :
¡
αu
j (b)− b

¢ d

db
Fi (αi (b))− Fi (αi (b)) SPA:

¡
αu
j (b)− b

¢ d

db
Fi (αi (b))

− ¡Fi

¡
αu
j (βi (vi))

¢− Fi (wj)
¢ d

db
αl
j (b)

< 0,

from (A4.5, A4.6). Consequently, bidder j with value wj is better off devi-

ating from βlj (wj) (to a lower bid), which cannot occur at an equilibrium.

(ii) From the remark in the main text, βlj is continuous at v
0. For all

vj in (v0, v00), vi = αiβ
u
j (vj) belongs to (v

0, v00) and, from (i), d
dv
βlj (vj) = 0.

Consequently, βlj is constant and equal to β
l
j (v

0) over [v0, v00).
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(iii) The section at b < βlj (v
0) of the support of bidder j’s strategy is

included in [c, v0]. Consequently, there is no profitable resale after bidder i

with value vi in (v0, v00) (for almost all such vi) wins with a bid below βlj (v
0).

||

FIGURE A4

Lemma A4.6: For all j, define the function β∗j as follows:

β∗j (wj) = G−1j Fj (wj) ,

where Gj is the cumulative function of the bidder j’s marginal bid distribu-

tion. Then,

(i) When strictly profitable resale is possible for bj ≤ βi (vi), δi (vi; bj) is

equal to ρsi
¡
vi, α

∗
jβi (vi)

¢
;

(ii) When bidder j is less aggressive at vj, β
∗
j (vj) belongs to the support

of his bidding strategy conditional on vj.

Proof: (i): Let vi be such that bidder i is more aggressive at vi. From
Lemma A4.5 (iii), for all b ≤ βi (vi) such that profitable resale is possible, the

resale price δi (vi; b) bidder i demands after winning is equal to αu
j (βi (vi)).

For all such b, we must then have:

αu
j (βi (vi)) ∈ argmax

p
(p− vi) (1− Fj (p|b)) ,(A4.7)

. Since αu
j (βi (vi)) ≥ vi, (A4.7) then holds true for all b ≤ βi (vi). Conse-

quently, we find:

αu
j (βi (vi)) ∈ argmax

p

Z βi(vi)

(p− vi) (1− Fj (p|b)) dGj (b) .(A4.8)

Since αu
j is strictly increasing in a neighborhood of βi (vi) and the strate-

gies are nondecreasing, we have Fj

¡
αu
j (βi (vi)) |b

¢
= 0, for (almost-) all
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b > βi (vi). We find: Z βi(vi)

Fj (p|b) dGj (b)

=

Z
Fj (p|b) dGj (b)

= Fj (p) .

From (A4.8), we then have:

αu
j (βi (vi)) ∈ argmax

p
(p− vi) (Gj (βi (vi))− Fj (p)) .

From the definition of β∗j , Gj (βi (vi)) = Fj

¡
α∗j (βi (vi))

¢
and

αu
j (βi (vi)) ∈ argmax

p
(p− vi)

¡
Fj

¡
α∗j (βi (vi))

¢− Fj (p)
¢
.

Notice that64 Gj (βi (vi)) ≥ Fj

¡
αu
j (βi (vi))

¢
, because all vj < αu

j (βi (vi)) bid

less than βi (vi). Consequently, δi (vi; b) = αu
j (βi (vi)) = ρsi

¡
vi, α

∗
jβi (vi)

¢
and (i) is proved.

(ii): Let (v, v) be the maximum open interval containing vj where bidder
i is more aggressive. From Lemma A4.5 (ii), βlj is constant over [v, v).

Then, because bidder j bids higher than βlj (v) for values in (v, d], we have

Gj

¡
βlj (v)

¢ ≤ Fj (v). Thus, Gj

¡
β∗j (vj)

¢
= Fj (vj) > Gj

¡
βlj (v)

¢
and hence

β∗j (vj) > βlj (v).

Moreover, since bidder j does not bid higher than βuj (vj) for values

smaller than vj, we haveGj

¡
βuj (vj)

¢ ≥ Fj (vj). Consequently,Gj

¡
βuj (vj)

¢ ≥
Gj

¡
β∗j (vj)

¢
and hence β∗j (vj) ≤ βuj (vj). ||

Lemma A4.7: (β∗1, β
∗
2) can be completed into a PBE as in Theorem 1 of

the FPA under ND that is equivalent to the original PBE under FD.

Proof: If bidder i is more aggressive at vi, then the derivative of bidder
64The inequality is actually strict.
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i’s expected payoff with respect to b at b = βi (vi) is equal to:

−Gj (βi (vi)) +
¡
αu
j (βi (vi))− βi (vi)

¢ d

db
Gj (βi (vi)) (FPA),¡

αu
j (βi (vi))− βi (vi)

¢ d

db
Gj (βi (vi)) (SPA)

since the resale price αu
j (βi (vi)) is accepted with probability one when bidder

j has submitted βi (vi). Since it must be equal to zero, we obtain:

d

db
lnGj (βi (vi)) =

1

αu
j (βi (vi))− βi (vi)

(FPA)

αu
j (βi (vi))− βi (vi) = 0 (SPA).

From Lemma 4.6 (i), αu
j (βi (vi)) = ρsi

¡
vi, α

∗
jβi (vi)

¢
and from the definition

of β∗j , Gj = Fjα
∗
j . Consequently:

d

db
lnFj

¡
α∗j (b)

¢
=

1

ρsi
¡
α∗i (b) , α

∗
j (b)

¢− b
(FPA),

ρsi
¡
α∗i (b) , α

∗
j (b)

¢− b = 0 (SPA)

at b = βi (vi).

Similarly, by considering the derivative of bider j’ payoff with respect to

b at (vj, βi (vi)) where vj is in the support of Fj (.|βi (vi)), we find (βi (vi) =
β∗i (vi)):

d

db
lnFi (α

∗
i (b)) =

1

ρsi
¡
α∗i (b) , α

∗
j (b)

¢− b
,

at b = βi (vi).

The same set of equations holds true when β1 (v) = β2 (v) = b, so that it

holds over
¡
c, d
¤
.

From Assumption A5, we have β∗1 (c) = β∗2 (c) = c and β∗1 (d) = β∗2 (d).

The hypotheses of Theorem 1 are satisfied and (β∗1, β
∗
2) can be completed

into a PBE as in this theorem. This PBE is equivalent to the original PBE
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under FD. In fact, from the definition of β∗1, β
∗
2, the marginal bid distributions

are the same; the more aggressive bidder follows the same bidding function;

from Lemma A4.6 (i), the same resale prices are demanded when profitable

resale is possible; and, from Lemma A4.6 (ii), the less aggressive bidder

submits according to (β∗1, β
∗
2) a bid that belongs to the support of the original

PBE. ||

Appendix 5

A Class of Examples Where the Equilibrium Bid Distributions Do not

Increase When the Bargaining Power at Resale Goes From the Auction

Loser to the Auction Winner:

Consider the example where there exists q in (0, 1) such that F−11 (p) <

F−12 (p), for all p in (0, q], F1 is strictly convex over
£
0, F−11 (q)

¤
, and F2 is

strictly concave over
£
0, F−12 (q)

¤
(such an example obviously exists). Then,

the definitions of the seller’s and buyer’s optimal resale price functions ρs and

ρb readily imply ρb
¡
F−11 (p) , F−12 (p)

¢
>

F−11 (p)+F−12 (p)

2
> ρs

¡
F−11 (p) , F−12 (p)

¢
,

for all p in (0, q]. If we denote by βsi and β
b
i the equilibrium bidding functions

of the FPA under ND when the resale price is chosen by the auction winner

and the auction loser, we find:

βsi (v) =

R Fi(v)
0

ρs
¡
F−11 (q) , F−12 (q)

¢
dq

Fi (v)

<

R Fi(v)
0

ρb
¡
F−11 (q) , F−12 (q)

¢
dq

Fi (v)
= βbi (v) ,

for all vi in
¡
0, F−1i (q)

¢
. Consequently, for small bids, both bidders’ bid

distributions shift downward if the auction winner becomes the resale-price

maker. The same conclusion applies to the PBE’s under FD obtained

through our randomization procedure.
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Appendix 6

Lemma A6.1: If ψ is differentiable over (c, d) and F1 6= F2, then

λs
F−12 F1

6= ψ.

Proof: The definitions of λsϕ and the equality ϕ = F−12 F1 imply λsϕ (v) =

ρs
¡
v, F−12 F1 (v)

¢
, or, equivalently:

λsϕ (v)−
1− F2

¡
λsϕ (v)

¢
f2
¡
λsϕ (v)

¢
= v − 1− F1 (v)

f1 (v)

+ (1− F1 (v))

Ã
1

f1 (v)
− 1

f2
¡
λsϕ (v)

¢! . (A6.1)
Assume that there exists v such that ϕ (v) > v. Suppose λsϕ and ψ are

identical over (ϕ− (v) , ϕ+ (v)), where ϕ− (v) and ϕ+ (v) are as in Subsection

2.3. From (15) and (A6.1), f1 (w) = f2 (ψ (w)) and F1 (w) − F2 (ψ (w)) =

f1 (w) (ψ (w)− w), for all w in (ϕ− (v) , ϕ+ (v)). Because its derivative

then vanishes, (F1 (w)− F2 (ψ (w))) (ψ (w)− w) is constant over this inter-

val. However, this is impossible since it tends towards zero at the extremi-

ties, while being strictly positive in the interior (since w < λsϕ (w) = ψ (w) <

ϕ (w) = F−12 F1 (w)). ||
Proof of Lemma 4: For simplicity, we drop the subscript F−12 F1. If

F−12 F1 (v) = v, then λb (v) = λs (v) = v.

Let v be such that F1 (v) 6= F2 (v). Assume, for example, F−12 F1 (v) > v

(the proof when F−12 F1 (v) < v is similar). From the definitions of λs, λb,

we have λs (v) = ρs
¡
v, F−12 F1 (v)

¢
and v = ρb

¡
F−11 F2

¡
λb (v)

¢
, λb (v)

¢
and,

consequently, λs (v) < F−12 F1 (v) and:

F−11 F2
¡
λb (v)

¢
< v;(A6.2)
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v = λs (v)− F1 (v)− F2 (λ
s (v))

f2 (λ
s (v))

; (A6.3)

v = λb (v) +
F2
¡
λb (v)

¢− F1 (v)

f1 (v)
. (A6.4)

(A6.3) is equivalent to (A6.1) in the previous proof. The equality (A6.5)

below is the difference between (A6.4) and (A6.3).

λb (v)− λs (v) =
¡
F1 (v)− F2

¡
λb (v)

¢¢
/f1 (v)

− (F1 (v)− F2 (λ
s (v))) /f2 (λ

s (v)) .(A6.5)

If λs (v) < ψ (v), then, from (A6.1) and (15), f1 (v) > f2 (λ
s (v)). Sup-

pose the LHS of (A6.5) is nonnegative, that is, λs (v) ≤ λb (v). Then,

from (A6.2), F1 (v) − F2 (λ
s (v)) ≥ F1 (v) − F2

¡
λb (v)

¢
> 0. Consequently,

(F1 (v)− F2 (λ
s (v))) /f2 (λ

s (v)) >
¡
F1 (v)− F2

¡
λb (v)

¢¢
/f1 (v) and the RHS

of (A6.5) is strictly negative, a contradiction. We have proved λs (v) > λb (v)

if λs (v) < ψ (v). We can similarly prove λs (v) < λb (v) if λs (v) > ψ (v).

Moreover, from (A6.5) and (A6.2): λs (v) = λb (v) if and only if f1 (v) =

f2 (λ
s (v)). From (A6.1), (15), and v < d (since F1 (v) 6= F2 (v))65. The

lemma is proved. ||

Appendix 7

Corollary A7.1: When ς in (0, 1) tends towards zero, the PBE of the

(ςk1, ςk2)-PA tends towards the payoff-equivalent PBE, constructed from ϕ =

F−12 F
k1/k2
1 , of the SPA.

Proof: In the (ςk1, ςk2)-PA, β1 (v), for example, is, from (18), equal to:

β1 (v) =

R v
c
ρx
³
w,F−12

³
F1 (w)

k1/k2
´´

dF1 (w)
1/ςk2

F1 (v)
1/ςk2

,

65In the case of different value upper extremities d1 < d2, we have λ
s (d1) = ψ (d1) >

λb (d1) and Lemma 4 holds true for all v1 in [c, d1).
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for all v in (c, d]. Since the probability distribution
³

F1
F1(v)

´1/ςk2
over [c, v]

dominates
³

F1
F1(v)

´1/ς0k2
, for all 0 < ς < ς 0, β1 (v) increases as ς decreases.

When ς tends towards zero, the distribution
³

F1
F1(v)

´1/ςk2
converges weakly

towards the degenerate distribution concentrated at v and, consequently,

β1 (v) tends towards ρ
x (v, ϕ (v)), where ϕ = F−12 F

k1/k2
1 . Similarly, β2 (v)

increases and converges towards ρx (ϕ−1 (v) , v) when ς tends towards zero.

||

Appendix 8

The PD Regime

FOC for Bidders 1,...,n− 1

The derivative of the expected payoff of bidder 1 with value v in (c, d]

with respect to b in (c, β (v)) is:

(ρ (v, γ (b))− b)F (α (b))n−2
d

db
H (γ (b))

+ {vH (ρ (v, γ (b))) + ρ (v, γ (b)) [H (γ (b))−H (ρ (v, γ (b)))]− b} d

db
F (α (b))n−2

−H (γ (b))F (α (b))n−2 . (A8.1)

Since b < β (v), no profitable resale is possible with bidders 2 to n−1 and, as
a consequence, bidder 1 offers the optimal resale price ρ (v, γ (b)) to bidder

n. If bidder 1 loses, the winner of the auction will make no resale offer to

him, since, if bidder 1 followed his strategy β, no profitable resale would be

possible.

If bidder 1 increases his bid b by db, the first term above accounts for the

event when the bids from bidders 2 to n− 1 are smaller than b and the bid
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from bidder n is equal to b, that is, his value is γ (b). Since γ (b) ≥ ρ (v, γ (b)),

bidder n accepts the resale offer, conditional on this event.

The second term accounts for the event where bidder n submits a bid

smaller than b and the highest bid from bidders 2 to n− 1 is b. Again no
profitable resale is possible with bidders 2 to n− 1, since their values is not
larger than α (b) < v. Bidder n accepts bidder 1’s resale offer ρ (v, γ (b))

only if his value is at least as high, which occurs with conditional probability

H (γ (b))−H (ρ (v, γ (b))) /H (γ (b)).

From the envelope theorem, in the event that bidder 1 keeps winning after

the bid raise, the first-order effect on his expected payoff due to the change

of resale mechanism vanishes. The third term accounts for the increase in

the expected payment at auction.

We then obtain the inequality below:

(r (b)− b)F (α (b))n−2
d

db
H (γ (b))

+

(
α (b)H (r (b))+

r (b) [H (γ (b))−H (r (b))]− b

)
d

db
F (α (b))n−2

−H (γ (b))F (α (b))n−2 ≥ 0. (A8.2)

The derivative at b > β (v) is:(
(ρ (v, γ (b))− b)F (v)n−2 +

Z α(b)

v

(ρ (w, γ (b))− b) dF (w)n−2
)

d

db
H (γ (b))

+

(
(α (b)− b)H (ρ (α (b) , γ (b)))+

(ρ (α (b) , γ (b))− b) [H (γ (b))−H (ρ (α (b) , γ (b)))]

)
d

db
F (α (b))n−2

−H (γ (b))F (α (b))n−2 . (A8.3)

Let w be the highest value among bidders 2 to n−1’s, which bidder 1 deduces
from their bids. His optimal resale auction consists in selling to bidder n if

his value is larger than ρ (max (v, w) , γ (b)) and, otherwise, in selling to the
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bidder with the (highest) value w among bidders 2 to n−1 or in keeping the
item, depending on whether w is larger than v or not66.

The first term in (A8.3) above accounts for the event when bidders 2 to

n− 1 submit bids smaller than b and bidder n submits b. The second term

for the event when the highest bid from bidders 2 to n − 1 is b and bidder
n has submitted a smaller bid67. Again, the first-order effect of a change of

resale-mechanism in the event that bidder 1 keeps winning vanishes.

The expression (A8.3) where v = α (b) must then be nonpositive, that

is, the reverse inequality in (A8.2) holds true. Consequently, the derivative

of the expected payoff with respect to b at v = α (b) exists, is equal to the

expression in (A8.2), and we obtain the FOC below:

(r (b)− b)
d

db
lnH (γ (b)) +

(n− 2)
⎧⎨⎩ (α (b)− b) H(r(b))

H(γ(b))
+

(r (b)− b)
h
1− H(r(b))

H(γ(b))

i ⎫⎬⎭ d

db
lnF (α (b))

= 1. (A8.4)

FOC for Bidder n

The derivative with respect to b of the expected payoff of bidder n with

value v at c < b < r−1 (v) is:

(ρ (α (b) , γ (b))− b)
d

db
F (α (b))n−1 − F (α (b))n−1 .(A8.5)

66When w > v and further resale is possible, bidder 1 can implement this optimal mech-
anism by reselling at the price wH (ρ (w, γ (b))) + ρ (w, γ (b)) (H (γ (b))−H (ρ (w, γ (b))))
to the highest-value bidder (with value w) among bidders 2 to n− 1, who will then offer
to resell only to bidder n at the price ρ (w, γ (b)).
67When further resale is possible and the resale mechanism is implemented

as in the previous footnote, the second term in the factor between braces isR α(b)
v

(wH (ρ (w, γ (b))) + ρ (w, γ (b)) (H (γ (b))−H (ρ (w, γ (b))))− b) dF (w)
n−2 instead.

The same FOC results.
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If bidder n wins with such a bid, there is no profitable resale, since α (b) ≤
r (b) < v. If bidder n raises his bid from b to db, the only first-order effect,

beyond the effect on his payment at auction, occurs when the highest bid

from bidders 1 to n − 1 is b, that is, when there highest value is α (b). In

this case, by rasing his bid and winning the auction, bidder n saves the price

ρ (α (b) , γ (b)), he would accept at resale, and the first term above follows.

We then obtain the FOC below:

(n− 1) (r (b)− b)
d

db
lnF (α (b)) = 1.(A8.6)

Notice that when this FOC is satisfied, bidder n is indifferent between all

bids in [c, r−1 (v)]. The derivative of bidder n’s expected payoff at b in

(r−1 (v) , β (v)) is:

(v − b)
d

db
F (α (b))n−1 − F (α (b))n−1 ;(A8.7)

and at b > β (v):

(α (b)− b)
d

db
F (α (b))n−1 − F (α (b))n−1 .(A8.8)

System of FOC’s

The system of FOC’s can be written as (19, 20). Because the derivatives

(A8.1), (A8.3), (A8.5), (A8.7), (A8.8) above, of the payoffs with respect to

the bid, are nondecreasing in the value, a standard argument shows that

the system (19, 20), along with the boundary conditions β (c) = δ (c) =

c, β (d) = δ (d) and the strict monotonicity of α, δ, is a sufficient condition

for an equilibrium.

The FD Regime
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Consider a PBE with bidding functions β, δ of the FPA under PD as

in Theorem 4 (i). Under FD, apply the randomization procedure to bidder

n’s bidding function δ and keep his resale strategy unchanged. Assume that

every bidder i = 1, ..., n − 1 follows the same bidding function β and the

resale strategy described in the main text. These transformed strategies

then form an equivalent PBE.

In fact, the derivative of bidder 1’s expected payoff at b < β (v) is equal

to (A8.9)Ã
vH (r (β (v)) |b)+

r (β (v)) [1−H (r (β (v)) |b)]− b

!
F (α (b))n−1

d

db
H (γ (b))

+

Z b

c

(
vH (r (β (v)) |b0)+

r (β (v)) [1−H (r (β (v)) |b0)]− b

)
dH (γ (b0))

d

db
F (α (b))n−1

−H (γ (b))F (α (b))n−1 . (A8.9)

Bidder 1’s optimal resale mechanism after winning with a bid b, even after

observing bidder n’s losing bid, is to offer bidder n the same resale price

r (β (v)). The first and second term follow (by the randomization procedure,

the marginal distribution of bidder n’s bid is the same as under PD). Since

it accounts for the change of the payment at auction when winning, the final

term is obviously the same as under PD.

Because, from the randomization procedure, r (b) is the minimum of the

support of H (.|b) and bidder n’s marginal bid distribution and his proba-
bility, over all bids smaller than b, of accepting r (b) are the same as under

partial disclosure, (A8.9) reduces to the LHS of (A8.1) when v = α (b).

The derivative of bidder 1’s expected payoff at b > β (v) is equal to
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(A8.10) below:

(r (b)− b)F (α (b))n−1
d

db
H (γ (b))

+

(
(α (b)− b)H (r (b))+

(r (b)− b) [H (γ (b))−H (r (b))]

)
d

db
F (α (b))n−1

−H (γ (b))F (α (b))n−1 . (A8.10)

Conditional on bidder n’s submitting b, his virtual value is larger than α (b)

with probability one, since, by the randomization procedure, the virtual value

at the minium r (b) of the support is α (b). After observing the bid b from

bidder n and smaller bids from the other bidders, it is then optimal to make

a resale offer only to bidder n. Moreover, the optimal resale price is the

minimum r (b) of the support, since it would be optimal if bidder 1’s value

was α (b) > v. The first term follows.

If the highest bid from bidders 2 to n − 1 is b, that is, if their highest
value is α (b), and if bidder n has submitted a smaller bid, the optimal resale

mechanism consists, as under PD, in selling to bidder n if his virtual value

is larger than α (b), that is, by the randomization procedure, if his value is

larger than r (b), and to the highest bidder, among bidders 2 to n, otherwise.

By the randomization procedure again, the marginal probabilities that bidder

n accepts the resale price are the same as under PD and the second term

above follows. The reason for the third term is as in the first case above.

The derivative (A8.10) is equal to the LHS of (A8.2) and we obtain the

same FOC (A8.4) for bidder 1 as under PD. Since bidders 1 to n make the

same bids and resale offers, when they follow their strategies, the derivative

of bidder n’s expected payoffs and the FOC for this bidder are obviously the

same.

Because the derivatives above are nondecreasing functions of the value

v, the FOC’s, which, by assumption, β and δ satisfy, are sufficient and the

randomization procedure produces a PBE.

76



Appendix 9
Technical Extension of the Function ρ

For v ≤ w, the function ρ (v, w) is defined according to (1), that is:

v = ρ (v, w)− H (w)−H (ρ (v, w))

h (ρ (v, w))
.(A9.1)

For technical purposes, extend the function ρ (v, w) to [c, w]2 by setting

ρ (v, w) = v+w
2
, for v > w. It is then easy to check that the so defined

ρ is continuously differentiable over (c, d]2. In fact, from Assumption (ii),

(A9.1) satisfies the conditions of the implicit function theorem (the derivative

with respect to ρ of the RHS of (A9.1) is strictly positive). Furthermore, the

partial derivatives of the solution ρ of (A9.1) tend towards 1/2 when (v, w)

tend towards towards a couple on the 45-degree line. Since ρ is continuously

differentiable, it is also locally Lipschitz over (c, d]2.

Lemma A9.1: ∂
∂v
ρ (v, w) is bounded away from zero over [c+ ε, d]2, for

all ε > 0.

Proof: For all (v, w) with v ≥ w, we have, by definition of the extension

of ρ, ∂
∂v
ρ (v, w) = 1

2
. From (A9.1), we have, for v ≤ w:½

2 +
H (w)−H (ρ (v, w))

h (ρ (v, w))2
h0 (ρ (v, w))

¾
∂

∂v
ρ (v, w) = 1.

If, furthermore, (v, w) ∈ [c+ ε, d]2, then ρ (v, w) ∈ [c+ ε, d]2. From the

equality above, we have:

∂

∂v
ρ (v, w) ≥ L (ε) > 0,

for all (v, w) in [c+ ε, d]2such that v ≤ w, with L (ε) defined as follows:

L (ε) =
1

2 +K (ε) /M (ε)
,
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with:

K (ε) = max
v∈[c+ε,d]

h0 (v)

M (ε) = min
v∈[c+ε,d]

h (v) > 0.

||

Main Lemmas

Through the change of variables ψ1 = Fα, ψn+1 = Hγ, the system (19,

20) becomes the system below:

d

db
ψn (b)

=
ψn (b)

ρ (F−1ψ1 (b) ,H−1ψ1 (b))− b⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1− n− 2

n− 1

(F−1ψ1 (b)− b)H (ρ (F−1ψ1 (b) ,H
−1ψn (b)))+

(ρ (F−1ψ1 (b) , H
−1ψn (b))− b)

(ψn (b)−H (ρ (F−1ψ1 (b) ,H
−1ψn (b))))

(ρ (F−1ψ1 (b) ,H−1ψn (b))− b)ψn (b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
;

d

db
ψ1 (b)

=
ψ1 (b)

(n− 1) (ρ (F−1ψ1 (b) ,H−1ψn (b))− b)
.

By extending the functions F−1, H−1 into locally Lipschitz functions over

(0, 1 + ε), where ε > 0, in such a way that 1−q
h(H−1(q)) is nonincreasing over this

interval, the assumptions of the theory of ordinary differential equations are

satisfied over the domain68. D = {(b, ψ1, ψn) |0 < ψ1, ψn ≤ 1, ρ (F−1ψ1 (b) ,H−1ψn (b)) > b}.
68The change of variables allows to apply the theory of ordinary differential equations

without making unnecessary Lipschitz assumptions on the density f .
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Consequently, for every η < d, there exists one and one solution in this do-

main

Consider next the initial system (19, 20) over the domainD =

(
(b, α, γ) |

c < α, γ ≤ d; ρ (α, γ) > b

)
(the image of D by the change of variables above), with initial condition

(A9.4) below, where η is a parameter such that η < d :

d

db
lnH (γ (b))

=
1

ρ (α (b) , γ (b))− b⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1− n− 2

n− 1

(α (b)− b)H (ρ (α (b) , γ (b)))+

(ρ (α (b) , γ (b))− b)

(H (γ (b))−H (ρ (α (b) , γ (b))))

(ρ (α (b) , γ (b))− b)H (γ (b))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
; (A9.2)

d

db
lnF (α (b))

=
1

(n− 1) (ρ (α (b) , γ (b))− b)
.(A9.3)

α (η) = γ (η) = d.(A9.4)

It follows immediately from (A9.3) that d
db
α (b) > 0, for all solution of

(19,20) in D. Moreover, at the initial condition, the derivative of γ is also

stricltyre strictly positive, in fact, from (19,20) and ρ (d, d) = d:

d

db
lnH (γ (b)) =

d

db
lnF (α (b)) =

1

(n− 1) (c− d)
.

We have proved Lemma A9.2 below.

Lemma A9.2: Let (α, γ) be a solution of (A9.2-A9.4) in the domain D
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defined over (b0, η]. Then, d
db
α (b) > 0, for all b in (b0, η], and d

db
γ (η) > 0.

From Lemma A9.2, the solution to (A9.2-A9.4) is strictly increasing at η

and can be continued within D to the left of this point.

Lemma A9.3: Let (α, γ) be a solution of (A9.2-A9.4) in the domain

D defined over (b0, η]. Since, from Lemma A9.2, d
db
α (b) > 0, for all b in

(b0, η], the function ϕ below is well defined and differentiable:

ϕ = γα−1 = γβ,

where β is the inverse of α. Then, the inequality below holds true for all v

in (α (b0) , d]:

λ (v) ≤ ϕ (v) ;

where λ is defined as follows:

λ (v) = H−1
µ
F (v) min

w∈[v,d]
H (w)

F (w)

¶
.

Proof: Let v be in (α (b0) , d), k be such that 0 < k < minw∈[v,d]
H(w)
F (w)

, and

let the function λk be defined as follows:

λk (w) = H−1 (kF (w)) ,

for all w in (v, d]. From its definition and k < H(w)
F (w)

, for all w ≥ v, we have:

d

dv
lnH (λk (w)) =

d

dv
lnF (w)

λk (w) < w,

for all w ≥ v. In particular, λk (d) < d and, thus,

λk (d) < ϕ (d) .

80



(3) and (4) can be rewritten as follows:

(ρ (v, ϕ (v))− β (v))
d

dv
lnH (ϕ (v)) +

(n− 2)
⎧⎨⎩ (v − β (v)) H(ρ(v,ϕ(v)))

H(ϕ(v))
+

(ρ (v, ϕ (v))− β (v))
h
1− H(ρ(v,ϕ(v)))

H(ϕ(v))

i ⎫⎬⎭ d

dv
lnF (v)

=
d

dv
β (v) , (A9.5)

(ρ (v, ϕ (v))− β (v))
d

dv
lnF (v) +

(n− 2)
⎧⎨⎩ (ρ (v, ϕ (v))− β (v)) H(ρ(v,ϕ(v)))

H(ϕ(v))
+

(ρ (v, ϕ (v))− β (v))
h
1− H(ρ(v,ϕ(v)))

H(ϕ(v))

i ⎫⎬⎭ d

dv
lnF (v)

=
d

dv
β (v) .(A9.6)

Suppose there exists u in (v, d] such that ϕ (u) = λk (u). Since λk (u) < u,

we have ϕ (u) < u and, consequently, ρ (ϕ (u) , u) < u (because min (v, w) <

ρ (v, w) < max (v, w), for all (v, w) such that v 6= w). From (A9.5) and

(A9.6), we then have d
dv
lnH (ϕ (u)) < d

dv
lnF (u). Since d

dv
lnH (λk (u)) =

d
dv
lnF (u), we then have d

dv
lnH (ϕ (u)) < d

dv
lnH (λk (u)).

From an (elementary) technical lemma, we obtain ϕ (v) ≥ H−1 (kF (v)).

The result then follows by taking the limit for k tending towardsminw∈[v,d]
H(w)
F (w)

.

||

Lemma A9.4: Let (α, γ) be a solution of (A9.2-A9.4) in D defined

over (b0, η]. Then, the inequality below holds true for all v in (α (b0) , d]:

v ≤ ϕ (v) ,

and

α (b) ≤ γ (b) ,
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for all b in (b0, η].

Proof: It suffices to apply the previous lemma and to notice that, under
our assumption of stochastic dominance (iii), minw∈[v,d]

H(w)
F (w)

= H(v)
F (v)

. ||

Lemma A9.5: Let (α, γ) be a solution of (A9.2-A9.4) in D defined over

(b0, η]. Then, d
db
α (b) , d

db
γ (b) > 0, d

db
H(γ(b))
F (α(b))

≥ 0 and H (γ (b)) ≤ F (α (b)),

for all b in (b0, η].

Proof: From Lemma A9.2, d
db
α (b) > 0, for all b in (b0, η]. From Lemma

A9.4, α (b) ≤ γ (b). Consequently, the sum of (α (b)− b) H(ρ(α(b),γ(b)))
H(γ(b))

and

(ρ (α (b) , γ (b))− b)
h
1− H(ρ(α(b),γ(b)))

H(γ(b))

i
is not smaller than ρ (α (b) , γ (b)) −b,

and the factor between braces in the RHS of (A9.2) is not smaller than

1 − n−2
n−1 > 1

n−1 > 0. We then also have d
db
γ (b) > 0, for all b in (b0, η].

Moreover, from (A9.2) and (A9.3), we find d
db
lnH (γ (b)) ≥ 1

ρ(α(b),γ(b))−b
1

n−1 =
d
db
lnF (α (b)), for all b in (b0, η], and consequently H(γ(b))

F (α(b))
is nondecreasing over

this interval. Since, from (A9.4), H(γ(η))
F (α(η))

= 1, we obtainH (γ (b)) ≤ F (α (b)),

for all b in (b0, η]. ||

Lemma A9.6 (Monotonicity of the solution of (A9.2-A9.4) with respect
to η): Let (α, γ) and (eα, eγ) be the solutions of (A9.2, A9.3) in D and the

initial condition (A9.4) for η and eη, respectively, with eη < η. Assume

further that (α, γ) and (eα, eγ) are defined over (b,eη]. Then, we have:
eα (b) > α (b)eγ (b) > γ (b) ,

for all b in (b,eη].
Proof: There exists no b in (b,eη] such that eα (b) = α (b) and eγ (b) =

γ (b). Otherwise, (α, γ) and (eα, eγ) could be extended over the unions of
their definition domains and would coincide over this union. However, this
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is impossible since, from (A9.4) and Lemma A9.2 :

eα (eη) = d > α (eη) .
Let b0 be defined as follows:

b0 = inf {b ∈ [b,eη] |eα (b00) > α (b00) , eγ (b00) > γ (b00) , for all b00 in (b,eη]} .
From our assumptions and by continuity, there exists ε > 0 such that

[eη − ε,eη] is included in the set in the definition above of b0. We want to

prove that b0 = b. Suppose b0 > b. Then, by continuity and from the

observation above only the two cases below are possible:

Case 1: eα (b0) = α (b0) and eγ (b0) > γ (b0).

Case 2: eα (b0) > α (b0) and eγ (b0) = γ (b0).

We investigate each case in turn.

Case 1. From (A9.3) and because ρ is strictly increasing, we have:

d

db
lnF (0α (b))

=
1

(n− 1) (ρ (α (b0) , γ (b0))− b0)

>
1

(n− 1) (ρ (eα (b0) , eγ (b0))− b0)

=
d

db
lnF (eα (b0)) .

Then, since eα (b0) = α (b0) and d
db
eα (b0) < d

db
α (b0), we would have eα (b) <

α (b), for some b to the right of b’, which would contradict the definition of

b0.

83



Case 2. (A9.2) can be rewritten as follows:

(ρ (α (b) , γ (b))− b)
d

db
lnH (γ (b)) +

n− 2
n− 1

½
1− ρ (α (b) , γ (b))− α (b)

ρ (α (b) , γ (b))− b

H (ρ (α (b) , γ (b)))

H (γ (b))

¾
= 1. (A9.7)

FromLemmaA9.4, α (b) ≤ γ (b). From the definition (A9.1) of ρ, ρ (α (b) , γ (b))−
α (b) is equal to H(γ(b))−H(ρ(α(b),γ(b)))

h(ρ(α(b),γ(b)))
and the term between braces in the LHS

of (A9.7) is equal to:

1− H (γ (b))−H (ρ (α (b) , γ (b)))

H (γ (b))

H (ρ (α (b) , γ (b)))

h (ρ (α (b) , γ (b)))
,

which, from our assumption (ii) is nondecreasing with respect α (b). Because

ρ (α (b) , γ (b)) is strictly increasing in α (b), we find, under the assumptions of

Case 2: d
db
lnH (eγ (b0)) < d

db
lnH (γ (b0)), which, together with eγ (b0) = γ (b),

contradicts the definition of b0. ||

Lemma A9.7: Let b (η) be the lower-extremity of the maximal defin-

ition interval of the solution (α, γ) in D of the system (A9.2, A9.3) with

initial condition (A9.4) for the value η of the parameter. Then, b (η) is

strictly increasing when strictly above c. Furthermore, if b (η) > c, then

α (b (η)) , γ (b (η)) > c, ρ (α (b (η)) , γ (b (η))) = b (η).

Proof: Let η be such that η < d and b (η) > c. From the de-

finition of D and Lemma A9.5, we have α (b (η)) = c, γ (b (η)) = c, or

ρ (α (b (η)) , γ (b (η))) = b (η), where α (b (η)) , γ (b (η)) are the values of the

continuous extensions of the solution (α, γ) to the system (A9.2, A9.3) with

initial condition (A9.4) with the value η of the parameter. From Lem-

mas A9.4 and A9.5, α (b (η)) = c if and only if γ (b (η)) = c, in which case

ρ (α (b (η)) , γ (b (η))) = c < b (η), contrary to the definition of D. Conse-
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quently, we have

α (b (η)) , γ (b (η)) > c (A9.8)

ρ (α (b (η)) , γ (b (η))) = b (η) .

Let eη be such that η < eη < d. Let (eα, eγ) be the solution of the (A9.2-
A9.4) for the values eη of the parameter in the initial condition (A9.4). The
inequality b (eη) < b (η) is impossible. In fact, from Lemma A9.6, we have:

γ (b) > eγ (b) , (A9.9)
α (b) > eα (b) ,(A9.10)

for all b in (max (b (eη) , b (η)) , η). Suppose b (eη) < b (η). By making b in

these inequalities tend towards b (η), we would obtain eγ (b (η)) ≤ γ (b (η))

and eα (b (η)) ≤ α (b (η)) and, consequently, b (η) = ρ (α (b (η)) , γ (b (η))) ≥
ρ (α (b (eη)) , γ (b (eη))) = b (eη), a contradiction.
We have proved b (η) ≤ b (eη). We now prove b (η) < b (eη) by showing

that the equality b (η) = b (eη) is impossible. Suppose b (η) = b (eη). We then
have, from the definition of D and from (A9.9) and (A9.10):

eγ (b (η)) ≤ γ (b (η))eα (b (η)) ≤ α (b (η))

ρ (eα (b (η)) ,eγ (b (η))) = ρ (α (b (η)) , γ (b (η))) = b (η) .

Since ρ is strictly increasing, we find:

eγ (b (η)) = γ (b (η))eα (b (η)) = α (b (η)) . (A9.11)
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From (A9.3) and (A9.9,A9.10), we have:

d

db
lnF (α (b))

=
1

(n− 1) (ρ (α (b) , γ (b))− b)

<
1

(n− 1) (ρ (eα (b) , eγ (b))− b)

=
d

db
lnF (eα (b)) ,

for all b in (b (η) , η], and, consequently, F (α(b))
F (eα(b)) is strictly decreasing over this

interval.

From (A9.8) and (A9.11), we have F (α(b(η)))
F (eα(b(η))) = 1. Thus, α (b) < eα (b), for

all b in (b (η) , η], which contradicts Lemma A9.6. ||

In what follows, b (η) is as defined in Lemma A9.7. The sub-lemma

below is helpful in the proof of Lemma A9.8.

Sub-lemma A9.1: For all v in (α (b) , d], with ϕ = γβ and b ≥ b (η):

(ρ (v, ϕ (v))− β (v))F (v)n−1 − (ρ (α (b) , γ (b))− b)F (α (b))n−1

=

Z v

α(b)

F (v)n−1
d

dv
ρ (v, ϕ (v)) ;(A9.12)

β (v)F (v)n − bF (α (b))n

=

Z v

α(b)

ρ (v, ϕ (v))
d

dv
F (v)n . (A9.13)

Proof: From (A9.3), we have:

(ρ (v, ϕ (v))− β (v))
d

dv
F (v)n−1 = F (v)n−1

d

dv
β (v) ,
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and hence:

d

dv

©
(ρ (v, ϕ (v))− β (v))F (v)n−1

ª
= F (v)n−1

d

dv
ρ (v, ϕ (v)) ,

for all v in (α (b) , d], with ϕ = γβ and b ≥ b (η). Integrating this equation

from α (b) to v in (α (b) , d], we find:

(ρ (v, ϕ (v))− β (v))F (v)n−1 − (ρ (α (b) , γ (b))− b)F (α (b))n−1

=

Z v

α(b)

F (v)n−1
d

dv
ρ (v, ϕ (v)) .

(A9.12) then follows. Integrating (A9.12) by parts, we find (A9.13). ||

Lemma A9.8:
(i) For all η ≤ c, we have b (η) ≤ c;

(ii) For all η in
³
d− R d

c
H (w)n−1 dw, d

´
, we have b (η) > c.

Proof: (i) If η ≤ c, then, since (η, d, d) belongs D, Lemma A9.5 implies

that there exists a strictly increasing solution of (A9.2-A9.4) that can be

continued strictly to the left of η. Consequently, b (η) < c and (i) is proved.

(ii) Let η be in the open interval
³
d− R d

c
H (w)n−1 dw, d

´
. We show

that b (η) > c. Suppose that b (η) ≤ c, instead. From (A9.13) in Sub-lemma

A9.1 with v = d and b = c and Lemma A9.5, which implies ϕ = γβ ≤ H−1F ,
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we have:

η

≤
Z d

α(b)

ρ (v, ϕ (v))
d

dv
F (v)n−1

≤
Z d

α(b)

H−1F (v)
d

dv
F (v)n−1

≤
Z d

c

H−1F (v)
d

dv
F (v)n−1

= d−
Z d

c

H (w)n−1 dw,

and η ≤ d− R d
c
H (w)n−1 dw, which contradicts our initial assumption. ||

Let η∗ be defined as follows:

η∗ = inf {η < d|b (η) ≥ c} .

From Lemma A9.8 (ii), the set in the definition of η∗ is not empty and:

c ≤ η∗ ≤ d−
Z d

c

H (w)n−1 dw.(A9.14)

Lemma A9.9: Let (α (b; η) , γ (b; η)) be the solution of (A9.2-A9.4) in

the domain D. Suppose b (η∗) > c. Then, b (η) < c, for all η < η∗, and :

lim
η→<η∗

ρ (α (b; η) , γ (b; η))

= lim
η→<η∗

α (b; η)

= lim
η→<η∗

γ (b; η)

= b (η∗) ,

for all b ∈ (c, b (η∗)).
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Proof: For all η ≤ η∗, we have (c, b (η∗)) is included the (interior) of the

definition domain of the solution (α, γ) of (A9.2-A9.4) and

α (b) ≤ ρ (α (b) , γ (b))

≤ ρ (α (b (η∗)) , γ (b (η∗)))

≤ ρ (α∗ (b (η∗)) , γ∗ (b (η∗)))

= b (η∗) , (A9.15)

for all b in this interval, where the first inequality follows from Lemma A9.4,

the second from Lemma A9.5, the third from Lemma A9.6, and the the

equality from Lemmas A9.7, A9.4, and A9.5.

Let b be in (c, b (η∗)). Suppose limη→<η∗ α (b) does not exist or is different

from b (η∗). Then, there exists v0 < b (η∗) and a sequence (ηk)k≥1 such that

lim
k→+∞

ηk = η∗

α (b; ηk) < v0

ηk < η∗,

for all k ≥ 1.
Let ε be a strictly positive number. Let (α, γ) be a solution defined over

(b, η] of (A9.2-A9.4). Then, (β, ϕ) is the solution, defined over (α (b) , d], of
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the system below:

d

dv
ϕ (v) =

f (v)

F (v)

H (ϕ (v))

h (ϕ (v))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
n− 1− (n− 2)

(v − β (v))H (ρ (v, ϕ (v)))+

(ρ (v, ϕ (v))− β (v))

(H (ϕ (v))−H (ρ (v, ϕ (v))))

(ρ (v, ϕ (v))− β (v))H (ϕ (v))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A9.16)

d

dv
β (v) = (n− 1) f (v)

F (v)
(ρ (v, ϕ (v))− β (v)) .(A9.17)

Through the change of variables (p, χ, ζ) = (F (v) , HϕF−1, βF−1), the sys-

tem above is equivalent to the system below:

d

dp
χ (p) =

χ (p)

p⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
n− 1− (n− 2)

(F−1 (p)− ζ (p))H (ρ (F−1 (p) , χ (p)))+

(ρ (F−1 (p) , χ (p))− ρ (p))

(χ (p)−H (ρ (F−1 (p) , χ (p))))

(ρ (F−1 (p) , χ (p))− ρ (p))χ (p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A9.18)

d

dp
ρ (p) =

n− 1
p

¡
ρ
¡
F−1 (p) , χ (p)

¢− ρ (p)
¢
(A9.19),

and (HϕF−1, βF−1) is a solution over (F (α (b)) , 1] to thissyet and the initial

condition below:

χ (1) = 1, ρ (1) = η.

For the sake of convenience, denote (α∗, γ∗) the solution to (A9.2-A9.4)
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for η∗. Let w be strictly larger than α∗ (b (η∗)) such that:

|ρ (w,ϕ∗ (w))− β∗ (w)| < ε

(such aw exists since, from Lemmas A9.7, A9.4, and A9.5, ρ (α∗ (b (η∗)) , ϕ∗ (α∗ (b (η∗)))) =

β∗ (α∗ (b (η∗)))). From the continuity of the solution to the systemwith initial

condition above and the continuity of H−1 and ρ, for all ε0 > 0, there exists

δ > 0, such that ζ and χ is defined at F (w), and thus β and ϕ = H−1χF

are defined at w, and such that:

|ζ (F (w))− ζ∗ (F (w))|
= |β (w)− β∗ (w)|
< ε,

|ρ (w,ϕ (w))− ρ (w,ϕ∗ (w))|
=

¯̄
ρ
¡
w,H−1χF (w)

¢− ρ
¡
w,H−1χ∗F (w)

¢¯̄
< ε,

for all η such that η∗ − δ < η < η∗ (proceeding in this way, through the

system (A9.18, A9.19) avoids making Lipschitz conditions on f).

From (A9.12) in Sub-lemma A9.1 with b = b, we find:Z w

α(b;ηk)

F (v)n
d

dv
ρ (v, ϕ (v))

≤ ρ (w,ϕ (w))− β (w)

≤ 3ε,

for all k ≥ 1 such that η∗ − δ < ηk.
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From α (b; ηk) < v0 < α∗ (b (η∗)) < w, we then find:Z α∗(b(η∗))

v0
F (v)n

d

dv
ρ (v, ϕ (v)) ≤ 3ε,

and, from Lemma A9.1 and the inequality d
dv
ρ (v, ϕ (v)) ≥ ∂

∂v
ρ (v, ϕ (v)), we

then obtain:

(α∗ (b (η∗))− v0)L ≤ 3ε,
where L is a strictly positive lower bound of ∂

∂v
ρ (v, w) over [v0, d]2. This

inequality must hold for all ε > 0, which is cl;early impossible since the LHS

is a strictly positive constant. We have proved

lim
η→<η∗

α (b; η) = b (η∗) ,

for all b in (c, b (η∗)). From the inequalities (A9.15), we then find limη→<η∗ ρ (α (b; η) , γ (b; η)) =

b (η∗) and, consequently (because ρ is continuous and strictly increasing),

limη→<η∗ γ (b; η) = b (η∗). ||

Lemma A9.10:
b (η∗) = c

and the solution of (A9.2-A9.4) for the value η∗ of the parameter satisfies

the boundary conditions β (c) = δ (c) = c, β (d) = δ (d).

Proof: Suppose that, as in Lemma A9.9, b (η∗) > c. For η ≤ η∗,

consider the function below:

ln (b (η∗)− b) + n lnF (α (b; η)) , (A9.20)

which is defined for b in (c, b (η∗)) ⊆ (b (η) , b (η∗)). Let b0 be in this interval
(c, b (η∗)). Let ε be a (small) strictly positive number. Since, from Lemma

A9.9, we have limη→<η∗ ρ (α (b; η) , γ (b; η)) = limη→<η∗ α (b; η) = b (η∗), for
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all b in (c, b (η∗)), there exists δ > 0 such that

|F (α (b (η∗)− ε; η))− F (b (η∗))| < ε,

ρ (α (b0; η) , γ (b0; η)) > b (η∗)− ε/2, (A9.21)

for all η such that η∗ − δ < η < η∗.

From (A9.3), the derivative, with respect to b, −1
b(η∗)−b + n d

db
lnF (α (b; η))

of the function (A9.20) is equal to:

−1
b (η∗)− b

+
1

ρ (α (b; η) , γ (b; η))− b
,

and consequently, we have:

ln (b (η∗)− b0) + n lnF (α (b0; η))

≤ ln ε+ n ln {F (b (η∗)) + ε}
−
Z b(η∗)−ε

b0

µ
1

ρ (α (b; η) , γ (b; η))− b
− 1

b (η∗)− b

¶
db,(A9.22)

for all η such that η∗ − δ < η < η∗.

Since b (η∗)−b ≥ ε and, from (A9.21), ρ (α (b; η) , γ (b; η))−b ≥ ρ (α (b0; η) , γ (b0; η))−
(b (η∗)− ε) ≥ ε/2 over the integration interval in (A9.22), we have the fol-

lowing bound over this interval:¯̄̄̄
1

ρ (α (b; η) , γ (b; η))− b
− 1

b (η∗)− b

¯̄̄̄
≤ 2

ε
+
1

ε
.

We may thus apply Lebesgue convergence theorem, for example, and we find

limη→<η∗
R b(η∗)−ε
b0

³
1

ρ(α(b;η),γ(b;η))−b − 1
b(η∗)−b

´
db = 0 and, consequently,:

ln (b (η∗)− b0) + n lnF (b (η∗))

= lim
η→<η∗

{ln (b (η∗)− b0) + n lnF (α (b0; η))}
≤ ln ε+ n ln {F (b (η∗)) + ε} .

93



Since this inequality holds for all ε > 0, we obtain ln (b (η∗)− b0)+n lnF (b (η∗)) =

−∞ or, equivalently, (b (η∗)− b0)F (b (η∗)) = 0, which is impossible, since

b (η∗) > 0 and b0 < b (η∗). We have proved that b (η∗) > c is impossible, that

is, we have proved the equality b (η∗) = c. ||

Lemma A9.11: There cannot exist two different values of the parameter
η such that the corresponding solutions to (A9.2-A9.4) are defined over (c, η]

and such that α (c) = γ (c) = c.

Proof: Suppose there exists two such values η0 and eη, with η0 < eη < d.

Let α0, δ0 and eα,eδ the corresponding solutions to (A9.2-A9.4). Then, β0 =

α0−1, ϕ0 = δ0α0, and eβ = eα−1, eϕ = eδeα are solutions to (A9.16, A9.17) with
initial condition ϕ (d) = d, β (d) = η.

From (A9.16), we have d
d lnF

ϕ0 (d) = d
d lnF

eϕ (d) = 1
h(d)
. Moreover, from

(A9.16, A9.17) and the differentiability of ρ (v, ϕ (v)) and ρ (v, eϕ (v)); d
d lnF

ϕ0,
d

d lnF
eϕ, d

d lnF
β, d

d lnF
eβ are differentiable and, by differentiating (A9.16), we

find:

d

dv

µ
d

dnF
ϕ0 (v)

¶
v=d

− d

dv

µ
d

d lnF
eϕ (v)¶

v=d

=
1− d

dv
ρ (v, eϕ (v))v=d
d− eη − 1−

d
dv
ρ (v, ϕ0 (v))v=d
d− η0

=

µ
1− 1 + (f (d) /h (d))

2

¶µ
1

d− eη − 1

d− η0

¶
> 0,

since, from our assumption (iv), f(d)
h(d)

< 1. Consequently, there exists ε > 0,

such that ϕ0 (v) > eϕ (v) and, from the initial condition β (d) = η, β0 (v) <eβ (v), for all v in (d− ε, d).

Let v be defined as follows:

v = inf
n
v ∈ [c, d] |ϕ0 (w) > eϕ (w) and β0 (w) < eβ (w) , for all w in (v, d)o .
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From the previous paragraph, v ≤ d−ε. Suppose v > c. Since ϕ0,β0 and eϕ, eβ
are distinct solutions of the same differential system, the equalities ϕ0 (v) =eϕ (v) and β0 (v) = eβ (v) cannot both hold. Assume first ϕ0 (v) > eϕ (v)
and β0 (v) = eβ (v). From (A9.17), d

dv
β (v) > d

dv
eβ (v), which is impossible

since β0 (w) < eβ (w) holds true over (v, d). Assume next ϕ0 (v) = eϕ (v) and
β0 (v) < eβ (v). The factor between braces in (A9.16) can be rewritten as:

n− 1− (n− 2)
∙
1− ρ (v, ϕ (v))− v

ρ (v, ϕ (v))− β (v)

H (ρ (v, ϕ (v)))

H (ϕ (v))

¸
,

and hence is increasing in β (v). Consequently, d
dv
ϕ0 (v) < d

dv
eϕ (v), which is

impossible since ϕ0 (w) > eϕ (w) holds true over (v, d).
We have proved v = c, which implies ϕ0 (w) > eϕ (w), for all w in (c, d).

From (A9.13) in Sublemma 1, we then have:

β0 (d)

=

Z d

c

ρ (v, ϕ0 (v))
d

dv
F (v)n

>

Z d

c

ρ (v, eϕ (v)) d

dv
F (v)n

= eβ (d)
and β0 (d) > eβ (d). However, this is impossible since, from the initial condi-
tion at d, β0 (d) = η0 < eη = eβ (d). ||

Proof of Theorem 4

(i) follows from Lemmas A9.10 and A9.11; (ii) from Lemma A9.5; and

(iii) from Appendix 8.
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