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Abstract

We add a resale stage to standard auctions with two bidders. Bids are

either kept secret or made public. Either the auction winner or the auction

loser chooses the resale price. We characterize an infinity of equilibria of

the second-price auction and a unique equilibrium of the first-price auction.

For every equilibrium of an auction without bid disclosure, we construct an

outcome-equivalent and, in the case of the second-price auction, “posterior

implementable” equilibrium of the auction with bid disclosure. We compare

the revenues from the two auctions and from the two bargaining procedures

at resale.
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First-Price and Second-Price Auctions with Resale

1. Introduction

Most theoretical models of auction forbid resale between bidders. How-

ever, resale is, at least, possible after many real-life auctions. Documented

examples include auctions of bonds, bills, foreign exchange, timber rights,

SO2 emission allowances, radio-wave spectrum licences, and gold.

We consider the standard independent private value model with two,

possibly heterogeneous, bidders. To the first- and second-price auctions, we

add a stage where resale between bidders may occur. At resale, either the

auction winner or the auction loser makes a take-it-or-leave-it offer. The

auctions are either sealed, in which case bids are kept secret before resale

and payments in the second-price auction are deferred until after resale, or

open, in which case bids are made public before resale. Obviously, since the

payment is often revealed immediately after or during the auction, assuming

only with secret bids would be inadequate to many applications. Our results

apply as well to intermediate assumptions on the release of bids; for example,

to the Dutch auction, where only the higher bid is revealed, and to the English

auction, where only the lower bid is revealed.

We link these auctions with resale to auctions with (pure) common value.

In any equilibrium, the bidders’ net values for winning the auction are iden-

tical when their bids are identical. From this link, we obtain and explicitly

characterize an infinity of equilibria of the second-price auction and a unique

equilibrium of the first-price auction. In general, these equilibria are pure for

sealed-bid auctions and “mixed,” or, more correctly, “behavioral,” for open

auctions. Surprisingly enough, for every equilibrium of a sealed-bid auction,

there exists an “outcome-equivalent” equilibrium of the open auction.

The usual “truth-bidding” equilibrium of the second-price auction with-

out resale remains an equilibrium if resale is allowed. However, resale de-
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stroys its weak-dominance (as Gupta and Lebrun 1999 noticed)1 and allows

an infinity of (inefficient) equilibria. All our equilibria of the open second-

price auction are “posterior implementable,” that is, no bidder would regret

his bid upon learning the other bidder’s bid.

In the case with heterogenous bidders, we prove, by examining the final

equilibrium allocations, that some equilibria of the second-price auction bring

more revenues to the auctioneer that the equilibrium of the first-price auction

and that some others bring less.

Although the equilibrium bid distributions of the first-price auctions with

different bargaining procedures cannot be stochastically ranked, we show,

again by focusing on the final allocations, that the auctioneer’s revenues are

higher when the price setter at resale is the auction winner.

Contrary to Gupta and Lebrun (1999), where all private information is

exogenously released after the auction, only endogenous release of informa-

tion, through the auction outcome and bids, occurs in our model. Assuming

resale under complete information as in Gupta and Lebrun (1999) would

make the link with the common-value model immediate. Resale would rem-

edy any inefficiency and bidders’ net values for winning the auction would

be equal to the resale price. In the present paper, information is incomplete

at resale and, as is expected from Myerson and Satterwhaite (1983), not all

inefficiencies are remedied after the auction. Nevertheless, in asymmetric

equilibria, resale does take place and bidders’ net values coincide when bids

are identical. We show that this commonality of net values for identical or

“pivotal” bids is enough to extend standard results from the common-value

model.

Tröger (2003) and Garratt and Tröger (2003, 2005) add to the standard

symmetric model one “speculator”—a bidder whose only interest is in reselling

the item. In our paper, both bidders have also a “use value” for the item.

Garatt and Tröger do not consider the link with common-value model, nor

1It is the only ex-post equilibrium, see Krishna and Hafalir (2006).
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general comparisons between equilibrium payoffs.

In a similar augmented symmetric model, Bose and Deltas (2004) show

the presence of a winner’s curse in auctions between speculators and one final

consumer, even when, as they assume, the speculators are not allowed to act

on the information they gather at auction. In our paper, the presence of

a winner’s curse is made obvious through our link with the common-value

model.

When bidders observe only noisy signals of their use values before the

auction, Haile (2000) assumes that information becomes complete before re-

sale. He obtains a model with affiliated exogenous net values, to which he

can apply Milgrom and Weber (1982)’s methods. In a similar model with

private uncertainty, Haile (2003) also addresses resale under incomplete infor-

mation and obtains formulas for the pure symmetric separating equilibrium,

conditional on its existence.

Using calculus of variation, Krishna and Hafalir (2006) show that, no

matter the bargaining procedure at resale2, the unique equilibrium of the

first-price auction brings more revenues to the auctioneer than the truth-

bidding equilibrium of the second-price auction. Krishna and Hafalir (2006)

examine only the secret-bid case and do not offer comparative statics results

pertaining to a change of the bargaining procedure. They exhibit, in a few

examples, equilibria different from the truth-bidding equilibrium, but do not

offer a general characterization.

Milgrom (1987) considers resale in auctions with complete information

throughout. Pagnozzi (2005) shows that resale may occur at the equilibrium

of a second-price auction that awards a project with random cost to one of

two heterogenous bidders, one with limited liability and none with private

information.

Optimal mechanism design under the presence of resale has been studied

2In addition to our two ultimatums procedures, Krishna and Hafalir (2006) also consider
“intermediate” procedures where the price setter at resale is chosen at random according
to exogenous probabilities.
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in Zheng (2002), Calzolari and Pavan (2003), and Lebrun (2005).

2. Sealed-Bid Auctions

Bidder 1 and bidder 2’s use values for the item being auctioned are inde-

pendently distributed over the same interval [c, d], with c < d, according to

absolutely continuous probability measures F1 and F2 with density functions

f1 and f2 that are strictly positive and continuous3. We use the same no-

tations F1 and F2 for the cumulative distribution functions. A bidder’s use

value is his own private information.

For the sake of simplicity, we assume that there is no reserve price and

that participation to the auction is mandatory4. Bids are not revealed before

resale. If, as it is natural, the winner of the second-price auction learns the

price when he pays it, payment to the auctioneer has to be deferred until

after the resale stage.

Resale takes place at the resale stage if and only if the price setter proposes

a resale price the other bidder agrees to. We first define a regular equilibrium.

Definition 1:
(i) A regular bidding function βi of bidder i is a strictly increasing

and continuous function from [c, d] to [c,+∞).
(ii) If the auction winner (loser) is the price-setter at resale, a reg-

ular resale-offer function γi of bidder i is a real-valued, bounded, and mea-

surable5 function defined over [c, d]× [c,+∞) and such that γi (v; b) ≥(≤)v,
for all (v; b) in [c, d]× [c,+∞) .

3Many of our results hold true under more general assumptions that allow, for example,
density functions that are defined and strictly positive only over (c, d] (as long as they are
bounded).

4Our equilibria remain equilibria if participation is voluntary. Our results about the
second-price auction easily extend to the case with an arbitrary reserve price.

5As everywhere in this paper, with respect to the σ-algebras of Borel subsets.

5



(iii) A regular strategy of bidder i is a couple σi = (βi, γi) where βi

is a regular bidding function and γi a regular resale-offer function.

(iv) A regular equilibrium (σ1, σ2) = (β1, γ1;β2, γ2) is a couple of

regular strategies that can be completed6 into a perfect Bayesian equilibrium.

If bidder i with use value vi follows (βi, γi), he bids βi (vi) at auction and

offers the resale price γi (v; bi) at resale when he is the price setter and when

he has submitted bi at auction.

We then define the optimal-resale-price functions ρs and ρb as follows.

Definition 2:
(i) For all i = 1, 2, the buyer’s virtual-use-value function ωb

i and the

seller’s virtual-use-value function ωs
i are defined over [c, d] as follows:

ωb
i (vi) = vi − 1− Fi (vi)

fi (vi)
;ωs

i (vi) = vi +
Fi (vi)

fi (vi)
.

(ii) Let ωb
i (ω

s
i ) be strictly increasing over [c, d], for i = 1, 2. Let the

seller (buyer)’s optimal-resale-price function ρs (ρb) be the function defined

over [c, d]2 such that, for all (w1, w2) in [c, d]
2, its value at (w1, w2) is equal

to the unique solution of the equation below:

wk = ρx (w1, w2)− Fl(wl)− Fl(ρ
x (w1, w2))

fl(ρx (w1, w2))
, (1)

where x = s ( b) and k and l are such that l 6= k and wk ≤ (≥) wl.

(iii) Notation:

ρx1 (v, w) = ρx2 (w, v) = ρx (v, w), for all (v, w) in [c1, d1]×[c2, d2]
and x = s, b.

In Definition 2 (ii), ρs (w1, w2) (ρb (w1, w2)) is the resale price that maxi-

mizes bidder k’s expected payoff when bidder k’s use value is wk and bidder
6By adding beliefs and by adding what responses every bidder should give to offers

from the other bidder at resale, as functions of the past observed histories.
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l’s use value is distributed according to Fl conditionally on belonging to the

interval [c, wl] ([wl, d]). That equation (1) has a unique solution follows eas-

ily from the strict monotonicity of ωy
i , y 6= x. According to the notation

(iii), ρxi is the function ρx where we write bidder i’s use value as the first

argument.

In Theorems 1 and 2 below, as everywhere in this paper, β−1i denotes the

“extended” inverse of βi that takes the constant value d above the range of

βi.

Theorem 1: Let x, y be s or b and such that x 6= y. Let ωy
1 and ωy

2 be

strictly increasing. Let ϕ be a strictly increasing continuous function over

[c, d] such that ϕ (c) = c and ϕ (d) = d. Let (β1, γ1;β2, γ2) be the following

couple of regular strategies:

β1 (v) = ρx (v, ϕ (v)) ,

β2 (v) = ρx
¡
ϕ−1(v), v

¢
,

for all v in [c, d];

γi (v; b) = ρsi (vi,max (vi, αj (b))) , if x = s,

γi (v; b) = ρbi (vi,min (vi, αj (b))) , if x = b,

where αi = β−1i , i = 1, 2, for all (v, b) in [c, d]×[c,+∞). Then, (β1, γ1;β2, γ2)
is a regular equilibrium of the second-price auction where payments are de-

ferred and bids are kept secret and where the price setter at resale is the

auction winner if x = s and the auction loser if x = b. Moreover, the

following equalities hold true:

α2β1 = ϕ, (2)

ρx (α1 (b) , α2 (b)) = b,
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for all v in [c, d] and b in [β1 (c) , β1 (d)] = [β2 (c) , β2 (d)] = [c, d].

Since there is an infinity of functions ϕ as in Theorem 1, the sealed-

bid second-price auction with resale has, like the common-value auction, an

infinity of equilibria. From (2) above, ϕ determines the “intermediate”

equilibrium allocation, that is, the allocation after the auction and before

resale.

If ϕ is the identity function, every bidder submits at equilibrium his

use value. Since the auction efficiently allocates the item between bidders,

no resale takes place in this equilibrium. It is outcome-equivalent to the

equilibrium in weakly dominant strategies of the second-price auction with no

resale allowed. Of course, this equivalence no longer holds true for equilibria

constructed from functions ϕ different from the identity function.

Theorem 2: Let x, y be s or b and such that x 6= y. Let ωy
1 and ωy

2

be strictly increasing. Let (β1, γ1;β2, γ2) be the following couple of regular

strategies:

βi (v) =

R Fi(v)
0

ρx
¡
F−11 (q) , F−12 (q)

¢
dq

Fi (v)
(3)

for all v in [c, d];

γi (v; b) = ρsi (vi,max (vi, αj (b))) , if x = s,

γi (v; b) = ρbi (vi,min (vi, αj (b))) , if x = b,

where αi = β−1i , i = 1, 2, for all (v, b) in [c, d]×[c,+∞). Then, (β1, γ1;β2, γ2)
is a regular equilibrium of the first-price auction where bids are kept secret

and where the price setter at resale is the auction winner if x = s and the

auction loser if x = b. The following equality holds true:

α2β1 = F−12 F1.(4)
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Moreover, β1, β2 are the unique bidding functions that are differentiable over

(c, d] and part of a regular equilibrium.

From Gupta and Lebrun (1999), the equilibrium bidding functions (3) are

the same as in the simple model where private information becomes public

before resale and the resale price is exogenously determined according to

ρx. As (4) indicates, the bids are distributed identically across bidders.

Indeed, from Gupta and Lebrun (1999), the same bid distributions arise at

the equilibrium of the symmetric model where both bidders’ use values are

distributed according to Gx such that (Gx)−1 (q) = ρx
¡
F−11 (q) , F−12 (q)

¢
, for

all q in [0, 1].

The intuition for the theorems above and the main argument of their

proofs come from a link, we now describe, between our model and the

common-value model. Assume that β1, β2 are the bidding strategies the

bidders are expected to follow at auction. Bidder i’s updated beliefs about

bidder j’s use value after winning (losing) the auction with a bid bi are

represented by the conditional of Fj on [c, αj (bi)] ([αj (bi) , d]). Then,

γi (vi; bi) = ρsi (vi,max (vi, αj (bi))) (ρbi (vi,min (vi, αj (b)))), as in Theorem

1, is the smallest (largest) resale price that maximizes his expected payoff.

Assume that the bidders choose their resale prices according to these resale-

offer functions. Then, the bidders’ net values for winning will be as in

Lemma 1 below.

Lemma 1: Let x, y be s or b and such that x 6= y. Let ωy
1 and

ωy
2 be strictly increasing. Assume bidder i expects bidder j to follow a

regular bidding function βj, for all i 6= j. Assume bidder i offers the

resale price according to the optimal regular resale-offer function γi such

that γi (v; b) = ρsi (v,max (v, αj (b))) (ρbi (v,min (v, αj (b)))) if x = s (b), for

all i = 1, 2 and (v, b) in [c, d]× [c,+∞). Then, bidder i’s net-value function
uxi , that is, the difference between his utility ux,wi when winning (gross of the
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auction price) and his utility ux,li when losing is as follows:

usi
¡
vi, vj; bi, bj;βi, βj

¢
= ρsi (vi,max (vi, αj (bi))) , if not larger than vj;

= ρsj (vj,max (vj, αi (bj))) , if not larger than vi;

= vi, otherwise;

ubi
¡
vi, vj; bi, bj;βi, βj

¢
= ρbi (vi,min (vi, αj (bi))) , if not smaller than vj;

= ρbj (vj,min (vj, αi (bj))) , if not smaller than vi;

= vi, otherwise;

for all couple of bids (b1, b2) in [c,+∞)2, couple of use values (v1, v2) in
[c, d]2, and i, j = 1, 2 with i 6= j.

When resale could take place at the price one of the two bidders would

offer, bidder i’s net value is equal to the resale price: by winning bidder i

saves the resale price if he would be a buyer at resale and earns it if he would

be a reseller. Otherwise, bidder i’s net value is, as when resale is forbidden,

equal to his use value: winning secures him the item, which he could not have

obtained at resale. Since it depends, through their inverses, on the bidding

functions the bidders are expected to follow, the net value is “endogenous.”

When looking for regular equilibria in the case x = s (b), we may, as we

do below, focus on bidder i’s expected utility up to his expected utility from

losing (winning) with probability one. In fact, since bidder j, j 6= i, does

not observe bi when he makes an offer at resale, bidder i’s utility us,li (ub.wi )

when losing (winning) does not depend on his bid bi.

Since bidder i’s bid bi can enter his net value only as an argument of

his resale price, which, we have assumed, he chooses optimally, b0i = bi is a
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solution of the maximization problem below:

bi ∈ argmax
b0i≥c

Z αj(bi)

e

uxi
¡
vi, vj; b

0
i, βj (vj) ;βi, βj

¢
dFj (vj) , (5)

where e = c if x = s and e = d if s = b. By applying the integral form of (a

variant of) the envelope theorem inMilgrom and Segal (2002) to this problem,

we prove in Appendix 1 Lemma 2 (i) below, which allows to circumvent the

direct dependence of uxi on the own bid bi. We also prove in Appendix 1 the

rest of Lemma 2.

Lemma 2: Let x, y be s or b and such that x 6= y. Let ωy
1 and ωy

2 be

strictly increasing. Assume bidder i expects bidder j to follow the regular

bidding function βj, for all i 6= j. For all i = 1, 2, let uxi be bidder i’s

net-value function as defined in Lemma 1. Then, for all i 6= j:

(i)—Envelope Result: For all (vi, bi) in [c, d]× [c,+∞),Z αj(bi)

e

uxi
¡
vi, vj; bi, βj (vj) ;βi, βj

¢
dFj (vj)

=

Z αj(bi)

e

uxi
¡
vi, vj;βj (vj) , βj (vj) ;βi, βj

¢
dFj (vj) ,

where e = c if x = s and e = d if x = b.

(ii)—Common Value for Identical Bids when Bidding as Expected:

For all b ≥ c,

ux1 (α1 (b) , α2 (b) ; b, b;β1, β2) = ux2 (α1 (b) , α2 (b) ; b, b;β1, β2) = ρx (α1 (b) , α2 (b)) .

(iii)—Monotonicity with respect to Own Type: For all b ≥ c, uxi
¡
vi, αj (b) ; b, b;βi, βj

¢
is nondecreasing with respect to vi in [c, d].

Optimal resale under incomplete information at least remedies the “worst

cases” of inefficiency, where, given a price setter’s use value, the other bidder’s
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use value is as far away as possible, that is, when both bidders submit the

same bid. Then, as stated in Lemma 2 (ii), the equality between both bidders’

net values and the resale price, which always holds true under complete

information (as in Gupta and Lebrun, 1999), also holds true in those cases.

Theorems 1 and 2 follow easily from Lemma 2. Indeed, from Lemma 2

(i), bidder i’s expected net payoffs when his use value is vi and his bid is b

are as follows.

Expected Net Payoff in the Second-Price Auction:

Z αj(b)

e

uxi
¡
vi, vj;βj (vj) , βj (vj) ;βi, βj

¢
dFj (vj)−

Z αj(b)

c

βj (vj) dFj (vj) ; (6)

Expected Net Payoff in the First-Price Auction:

Z αj(b)

e

uxi
¡
vi, vj;βj (vj) , βj (vj) ;βi, βj

¢
dFj (vj)−

Z αj(b)

c

bdFj (vj) ; (7)

where e = c if x = s and e = d if x = b.

Since, at an equilibrium, b should be optimal if vi = αi (b), we obtain

from Lemma 2 (ii) the following first-order conditions.

First-Order Equilibrium Condition in the Second-Price Auction:

ρx (α1 (b) , α2 (b)) = b. (8)

First-Order Equilibrium Conditions in the First-Price Auction (if the bid-

ding functions are differentiable):

d

db
lnFi (αi (b)) =

1

ρx (α1 (b) , α2 (b))− b
, i = 1, 2. (9)

The same first-order conditions (9) would follow from any other choice
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of optimal regular resale-offer functions. From Gupta and Lebrun (1999),

the bidding functions described in Theorem 2 form the unique solution of

the two conditions (9)7. As in the common-value second-price auction,

the multiplicity of equilibria described in Theorem 1 ensues from the single

condition (8). From Lemma 2 (iii), the “second-order” condition is satisfied

for both auction procedures and the expected net payoff, which is then quasi-

concave with respect to the bid, reaches its maximum at the bid the bidding

function specifies.

Corollary 1 below describes a property of the equilibria we will use in the

following section to construct equivalent behavioral equilibria of the open

auctions.

Corollary 1: Let (β1, γ1;β2, γ2) be a regular equilibrium as in Theorem
1 or Theorem 2 and let ϕ be equal to α2β1. Let ϕ

+ and ϕ− be the functions

defined over [c, d] as follows:

ϕ+ (v) = min {w ∈ [v, d] |ϕ (w) = w}
ϕ− (v) = max {w ∈ [c, v] |ϕ (w) = w} .

If the price setter at resale is the auction winner, then all bids in

£
β1(ϕ

− (v)), ρs (α1 (.) , α2 (.))
−1 (v)

¤
are optimal for bidder 1 (2) with use value v in [c, d] such that ϕ (v) <(>)v.

If the price setter at resale is the auction loser, then all bids in

£
ρb (α1 (.) , α2 (.))

−1 (v) , β1(ϕ
+ (v))

¤
are optimal for bidder 1 (2) with use value v in [c, d] such that ϕ (v) >(<)v.

For example, assume the price setter at resale is the auction winner and

7Together with the immediate boundary condition β1 (d) = β2 (d).
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ϕ (v) > v, that is, β1 (v) > β2 (v) (the proof is similar in the other cases).

Since bidder 2 with use value v wins the auction only if bidder 1’s use value

is smaller v, no trade could occur with bidder 2 as the price setter. Let b

be a bid in
¡
β1(ϕ

− (v)), ρs (α1 (.) , α2 (.))
−1 (v)

¢
, where ϕ− (v) is the largest

point of coincidence between the bidding functions to the left of v. Then,

α1 (b) < α2 (b) and ρs (α1 (b) , α2 (b)) < min (v, α2 (b)).

By continuity, there exists a neighborhood of α1 (b) such that, for all

v1 in this neighborhood, ρs (v1, α2 (β1 (v1))) is smaller than v and α2 (b)

and is thus, from Lemma 1, equal to us2 (v1, v;β1 (v1) , β1 (v1) ;β1, β2) and

us1 (v1, α2 (b) ;β1 (v1) , β1 (v1) ;β1, β2), both. Consequently, from (6) and (7),

the first-order effect of a bid change from b on bidder 2’s expected payoffwhen

his use value is v is the same as when his use value is α2 (b). Since, by the

equilibrium condition, this first-order effect vanishes, bidder 2’s expected pay-

off must be constant over the closure of
¡
β1(ϕ

− (v)), ρs (α1 (.) , α2 (.))
−1 (v)

¢
.

The equilibrium bid β2 (v) belongs to this interval and, consequently, all bids

in it are optimal.

Intuitively, when bidder 2 is not the price setter and would accept the

resale offer from the other bidder, the first-order effect of a bid change is

determined by the resale price and hence is independent on bidder 2’s use

value. Since the bid is optimal for a certain use value, the first-order effect

vanishes throughout.

For the second-price auction, the set of optimal bids in the example above

is simply, from Theorem 1, [ϕ− (v) , v].

From Theorem 2, the function ϕ in Corollary 1 is F−12 F1 for the first-price

auction.

Corollary 2 below characterizes the final, that is, after resale, equilibrium

allocations.

Corollary 2: Let (β1, γ1;β2, γ2) be a regular equilibrium as in Theorem
1 or Theorem 2 and let ϕ be equal to α2β1. Let x be s ( b) if the price setter

at resale is the auction winner (loser). Let λxϕ be the function defined over
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[c, d] as follows:

λsϕ (v1) = ρs (v1, ϕ (v1)) , if ϕ (v1) ≥ v1;

λsϕ (v1) = ρs
¡
ϕ−1 (.) , .

¢−1
(v1) , if ϕ (v1) ≤ v1;

λbϕ (v1) = ρb (v1, ϕ (v1)) , if ϕ (v1) ≤ v1;

λbϕ (v1) = ρb
¡
ϕ−1 (.) , .

¢−1
(v1) , if ϕ (v1) ≥ v1.

If bidder 1’s and bidder 2’s use values v1, v2 in [c, d] are such that v2 <(>)λxϕ (v1),

then the equilibrium eventually allocates the item to bidder 1 (2).

The proof is simple. For example, assume x = s and ϕ (v1) ≥ v1.

From the definitions of ϕ and λsϕ, we have λ
s
ϕ (v1) ≤ ϕ (v1) = α2β1 (v1). If

v2 < λsϕ (v1), bidder 2 loses the auction and refuses bidder 1’s resale offer. If

λsϕ (v1) < v2 < ϕ (v1), bidder 2 loses the auction and accepts bidder 1’s resale

offer. If ϕ (v1) < v2, bidder 2 wins the auction and no advantageous resale

is possible.

3. Open Auctions

We now turn to the auctions where bids are publicly revealed prior to

resale. We need to extend our definition of a regular equilibrium by allowing

behavioral strategies.

Definition 3:
(i) A regular bidding strategy Gi (.|.) is a regular conditional proba-

bility measure with respect to vi in [c, d].

(ii) A regular strategy is a couple (Gi (.|.) , δi) where Gi (.|.) is a
regular bidding strategy and δi is a regular resale-offer function, as defined

in Definition 1 (ii).
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(iii) Bidder i’s regular beliefs are represented by a regular conditional

probability measure Fj (.|.) with respect to bj in [c,+∞).
(iv) A regular equilibrium is a couple of regular strategies and a cou-

ple of regular beliefs (G1 (.|.) , δ1, F2 (.|.) ;G2 (.|.) , δ2, F1 (.|.)) that can be com-
pleted into a perfect Bayesian equilibrium.

If bidder i with use value vi follows (Gi (.|.) , δi), he chooses his bid ac-
cording to Gi (.|vi) and, if he is the price setter and bidder j bids bj, he
offers δi (vi; bj) at resale. Here, contrary to the previous section, the second

argument of δi is bidder j’s bid. The measure Fj (.|bj) represents the revised
beliefs bidder i holds about bidder j’s use value after having observed bidder

j’s bid bj. We have Corollary 3 below.

Corollary 3: Let E be a regular equilibrium of a sealed-bid auction

as in Theorem 1 or Theorem 2 (Section 2). Then, there exists a regular

equilibrium E 0 of the open auction such that:
(i) The bid marginal distributions, the interim total expected payoffs,

and the final allocation are the same as in E;
(ii) Conditionally on the use value of the price setter at resale, resale

takes place with the same probability as in E and, when this probability is
different from zero, at the same price;

(iii) If the auction is the second-price auction, the auction outcomes—

the bids and the allocation before resale—are posterior implemented by E 0.

From (i) and (ii), for every regular equilibrium of a sealed-bid auction,

there exists an “equivalent” regular equilibrium of the open auction. Fol-

lowing Green and Laffont (1987) (see, also, Lopomo 2001), (iii) means that

all bids in the support of bidder i’s bidding strategy conditional on vi are

optimal for bidder i with use value vi even after he learns bidder j’s bid.

Let E = (β1, γ1;β2, γ2) be a regular equilibrium as in Theorem 1 or

Theorem 2. We prove Corollary 3 by constructing an equilibrium E 0 =
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(G1 (.|.) , δ1, F2 (.|.) ;G2 (.|.) , δ2, F1 (.|.)) with the required properties. The

construction proceeds into the following four steps.

Step 1. Construction of the supports: If, conditionally on his use value

vi, no resale could occur with bidder i as the price setter, the support of

Gi (.|vi) is the interval of optimal bids described in Corollary 1 (Section 2).
Otherwise, the support of Gi (.|vi) is {βi (vi)}.
Step 2. Construction of revised beliefs F1 (.|.) and F2 (.|.) that are con-

sistent with the supports in Step 1 and such that, when advantageous resale

is possible, the price setter finds it optimal to offer the same resale price he

offers in E .
Step 3. Construction of the bidding strategy Gi (.|.) as the conditional

distribution of the bid with respect to the use value from the joint distribution

of the use-value-bid couples generated by the marginal Fiαi of bidder i’s bid

in E and the conditional Fi (.|.) from Step 2, for all i = 1, 2.

Step 4. Extension of the construction of optimal regular resale-offer func-

tions from the domains in Step 2, where resale is possible, to the whole defi-

nition domain [c, d]× [c,+∞) such that, when the price setter is the auction
winner (loser), the resale offer does not depend on the bid from the auction

loser (winner) along the equilibrium path.

Step 1 is a simple definition. To show that Step 2 can be carried out,

assume x = s and there exists v such that ϕ (v) > v and consider b2 in

(β2 (ϕ
− (v)) , β2 (ϕ

+ (v))) (see Figure 1). From Step 1 and Corollary 1 (Sec-

tion 2), the support of F2 (.|b2) must be I = [ρs (α1 (b2) , α2 (b2)) , ϕ+ (v)]. In
order for bidder 1 with use value v1 = α1

¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢
, with

w in I, to propose the same resale price w as in E , it must maximize
(w − v1) (1− F2 (w|b2)) and hence satisfy (assuming differentiability) the first-
order condition below:

d

dw
ln (1− F2 (w|b2)) = 1

α1
¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢− w

. (10)
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If this necessary first-order condition is satisfied for all w in the interior of

I, it will also be sufficient (since w + 1−F2(w|b2)
f2(w|b2) will then be equal to the

increasing function α1
¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢
). Integrating this equation

in w from the lower extremity of I to v2 in the interior of I, we find:

F2 (v2|b2) = 1− exp
Z v2

ρs(α1(b2),α2(b2))

1

α1
¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢− w

dw. (11)

This equation defines indeed a probability distribution over I since the limit

of its right-hand side tends towards one as v2 tends towards ϕ+ (v) (for the

proof, see Appendix 2).

Step 3 leads to a bidding strategy of bidder i if and only if the marginal

distribution F ∗i of the joint distribution generated by Fi (.|.) and Fiαi is

equal to the actual distribution Fi of bidder i’s use value. To show that

this is indeed the case, assume, as in the previous paragraph, that x = s

and there exists v such that ϕ (v) > v (see Figure 1). From Step 2, (10) or,

equivalently, (12) below holds true, for all w in (ϕ− (v) , ϕ+ (v)) and all b2 in£
β2 (ϕ

− (v)) , ρs (α1 (.) , α2 (.))
−1 (w)

¤
:

¡
w − α1

¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢¢

f2 (w|b2) = 1− F2 (w|b2) , (12)

where f2 (.|b2) denotes the derivative of F2 (.|b2). Integrating (12) in b2

according to F2α2 over
£
β2 (ϕ

− (v)) , ρs (α1 (.) , α2 (.))
−1 (w)

¤
, we find (13)

below:

¡
w − α1

¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢¢

f∗2 (w) = F2
¡
α2
¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢¢−F ∗2 (w) . (13)

However, from the obvious equality ρs (α1 (.) , α2 (.))
¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢
=

w, we have:

¡
w − α1

¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢¢

f2 (w) = F2
¡
α2
¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢¢−F2 (w) . (14)
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Subtracting (14) from (13), we find:

d

dw
(F ∗2 (w)− F2 (w)) =

F2 (w)− F ∗2 (w)

w − α1
¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢ .

From this differential equation, the difference F ∗2 −F2 either vanishes or is of

constant sign over the interval (ϕ− (v) , ϕ+ (v)). From this same differential

equation, a constant sign implies strict monotonicity, which contradicts the

equality, from Step 2, between F ∗2 and F2 at both extremities of this inter-

val. Consequently, F ∗2 and F2 coincide everywhere and G2 (.|.) is a bidding
strategy of bidder 2.

FIGURE 1

Step 4 can be achieved by defining the following continuous resale-offer

functions:

δsi (vi; bj) = max (ρsi (vi, αjβi (vi)) , vi) , if bj ≤ βi (vi) ;

= min (ρs (α1 (bj) , α2 (bj)) , αj (bj)) , if bj > βi (vi) .

δbi (vi; bj) = min
¡
ρbi (vi, αjβi (vi)) , vi

¢
, if bj ≥ βi (vi) ;

= max
¡
ρb (α1 (bj) , α2 (bj)) , αj (bj)

¢
, if bj < βi (vi) .

The net value functions are then as in Lemma 3 below. Since we only

consider βi, βj from E , we drop them from the argument of uxi .

Lemma 3: Let x, y be s or b such that x 6= y. Let ωy
1and ωy

2 be

strictly increasing. Assume bidder i expects bidder j to follow the regular

bidding function βj, for all i 6= j. Assume further bidder i offers the resale

price according to the resale-offer function δxi defined above, for all i = 1, 2.

Then, bidder i’s net-value function uxi , that is, the difference between his
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utility ux,wi when winning and his utility ux,li when losing is as follows:

usi (vi, vj; bi, bj)

= δsi (vi; bj) , if not larger than vj;

= δsj (vj; bi) , if not larger than vi;

= vi, otherwise;

ubi (vi, vj; bi, bj)

= δbi (vi; bj) , if not smaller than vj;

= δbj (vj; bi) , if not smaller than vi;

= vi, otherwise;

for all couple of bids (b1, b2) in [c,+∞)2, couple of use values (v1, v2) in
[c, d]2, and i, j = 1, 2 with i 6= j.

Lemma 2 (Section 2) then extends as follows to open auctions. Notice

the change of lower extremity in (i.2) with respect to the similar property

Lemma 2. Here, when x = s (b), the utility in case of winning (losing) us,wi
(ub,li ) does not depend on the own bid and we may compare the expected

utility to the expected utility from winning (losing) with probability one,

that is, for all use values of the opponent.

Lemma 4: Let x, y be s or b such that x 6= y. Let ωy
1and ωy

2 be strictly

increasing. Let β1, β2 be regular bidding functions. For all i = 1, 2, let u
x
i

be bidder i’s net-value function as defined in Lemma 3. Let i, j be such that

i, j = 1, 2 and i 6= j. Then:

(i.1) For all (vi, bi) in [c, d]× [c,+∞) and all bj ≥ (≤) bi if x = s
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( b): Z
uxi (vi, vj; bi, bj) dFj (vj|bj)

=

Z
uxi (vi, vj; bj, bj) dFj (vj|bj)

(i.2) For all (vi, bi) in [c, d]× [c,+∞):Z bi

e0

Z
uxi (vi, vj; bi, bj) dFj (vj|bj) dFjαj (bj)

=

Z bi

e0

Z
uxi (vi, vj; bj, bj) dFj (vj|bj) dFjαj (bj) ,

where e0 = d if x = s and e0 = c if x = b.

(ii) For all b ≥ c:

Z
uxi (αi (b) , vj; b, b) dFj (vj|b) = ρx (α1 (b) , α2 (b)) .

(iii) For all b ≥ c,
R
uxi (vi, vj; b, b) dFj (vj|b) is nondecreasing with

respect to vi in [c, d].

From Lemma 3 and Step 4, the resale price and, thus, the net value of the

auction loser (winner) do not depend on his bid, when his opponent follows

the equilibrium strategy and x = s (b). (i.1) and (i.2) follow.

(ii) holds true because resale occurs with probability one when both bid-

ders submit the same bid b (and α1 (b) 6= α2 (b)). In fact, assume, for

example, x = s and α2 (b) > α1 (b). Then, according to the revised beliefs,

bidder 1’s use value is α1 (b) and the minimum of the support of bidder 2’s

use value is ρs (α1 (b) , α2 (b)). With probability one bidder 1’s resale offer

ρs (α1 (b) , α2 (b)) is accepted by bidder 2 and is equal to the bidders’ net

values.
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Bidder i obtains the conditional net expected payoff
R
uxi (vi, vj; bj, bj) dFj (vj|bj)

if he observes bj and proposes his optimal resale price when he is the price

setter. It is thus the maximum of the net expected payoff he obtains when

he proposes pi, over all possible resale prices pi. Since, for any fixed pi, his

net expected payoff is nondecreasing in his use value vi, so will his optimal

net expected payoff and (iii) follows.

From Lemma 4, proceeding as in Section 2, we obtain the same sets

of optimal bids. Since those sets are the supports of the bidding strategies

Gi (.|.), i = 1, 2, E 0 in Corollary 3 is a regular equilibrium of the open auction.
From Lemma 4 (i.1), given the opponent’s bid, a bidder’s bid does not

affect his net value for winning. In the second-price auction, a bidder’s bid

has obviously no effect on the auction price when he wins. From Lemma

4 and the equality ρx (α1 (b) , α2 (b)) = b, any of a bidder’s equilibrium bids

in the second-price auction wins against bids that contribute nonnegatively

to his net expected payoff and loses against those that contribute nonposi-

tively. He has thus no incentive to change his own bid, even if he learns his

opponent’s bid, and we have proved Corollary 3 (iii).

The final allocation is the same in E 0 as in E . Assume, for exam-

ple, x = s and bidder 1’s use value v1 is such that ϕ (v1) ≥ v1, where

ϕ = α2β1. Then, bidder 1 bids β1 (v1). If λsϕ is as defined in Corol-

lary 2 (Section 2), we have v1 ≤ λsϕ (v1) = ρs (v1, ϕ (v1)) ≤ ϕ (v1). If

v2 ≤ λsϕ (v1), Step 2 implies that bidder 2 with use value v2 bids at most

max
¡
β1 (ϕ

− (v1)) , ρs (α1 (.) , α2 (.))
−1 (v2)

¢
, which is not larger than β1 (v1).

Consequently, bidder 2 loses the auction and refuses bidder 1’s offer. If v2 ≥
λsϕ (v1), bidder 2 accepts bidder 1’s resale offer when bidder 1 wins and there

is no profitable resale when bidder 2 wins.

From Myerson (1981) (Lemma 2, p.63), the interim expected payoffs are

the same in E 0 as in E . Because, by construction, the marginal bid distrib-
utions are the same, we have proved Corollary 3 (i).

Since, from Step 1, a bidder who can be a price setter at resale submits
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the same bid, his interim probability of winning is also the same in both

equilibria. From Step 2, when resale is possible, the price setter makes

the same offer. In order to generate the same interim expected payoffs,

the probabilities of resale must be the same in both equilibria and we have

proved Corollary 3 (ii).

4. Comparative Statics

From Myerson (1981), in equilibrium, a couple of use values (v1, v2) con-

tributes to the auctioneer’s expected revenues the (buyer’s) virtual use value

of the eventual owner. Without loss of generality, assume that ωb
1 (c) ≥

ωb
2 (c). The function ψ =

¡
ωb
2

¢−1
ωb
1 then determines the final allocation

that maximizes the expected revenues. Its definition is equivalent to (15)

below:

ωb
2 (ψ (v)) = ωb

1 (v) , (15)

for all v in [c, d]. From this definition, ψ (d) = d.

In Lemma 5 below, λsϕ (λ
b
ϕ), where ϕ = F−12 F1, is the final equilibrium

allocation, defined in Corollary 2 (Section 2), of the first-price auction where

the auction winner (loser) is the price setter at resale.

Lemma 5: Let ωs
1, ω

s
2, ω

b
1, ω

b
2 be strictly increasing. Let ϕ be equal to

F−12 F1. Assume ωb
1 (c) ≥ ωb

2 (c). Then, for all v in [c, d]:

λsϕ (v) > ( < )λ
b
ϕ (v) if and only if λ

s
ϕ (v) < ( > )ψ (v) .

The proof is straightforward. Assume, for example, ϕ (v) > v. From

Corollary 2 (Section 2) and ϕ = F−12 F1, we have λ
s
ϕ (v) = ρs

¡
v, F−12 F1 (v)

¢
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and v = ρb
¡
F−11 F2

¡
λbϕ (v)

¢
, λbϕ (v)

¢
, that is:

v = λsϕ (v)−
F1 (v)− F2

¡
λsϕ (v)

¢
f2
¡
λsϕ (v)

¢ , (16)

v = λbϕ (v) +
F2
¡
λbϕ (v)

¢− F1 (v)

f1 (v)
. (17)

From the definitions of ωb
1, ω

b
2, (16) is equivalent to (18) below:

ωb
2

¡
λsϕ (v)

¢
= ωb

1 (v) + (1− F1 (v))

Ã
1

f1 (v)
− 1

f2
¡
λsϕ (v)

¢! . (18)
If λsϕ (v) < ψ (v), (15) and (18) imply f1 (v) > f2

¡
λsϕ (v)

¢
. Since F1 (v)−

F2
¡
λsϕ (v)

¢
> 0, (16) then implies:

v < λsϕ (v)−
F1 (v)− F2

¡
λsϕ (v)

¢
f1 (v)

.(19)

Combining (19) with (17) and rearranging give:

λbϕ (v) +
F2
¡
λbϕ (v)

¢
f1 (v)

< λsϕ (v) +
F2
¡
λsϕ (v)

¢
f1 (v)

,

which immediately implies λbϕ (v) < λsϕ (v). Lemma 5 is proved once it is

noticed that all our implications are actually equivalences.

From Lemma 5, wherever the two allocations λbϕ and λsϕ differ, λ
s
ϕ makes

the better choice by choosing the bidder with the higher virtual use value.

From Myerson (1981), higher expected revenues accrue to the auctioneer

under λsϕ and we have Corollary 4 below. Contrary to the case of resale

under complete information of Gupta and Lebrun (1999), there is in general

no relation of stochastic dominance between the bid distributions under the
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two bargaining procedures8.

Corollary 4: Let ωs
1, ω

s
2, ω

b
1, ω

b
2 be strictly increasing. Let Rs (Rb)

be the auctioneer’s expected revenues at the unique regular equilibrium of

the first-price auction when the auction winner (loser) is the price-setter at

resale. Then, we have:

Rs ≥ Rb.

The regular equilibrium of the second-price auction that is constructed

as in Theorem 1 from ϕ = F−12 F1 allocates the item as the unique equi-

librium of the first-price auction does and hence gives the same expected

revenues. In the symmetric case F1 = F2, the functions λsϕ, λ
b
ϕ and ψ

are all equal to the identity function and the equilibrium of the first-price

auction is an optimal mechanism. This is no longer the case in the asym-

metric case F1 6= F2. This point is most clearly made under the assumption

of differentiability of ψ. Assume that there exists v such that ϕ (v) > v.

Suppose λsϕ and ψ or, equivalently, from Lemma 5, λbϕ and ψ are identi-

cal over (ϕ− (v) , ϕ+ (v)). From (18) and (16), f1 (w) = f2 (ψ (w)) and

F1 (w)− F2 (ψ (w)) = f1 (w) (ψ (w)− w), for all w in (ϕ− (v) , ϕ+ (v)). Be-

cause its derivative then vanishes, (F1 (w)− F2 (ψ (w))) (ψ (w)− w) is con-

stant over this interval. However, this is impossible since it tends towards

zero at the extremities.

In the asymmetric case, there thus exists an interval where λxϕ is every-

where different from ψ, for all x = s, b. By slightly moving ϕ over this

interval, while keeping it continuous and strictly increasing, towards and

away from ψ, λxϕ will move in the same direction and we have Corollary 5

below.
8From Section 2, the bids are identically distributed according to Gx such that

(Gx)
−1
(q) = ρx

¡
F−11 (q) , F−12 (q)

¢
, for all q in [0, 1]. Consider the case where there

exists q, i, j such that F−1i (q) < F−1j (q), Fi is strictly convex over
£
F−1i (q) , F−1j (q)

¤
,

and Fj is strictly concave over the same interval. Then, the definitions of ρs and ρb

easily imply ρb
¡
F−11 (q) , F−12 (q)

¢
>

F−11 (q)+F−12 (q)
2 > ρs

¡
F−11 (q) , F−12 (q)

¢
, and Gs does

not stochastically dominate Gb.
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Corollary 5: Let ωs
1, ω

s
2, ω

b
1, ω

b
2 be strictly increasing and let ψ be dif-

ferentiable. Then:

(i) When F1 = F2, the unique regular equilibrium of the first-price auc-

tion gives revenues equal to the maximum revenues at regular equilibria of

the second-price auction.

(ii) When F1 6= F2, the revenues from the unique regular equilibrium of

the first-price auction are strictly smaller than the revenues at some equilibria

of the second-price auction and strictly larger than the revenues at some

others.

5. Conclusion

We established a link between the common value model and the inde-

pendent private value model with resale. From this link, we characterized

an infinity of equilibria of the second-price auction with resale and a unique

equilibrium of the first-price auction with resale. For every equilibrium of

any auction without disclosure of the bids, we constructed an equivalent equi-

librium of the auction with disclosure of the bids. All our equilibria of the

second-price auction with bid disclosure satisfy a no-regret property: after

learning the bids, no bidder regrets his own.

We showed an equilibrium of the second-price auction that gives the same

expected revenues as the equilibrium of the first-price auction. With hetero-

geneous bidders, we showed equilibria of the second-price auction that give

strictly higher expected revenues.

For the first-price auction, we proved that the expected revenues are

higher when the price setter at resale is the auction winner.

Appendix 1
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Lemma A1: Let x, y be s or b and such that x 6= y. Let ωy
1 and ωy

2

be strictly increasing. Let β1, β2 be regular bidding functions and let u
x
1 , u

x
2

be defined as in Lemma 1. Let i, j = 1, 2 be such that i 6= j. Then, for all

bi ≥ c and vi in [c, d], the function euxi (vj) = uxi
¡
vi, vj; bi, βj (vj) ;βi, βj

¢
of

vj is continuous with respect to vj at vj = αj (bi) and almost all other vj in

[c, d].

Proof: From the definition of uxi in Lemma 1 and the continuity of ρ
x

and αi, euxi is continuous at vj if vj 6= ρxi (vi,max (vi, αj (bi))). Assume vj
in [c, d] is such that vj = αj (bi) and vj = ρxi (vi,max (vi, αj (bi))). Then,

vj = vi. Since the function euxi always lies between vi and vj, it is continuous
if vj = vi and Lemma A1 follows. ||

Proof of Lemma 2:

Proof of (i): Through the change of variables wj = αj (bi), (5) implies

wj ∈ arg max
w0j∈[c,d]

Z wj

e

uxi
¡
vi, vj;βj

¡
w0j
¢
, βj (vj) ;βi, βj

¢
dFj (vj) , (A1.1)

for all wj in [c, d]. For all w0j in [c, d], the objective function in (A1.1), as an

integral, is absolutely continuous with respect to wj and, from Lemma A1

and the continuity of fj, the integrand is continuous with respect to vj almost

everywhere in [c, d]. Consequently, the derivative of the objective function at

wj exists and is equal to uxi
¡
vi, vj;βj

¡
w0j
¢
, βj (vj) ;βi, βj

¢
fj (wj), for almost

all wj in [c, d]. Since uxi and fj are bounded, the assumptions of a variant9

of Theorem 2 in Milgrom and Segal (2002) are satisfied. From this variant

and the change of variables wj = αj (bi), (i) follows for all bi in
£
c, βj (d)

¤
.

(i) reduces to the trivial equality 0 = 0 when x = b and bi ≥ βj (d).

9This is the variant (which can be proved as Theorem 2 in Milgrom and Segal (2002)
from their Theorem 1) where the requirement that f (x, .) be differentiable for all x ∈ X
is replaced by the requirement that f (x∗ (t) , .) be differentiable, for any selection x∗ (.) ∈
X∗ (.) and almost all t ∈ (0, 1).
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When x = s, (5) implies that the objective function in (5) is constant with

respect to b0i ≥ βj (d), for all bi ≥ βj (d). (i) then follows.

Proof of (ii): If α1 (b) = α2 (b), Lemma 1 implies uxi (α1 (b) , α2 (b) ; b, b;β1, β2) =

αi (b). Since ρx (α1 (b) , α2 (b)) = αi (b), (ii) follows. If α1 (b) 6= α2 (b),

min (α1 (b) , α2 (b)) < ρx (α1 (b) , α2 (b)) < max (α1 (b) , α2 (b)) and (ii) follows

from Lemma 1.

Proof of (iii): Wen x = s (b), uxi
¡
vi, αj (b) ; b, b;βi, βj

¢
is, from Lemma

1, equal to ρxi (vi, αj (b)) if vi <(>)αj (b), to αj (b) if vi = αj (b), and to

min
¡
vi, ρ

x
j (αj (b) ,max (αj (b) , αi (b)))

¢
(max

¡
vi, ρ

x
j (αj (b) ,min (αj (b) , αi (b)))

¢
)

if vi >(<)αj (b). (iii) follows. ||

Appendix 2

LemmaA2: Let i,j = 1, 2 be such that i 6= j. If ωs
j is strictly increasing,

then the left-hand partial derivative ∂l
∂vi

ρs (v, v) exists and

∂l
∂vi

ρs (v, v) =
1

2
,

for all v in (c, d]. If ωb
j is strictly increasing, then the right-hand partial

derivative ∂r
∂vi

ρb (v, v) exists and

∂r
∂vi

ρb (v, v) =
1

2

for all v in [c, d).

Proof: We prove the statement about ρs. The statement about ρb can
be similarly proved. Let v1, v2 be such that c < vi < vj ≤ d, with i 6= j.

Subtracting the definition (1) of ρ (v1, v2) from vj and dividing by vj − vi,

we find:

1 =
vj − ρ (v1, v2)

vj − vi

µ
1 +

1

fj (ρ (v1, v2))

Fj(vj)− Fj(ρ (v1, v2))

vj − ρ (v1, v2)

¶
.
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From the continuity of fj at vj and the continuity of ρ, fj (ρ (v1, v2)) tends

towards fj(vj), when vi tends towards vj from below. Since the derivative

of Fj at vj exists and is equal to fj (vj), the limit of the ratio
Fj(vj)−Fj(ρ(v1,v2))

vj−ρ(v1,v2)
is equal to fj (vj). Consequently, the factor between parentheses in the

equation above tends towards 2 and the lemma follows. ||

Proof that (11) is a cumulative distribution function:

As indicated in the main text, we only need to prove that (11) tends to-

wards one as v2 tends towards ϕ+ (v). Since it is well known that the integralR ϕ+(v)
ρs(α1(b2),α2(b2))

1
ϕ+(v)−wdw diverges and since

w−α1(ρs(α1(.),α2(.))−1(w))
ϕ+(v)−w = −1 +

ϕ+(v)−α1(ρs(α1(.),α2(.))−1(w))
ϕ+(v)−w , we will be done once we prove that ϕ+(v)−w

ϕ+(v)−α1(ρs(α1(.),α2(.))−1(w))
is bounded away from zero, as w tends towards ϕ+ (v) from below, or, equiva-

lently, through the change of variables v1 = α1
¡
ρs (α1 (.) , α2 (.))

−1 (w)
¢
, that

ϕ+(v)−ρs(v1,ϕ(v1))
ϕ+(v)−v1 is bounded away from zero, as v1 tends towards ϕ+ (v) from

below.

However, this last ratio is equal to the sum
ϕ+(v)−ρs(v1,ϕ+(v))

ϕ+(v)−v1 +
ρs(v1,ϕ+(v))−ρs(v1,ϕ(v1))

ϕ+(v)−v1 .

The second term is nonnegative and, from ∂l
∂v2

ρs (ϕ+ (v) , ϕ+ (v)) = 1
2
(Lemma

A2), the first term tends towards 1
2
. Consequently, it is bounded away from

zero and the proof is complete.

The proof for the other bargaining procedure is similar and makes use of
∂r
∂v2

ρb (ϕ− (v) , ϕ− (v)) = 1
2
. ||

29



Figure 1

-

6

c d
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