
Constrained
Optimization



Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software described in
this document is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.
The purchaser may make one copy of the software for backup purposes. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose other than the
purchaser’s personal use without the written permission of Aptech Systems, Inc.
c©Copyright 1994-2000 by Aptech Systems, Inc., Maple Valley, WA.
All Rights Reserved.

GAUSS, GAUSS Engine, GAUSS Light are trademarks of Aptech Systems, Inc. All
other trademarks are the properties of their respective owners.

Documentation Version: February 25, 2002

Part Number: 000013



Contents

1 Installation 1

1.1 UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Floppy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.3 Solaris 2.x Volume Management . . . . . . . . . . . . . . . . . . . 2

1.2 Windows/NT/2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Floppy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Differences Between the UNIX and Windows/NT/2000 Versions . . . . . 3

2 Constrained Optimization 5

2.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 README Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Converting OPTMUM Command Files . . . . . . . . . . . . . . . 6

2.2 The Nonlinear Programming Problem . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



2.2.2 The Quasi-Newton Algorithms . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Scaled Quasi-Newton Methods . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Line Search Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 Trust Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.6 Switching Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.7 Random Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.8 Active and Inactive Parameters . . . . . . . . . . . . . . . . . . . . 13

2.3 Managing Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Linear Equality Constraints . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Linear Inequality Constraints . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Nonlinear Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.4 Nonlinear Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.5 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Analytical Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 User-Supplied Numerical Gradient . . . . . . . . . . . . . . . . . . 18

2.5.3 Analytical Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.4 User-Supplied Numerical Hessian . . . . . . . . . . . . . . . . . . . 18

2.5.5 Analytical Nonlinear Constraint Jacobians . . . . . . . . . . . . . . 18

ii



2.6 Minimization Problems and Suggested Solutions . . . . . . . . . . . . . . 19

2.6.1 “feasible step length could not be found” error . . . . . . . . . . . 19

2.6.2 Directions become very large and step lengths become very small . 19

2.6.3 One of the parameters gets very large and CO bombs . . . . . . . 19

2.6.4 How to interpret the constraint number when CO halts with “con-
straint no. inconsistent” . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.5 Re-using calculation results between the objective function proc
and the gradient proc . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.1 Nonlinear Programming Problem . . . . . . . . . . . . . . . . . . . 21

2.7.2 Providing Procedures for Gradients and Jacobians . . . . . . . . . 23

2.7.3 A Portfolio Optimization Problem . . . . . . . . . . . . . . . . . . 26

2.8 Run-Time Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9.1 Return Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9.2 Error Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Constrained Optimization Reference 35

CO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

COSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

COPrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iii



iv



Installation

Chapter 1

Installation

1.1 UNIX

If you are unfamiliar with UNIX, see your system administrator or system
documentation for information on the system commands referred to below. The device
names given are probably correct for your system.

1.1.1 Download

1. Copy the .tar.gz file to /tmp.

2. Unzip the file.

gunzip appxxx.tar.gz

3. cd to the GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss

4. Untar the file.

tar xvf /tmp/appxxx.tar

1.1.2 Floppy

1. Make a temporary directory.

mkdir /tmp/workdir
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1. INSTALLATION

2. cd to the temporary directory.

cd /tmp/workdir

3. Use tar to extract the files.

tar xvf device name

If this software came on diskettes, repeat the tar command for each diskette.

4. Read the README file.

more README

5. Run the install.sh script in the work directory.

./install.sh

The directory the files are install to should be the same as the install directory
of GAUSS or the GAUSS Engine.

6. Remove the temporary directory (optional).

The following device names are suggestions. See your system administrator. If you are
using Solaris 2.x, see Section 1.1.3.

Operating System 3.5-inch diskette 1/4-inch tape DAT tape

Solaris 1.x SPARC /dev/rfd0 /dev/rst8

Solaris 2.x SPARC /dev/rfd0a (vol. mgt. off) /dev/rst12 /dev/rmt/1l

Solaris 2.x SPARC /vol/dev/aliases/floppy0 /dev/rst12 /dev/rmt/1l

Solaris 2.x x86 /dev/rfd0c (vol. mgt. off) /dev/rmt/1l

Solaris 2.x x86 /vol/dev/aliases/floppy0 /dev/rmt/1l

HP-UX /dev/rfloppy/c20Ad1s0 /dev/rmt/0m

IBM AIX /dev/rfd0 /dev/rmt.0

SGI IRIX /dev/rdsk/fds0d2.3.5hi

1.1.3 Solaris 2.x Volume Management

If Solaris 2.x volume management is running, insert the floppy disk and type

volcheck

to signal the system to mount the floppy.

The floppy device names for Solaris 2.x change when the volume manager is turned off
and on. To turn off volume management, become the superuser and type

/etc/init.d/volmgt off

To turn on volume management, become the superuser and type

/etc/init.d/volmgt on
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1. INSTALLATION

1.2 Windows/NT/2000

1.2.1 Download

Unzip the .zip file into the GAUSS or GAUSS Engine installation directory.

1.2.2 Floppy

1. Place the diskette in a floppy drive.

2. Call up a DOS window

3. In the DOS window log onto the root directory of the diskette drive. For
example:

A:<enter>

cd\<enter>

4. Type: ginstall source drive target path

source drive Drive containing files to install
with colon included

For example: A:

target path Main drive and subdirectory to install
to without a final \

For example: C:\GAUSS

A directory structure will be created if it does not already exist and the files
will be copied over.

target path\src source code files
target path\lib library files
target path\examples example files

1.3 Differences Between the UNIX and Windows/NT/2000
Versions

• If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press Enter after the keystroke in the
UNIX version.

3



1. INSTALLATION

• On the Intel math coprocessors used by the Windows/NT/2000 machines,
intermediate calculations have 80-bit precision, while on the current UNIX
machines, all calculations are in 64-bit precision. For this reason, GAUSS
programs executed under UNIX may produce slightly different results, due to
differences in roundoff, from those executed under Windows/NT/2000.
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CO

Chapter 2

Constrained Optimization

written by

Ronald Schoenberg

This module contains a set of procedures for the solution of the nonlinear programming
problem.

2.1 Getting Started

GAUSS 3.2.8+ is required to use these routines.

2.1.1 README Files

The file README.co contains any last minute information on this module. Please read
it before using the procedures in this module.

2.1.2 Setup

In order to use the procedures in the CONSTRAINED OPTIMIZATION Module, the
CO library must be active. This is done by including co in the library statement at the
top of your program or command file:
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2. CONSTRAINED OPTIMIZATION

library co,pgraph;

This enables GAUSS to find the CONSTRAINED OPTIMIZATION procedures. If
you plan to make any right hand references to the global variables (described in the
REFERENCE section), you also need the statement:

#include co.ext;

Finally, to reset global variables in succeeding executions of the command file the
following instruction can be used:

coset;

This could be included with the above statements without harm and would insure the
proper definition of the global variables for all executions of the command file.

The version number of each module is stored in a global variable:

co ver 3×1 matrix, the first element contains the major version number of the
CONSTRAINED OPTIMIZATION Module, the second element the
minor version number, and the third element the revision number.

If you call for technical support, you may be asked for the version number of your copy
of this module.

2.1.3 Converting OPTMUM Command Files

The CO module includes a utility for processing command files to change OPTMUM
global names to CO global names and vice versa. This utility is a standalone
executable program that is called outside of GAUSS. The format for this call is,

chgvar control file target directory file...

The control file is an ASCII file containing a list of the symbols to change in the first
column and the new symbol names in the second column. The CO module comes with
one control file:

opt3toco OPTMUM to CO

chgvar processes each file and writes a new file with the same name in the target
directory.

A common use for chgvar is translating a command file that had been used before with
OPTMUM to one that can be run with CO. For example:
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mkdir new

chgvar opt3oco new opt*.cmd

This would convert every file matching opt*.cmd in the current directory and create
a new file with the same name in the new directory.

The reverse translation is also possible. However, there are some global names in CO
that don’t have a corresponding global in OPTMUM, and in these cases no translation
occurs.

Further editing of the file may be necessary after processing by chgvar.

You may edit the control files or create your own. They are ASCII files with each line
containing a pair of names, the first column being the old name, and the second column
the new name.

2.2 The Nonlinear Programming Problem

CONSTRAINED OPTIMIZATION is a set of procedures for the solution of the
general nonlinear programming problem:

min F (θ)

subject to the linear constraints,
Aθ = B

Cθ ≥ D
the nonlinear constraints,

G(θ) = 0

H(θ) ≥ 0
and bounds,

θl ≤ θ ≤ θu
G(θ) and H(θ) are functions provided by the user and must be differentiable at least
once with respect to θ.

F (θ) must have first and second derivatives with respect to the parameters, and the
matrix of second derivatives must be positive semi-definite.

CONSTRAINED OPTIMIZATION uses the Sequential Quadratic Programming
method. In this method the parameters are updated in a series of iterations beginning
with a starting values that you provide. Let θt be the current parameter values. Then
the succeeding values are

θt+1 = θt + ρδ

where δ is a k × 1 direction vector, and ρ a scalar step length.

7



2. CONSTRAINED OPTIMIZATION

direction

Define

Σ(θ) =
∂2F

∂θ∂θ′

Ψ(θ) =
∂F

∂θ
and the Jacobians

Ġ(θ) =
∂G(θ)

∂θ

Ḣ(θ) =
∂H(θ)

∂θ
For the purposes of this exposition, and without lost of generality, we may assume that
the linear constraints and bounds have been incorporated into G and H.

The direction, δ is the solution to the quadratic program

minimize
1

2
δ′Σ(θt)δ + Ψ(θt)δ

subject to Ġ(θt)δ + G(θt) = 0

Ḣ(θt)δ +H(θt) ≥ 0

This solution requires that Σ be positive semi-definite.

In practice, linear constraints are specified separately from the G and H because their
Jacobians are known and easy to compute. And the bounds are more easily handled
separately from the linear inequality constraints.

line search

Define the merit function

m(θ) = F + max | κ |
∑

j

| gj(θ) | −max | λ |
∑

`

min(0, h`(θ))

where gj is the j-th row of G, h` is the `-th row of H, κ is the vector of Lagrangean
coefficients of the equality constraints, and λ the Lagrangean coefficients of the
inequality constraints.

The line search finds a value of ρ that minimizes or decreases m(θt + ρδ).
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2.2.1 Derivatives

The SQP method requires the calculation of a Hessian, Σ, and various gradients and
Jacobians, Ψ, Ġ(θ), and Ḣ(θ). CO computes these numerically if procedures to
compute them are not supplied.

If you provide a proc for computing Ψ, the first derivative of L, CO uses it in
computing Σ, the second derivative of L, i.e., Σ is computed as the Jacobian of the
gradient. This improves the computational precision of the Hessian by about four
places. The accuracy of the gradient is improved and thus the iterations converge in
fewer iterations. Moreover, the convergence takes less time because of a decrease in
function calls - the numerical gradient requires k function calls while an analytical
gradient reduces that to one.

2.2.2 The Quasi-Newton Algorithms

The Hessian may be very expensive to compute at every iteration, and poor start
values may produce an ill-conditioned Hessian. For these reasons alternative algorithms
are provided in CO for updating the Hessian rather than computing it directly at each
iteration. These algorithms, as well as step length methods, may be modified during
the execution of CO.

Beginning with an initial estimate of the Hessian, or a conformable identity matrix, an
update is calculated. The update at each iteration adds more “information” to the
estimate of the Hessian, improving its ability to project the direction of the descent.
Thus after several iterations the quasi-Newton algorithm should do nearly as well as
Newton iteration with much less computation.

There are two basic types of quasi-Newton methods, the BFGS (Broyden, Fletcher,
Goldfarb, and Shanno), and the DFP (Davidon, Fletcher, and Powell). They are both
rank two updates, that is, they are analogous to adding two rows of new data to a
previously computed moment matrix. The Cholesky factorization of the estimate of the
Hessian is updated using the functions cholup and choldn.

Quasi-Newton Methods (BFGS and DFP)

BFGS is the method of Broyden, Fletcher, Goldfarb, and Shanno, and DFP is the
method of Davidon, Fletcher, and Powell. These methods are complementary
(Luenberger 1984, page 268). BFGS and DFP are like the NEWTON method in that
they use both first and second derivative information. However, in DFP and BFGS the
Hessian is approximated, reducing considerably the computational requirements.
Because they do not explicitly calculate the second derivatives they are called
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2. CONSTRAINED OPTIMIZATION

quasi-Newton methods. While it takes more iterations than the NEWTON method,
the use of an approximation produces a gain because it can be expected to converge in
less overall time (unless analytical second derivatives are available in which case it
might be a toss-up).

The quasi-Newton methods are commonly implemented as updates of the inverse of the
Hessian. This is not the best method numerically for the BFGS algorithm (Gill and
Murray, 1972). This version of CO, following Gill and Murray (1972), updates the
Cholesky factorization of the Hessian instead, using the functions cholup and choldn
for BFGS. The new direction is then computed using cholsol, a Cholesky solve, as
applied to the updated Cholesky factorization of the Hessian and the gradient.

2.2.3 Scaled Quasi-Newton Methods

In the unscaled versions of the quasi-Newton methods, the estimate of the Hessian is
stored as a Cholesky factorization. The scaled quasi-Newton methods (Han, 1986),
store a different type of factorization, called a conjugate gradient factorization. In this
factorization,

Σ = ZZ ′

where Z is a square matrix. Z is highly overdetermined, that is, there are many
matrices that satisfy this relationship. Han (1986) describes a technique that chooses a
matrix that is orthogonal and the columns of which can be scaled to reduce the effects
of ill-conditioning.

The scaled methods are more time-consuming than their unscaled counterparts, and
thus they won’t be prefered for general use. However, they may produce better results
for ill-conditioned models.

2.2.4 Line Search Methods

Given a direction vector d, the updated estimate of the parameters is computed

θt+1 = θt + ρδ

where ρ is a constant, usually called the step length, that increases the descent of the
function given the direction. CO includes a variety of methods for computing ρ. The
value of the function to be minimized as a function of ρ is

m(θt + ρδ)

Given θ and d, this is a function of a single variable ρ. Line search methods attempt to
find a value for ρ that decreases m. STEPBT is a polynomial fitting method, BRENT
and HALF are iterative search methods. A fourth method called ONE forces a step
length of 1. The default line search method is STEPBT. If this, or any selected
method, fails, then BRENT is tried. If BRENT fails, then HALF is tried. If all of the
line search methods fail, then a random search is tried (provided co RandRadius is
greater than zero).
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STEPBT

STEPBT is an implementation of a similarly named algorithm described in Dennis and
Schnabel (1983). It first attempts to fit a quadratic function to m(θt + ρδ) and
computes a ρ that minimizes the quadratic. If that fails it attempts to fit a cubic
function. The cubic function more accurately portrays the F which is not likely to be
very quadratic, but is, however, more costly to compute. STEPBT is the default line
search method because it generally produces the best results for the least cost in
computational resources.

BRENT

This method is a variation on the golden section method due to Brent (1972). In this
method, the function is evaluated at a sequence of test values for ρ. These test values
are determined by extrapolation and interpolation using the constant,
(
√

5− 1)/2 = .6180.... This constant is the inverse of the so-called “golden ratio”
((
√

5 + 1)/2 = 1.6180... and is why the method is called a golden section method. This
method is generally more efficient than STEPBT but requires significantly more
function evaluations.

HALF

This method first computes m(x+ d), i.e., sets ρ = 1. If m(x+ d) < m(x) then the step
length is set to 1. If not, then it tries m(x + .5d). The attempted step length is divided
by one half each time the function fails to decrease, and exits with the current value
when it does decrease. This method usually requires the fewest function evaluations (it
often only requires one), but it is the least efficient in that it is not very likely to find
the step length that decreases m the most.

2.2.5 Trust Regions

The idea behind the trust region methods (Dennis and Schnabel, 1994) is to find a new
direction, δ, that minimizes

m(θt + δ) = F (θc) + Ψ(θt)δ +
1

2
δ′Σ(θt)δ

subject to

‖ δ ‖≤ ∆

where ∆ is the trust radius.
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2. CONSTRAINED OPTIMIZATION

In the usual implementation this is solved using approximate methods. In the context
of the SQP method, however, this problem can be solved exactly at each iteration by
placing constraints on the direction being computed in the quadratic programming step
of the SQP algorithm. If we define the norm to be a one-norm, the constraints amount
to simple bounds on the direction vector δ. That is, we minimize m(θ + δ) such that

−∆ ≤ δ ≤ ∆

The trust region method can be invoked by setting

_co_Trust = 1;

or by adding “trust” to the options list,

_co_Options = { trust };

You may also toggle the trust region method by pressing “t” on the keyboard during
the iterations.

The default region size is .01. This may be modifed by setting the global
co TrustRegion to some other value.

2.2.6 Switching Algorithms

For some problems, descent methods perform differently over different regions of the
descent. There might be an advantage, therefore, to be able to switch algorithms at
some point of the descent. For this reason a global is provided to give control over
algorithm switching.

To activate algorithm switching co Switch must be set to a three column vector.
The first element is a number indicating which algorithm to which the iterations will be
switched, where

1 BFGS - Broyden, Fletcher, Goldfarb, Shanno method
2 DFP - Davidon, Fletcher, Powell method
3 NEWTON - Newton-Raphson method
4 scaled BFGS
5 scaled DFP

The second element is amount of change in the function less than which the algorithm
will be switched. The idea here is that the algorithm should be switched when the
descent progress is too small, that is, when the function changes less than some value.

The third element is the iteration number at which the algorithm is to be switched.

The SQP method used in CO works best with the NEWTON descent algorithm. BFGS
doesn’t work as well but is much faster. BFGS will work better in the region of the
optimum and therefore it is often useful to start out with the NEWTON method and
switch to the BFGS method when either the descent progress is small or after a number
of iterations. Useful values for lack of progress and number of iterations can be
determined by looking over results from a run without switching. Choose some value
for lack of progress or number of iterations that allow the initial algorithm to have its
chance to work.

12



CO

2. CONSTRAINED OPTIMIZATION

2.2.7 Random Search

If the line search fails, i.e., no ρ is found such that m(θt + ρδ) < m(θt), then a search is
attempted for a random direction that decreases the function. The radius of the
random search is fixed by the global variable, co RandRadius (default = .01), times
a measure of the magnitude of the gradient. CO makes co MaxTry attempts to find
a direction that decreases the function, and if all of them fail, the direction with the
smallest value for m is selected.

The function should never increase, but this assumes a well-defined problem. In
practice, many functions are not so well-defined, and it often is the case that
convergence is more likely achieved by a direction that puts the function somewhere else
on the hyper-surface even if it is at a higher point on the surface. Another reason for
permitting an increase in the function here is that halting the minimization altogether
is only alternative if it is not at the minimum, and so one might as well retreat to
another starting point. If the function repeatedly increases, then you would do well to
consider improving either the specification of the problem or the starting point.

2.2.8 Active and Inactive Parameters

The CO global co Active may be used to fix parameters to their start values. This
allows estimation of different models without having to modify the function procedure.
co Active must be set to a vector of the same length as the vector of start values.

Elements of co Active set to zero will be fixed to their starting values, while nonzero
elements will be estimated.

2.3 Managing Optimization

The critical elements in optimization are scaling, starting point, and the condition of
the model. When the starting point is reasonably close to the solution and the model
reasonably scaled, the iterations converge quickly and without difficulty.

For best results, therefore, you want to prepare the problem so that the model is
well-specified, and properly scaled, and for which a good starting point is available.

The tradeoff among algorithms and step length methods is between speed and demands
on the starting point and condition of the model. The less demanding methods are
generally time consuming and computationally intensive, whereas the quicker methods
(either in terms of time or number of iterations to convergence) are more sensitive to
conditioning and quality of starting point.

13



2. CONSTRAINED OPTIMIZATION

2.3.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be roughly
equal. If some diagonal elements contain numbers that are very large and/or very small
with respect to the others, CO has difficulty converging. How to scale the diagonal
elements of the Hessian may not be obvious, but it may suffice to ensure that the
constants (or “data”) used in the model are about the same magnitude.

2.3.2 Condition

The specification of the model can be measured by the condition of the Hessian. The
solution of the problem is found by searching for parameter values for which the
gradient is zero. If, however, the Jacobian of the gradient (i.e., the Hessian) is very
small for a particular parameter, then CO has difficulty determining the optimal values
since a large region of the function appears virtually flat to CO. When the Hessian has
very small elements, the inverse of the Hessian has very large elements and the search
direction gets buried in the large numbers.

Poor condition can be caused by bad scaling. It can also be caused by a poor
specification of the model or by bad data. Bad models and bad data are two sides of
the same coin. If the problem is highly nonlinear, it is important that data be available
to describe the features of the curve described by each of the parameters. For example,
one of the parameters of the Weibull function describes the shape of the curve as it
approaches the upper asymptote. If data are not available on that portion of the curve,
then that parameter is poorly estimated. The gradient of the function with respect to
that parameter is very flat, elements of the Hessian associated with that parameter is
very small, and the inverse of the Hessian contains very large numbers. In this case it is
necessary to respecify the model in a way that excludes that parameter.

2.3.3 Starting Point

When the model is not particularly well-defined, the starting point can be critical.
When the optimization doesn’t seem to be working, try different starting points. A
closed form solution may exist for a simpler problem with the same parameters. For
example, ordinary least squares estimates may be used for nonlinear least squares
problems or nonlinear regressions like probit or logit. There are no general methods for
computing start values and it may be necessary to attempt the estimation from a
variety of starting points.

2.3.4 Diagnosis

When the optimization is not proceeding well, it is sometimes useful to examine the
function, the gradient Ψ , the direction δ, the Hessian Σ, the parameters θt, or the step
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length ρ, during the iterations. The current values of these matrices can be printed out
or stored in the global co Diagnostic by setting co Diagnostic to a nonzero value.
Setting it to 1 causes CO to print them to the screen or output file, 2 causes CO to
store then in co Diagnostic, and 3 does both.

When you have selected co Diagnostic = 2 or 3, CO inserts the matrices into
co Diagnostic using the vput command. the matrices are extracted using the vread

command. For example,

_co_Diagnostic = 2;

call COPrt(CO("tobit",0,&lpr,x0));

h = vread(_co_Diagnostic,"hessian");

d = vread(_co_Diagnostic,"direct");

The following table contains the strings to be used to retrieve the various matrices in
the vread command:

matrix string

θ “params”
δ “direct”
Σ “hessian”
Ψ “gradient”
ρ “step”

2.4 Constraints

There are two general types of constraints, nonlinear equality constraints and nonlinear
inequality constraints. However, for computational convenience they are divided into
five types: linear equality, linear inequality, nonlinear equality, nonlinear inequality, and
bounds.

2.4.1 Linear Equality Constraints

Linear equality constraints are of the form:

Aθ = B

where A is an m1 × k matrix of known constants, and B an m1 × 1 vector of known
constants, and θ the vector of parameters.

The specification of linear equality constraints is done by assigning the A and B
matrices to the CO globals, co A and co B, respectively. For example, to
constrain the first of four parameters to be equal to the third,

_co_A = { 1 0 -1 0 };

_co_B = { 0 };

15
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2.4.2 Linear Inequality Constraints

Linear inequality constraints are of the form:

Cθ ≥ D
where C is an m2 × k matrix of known constants, and D an m2 × 1 vector of known
constants, and θ the vector of parameters.

The specification of linear equality constraints is done by assigning the C and D
matrices to the CO globals, co C and co D, respectively. For example, to
constrain the first of four parameters to be greater than the third, and as well the
second plus the fourth greater than 10:

_co_C = { 1 0 -1 0,

0 1 0 1 };

_co_D = { 0,

10 };

2.4.3 Nonlinear Equality

Nonlinear equality constraints are of the form:

G(θ) = 0

where θ is the vector of parameters, and G(θ) is an arbitrary, user-supplied function.
Nonlinear equality constraints are specified by assigning the pointer to the
user-supplied function to the GAUSS global, co EqProc.

For example, suppose you wish to constrain the norm of the parameters to be equal to
1:

proc eqp(b);

retp(b’b - 1);

endp;

_co_EqProc = &eqp;

2.4.4 Nonlinear Inequality

Nonlinear inequality constraints are of the form:

H(θ) ≥ 0

where θ is the vector of parameters, and H(θ) is an arbitrary, user-supplied function.
Nonlinear equality constraints are specified by assigning the pointer to the
user-supplied function to the GAUSS global, co IneqProc.

For example, suppose you wish to constrain a covariance matrix to be positive definite,
the lower left nonredundant portion of which is stored in elements r:r+s of the
parameter vector:
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proc ineqp(b);

local v;

v = xpnd(b[r:r+s]); /* r and s defined elsewhere */

retp(minc(eigh(v)) - 1e-5);

endp;

_co_IneqProc = &ineqp;

This constrains the minimum eigenvalue of the covariance matrix to be greater than a
small number (1e-5). This guarantees the covariance matrix to be positive definite.

2.4.5 Bounds

Bounds are a type of linear inequality constraint. For computational convenience they
may be specified separately from the other inequality constraints. To specify bounds,
the lower and upper bounds respectively are entered in the first and second columns of
a matrix that has the same number of rows as the parameter vector. This matrix is
assigned to the CO global, co Bounds.

If the bounds are the same for all of the parameters, only the first row is necessary.

To bound four parameters:

_co_Bounds = { -10 10,

-10 0,

1 10,

0 1 };

Suppose all of the parameters are to be bounded between -50 and +50, then,

_co_Bounds = { -50 50 };

is all that is necessary.

2.5 Gradients

2.5.1 Analytical Gradient

To increase accuracy and reduce time, you may supply a procedure for computing the
gradient, Ψ(θ) = ∂F/∂θ, analytically.

This procedure has two input arguments, a K × 1 vector of parameters and an Ni × L
submatrix of the input data set. The CO global, co GradProc is then set to the
pointer to that procedure.

In practice, unfortunately, much of the time spent on writing the gradient procedure is
devoted to debugging. To help in this debugging process, CO can be instructed to
compute the numerical gradient along with your prospective analytical gradient for
comparison purposes. In the example above this is accomplished by setting
co GradCheckTol to a small nonzero value.
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2.5.2 User-Supplied Numerical Gradient

You may substitute your own numerical gradient procedure for the one used by CO by
default. This is done by setting the CO global, co UserGrad to a pointer to the
procedure.

2.5.3 Analytical Hessian

You may provide a procedure for computing the Hessian, Σ(θ) = ∂2F/∂θ∂θ′ . This
procedure has one argument, the K × 1 vector of parameters, and returns a K ×K
symmetric matrix of second derivatives of the objection function with respect to the
parameters.

The pointer to this procedure is stored in the global variable co HessProc.

In practice, unfortunately, much of the time spent on writing the Hessian procedure is
devoted to debugging. To help in this debugging process, CO can be instructed to
compute the numerical Hessian along with your prospective analytical Hessian for
comparison purposes. To accomplish this co GradCheckTol is set to a small nonzero
value.

2.5.4 User-Supplied Numerical Hessian

You may substitute your own numerical Hessian procedure for the one used by CO by
default. This done by setting the CO global, co UserHess to a pointer to the
procedure. This procedure has two input arguments, a pointer to the function, and a
K × 1 vector of parameters. It must return a K × K matrix which is the estimated
Hessian evaluated at the parameter vector.

2.5.5 Analytical Nonlinear Constraint Jacobians

When nonlinear equality or inequality constraints have been placed on the parameters,
the convergence can be improved by providing a procedure for computing their
Jacobians, i.e., Ġ(θ) = ∂G(θ)/∂θ and Ḣ(θ) = ∂H(θ)/∂θ.

These procedures have one argument, the K × 1 vector of parameters, and return an
Mj ×K matrix, where Mj is the number of constraints computed in the corresponding
constraint function. Then the CO globals, co EqJacobian and co IneqJacobian
are set to pointers to the nonlinear equality and inequality Jacobians, respectively.
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2.6 Minimization Problems and Suggested Solutions

2.6.1 “feasible step length could not be found” error

The iterations halt abnormally with a “feasible step length could not be found” error.

The line search tests each potential direction for feasibility. This is necessary because
one or more of the constraints may be preventing undefined calculations in the
function. Usually CO can recover from any attempt to go outside the boundary but
sometimes can’t, and the error is generated.

If none of the constraints are protecting the function from undefined calculations, then
the test can be removed. The line search may produce a direction outside of the
constraint boundaries, but other parts of the algorithm will bring it back. In that case
the global, co FeasibleTest, can be set to zero, turning off the test for feasibility.

2.6.2 Directions become very large and step lengths become very small

On occasion, descent sequences become an oscillation between large and small directions
alternating with small and large step lengths. The NEWTON method in particular can
do this, especially from a poor start. The algorithm produces a large step because it is
far from the optimum. This extrapolation is based on a quadratic approximation to the
function which may not be appropriate for the actual surface. The line search then has
difficulty finding an actual descent with that direction, and ends up with a very small
step length to compensate for the inappropriate extrapolation. This often results in a
very small direction on the next iteration and a normal step length.

This oscillation of direction and step length usually result in a very slow descent. The
fundamental cause of this problem is the departure of the objective function surface
from the quadratic that is assumed by the algorithms. However, the oscillation can be
prevented, and a more rapid descent generated, if the trust region is activated. The
directions are contained within the trust radius and the step lengths are kept to normal
size, and the descent is restored.

To activate the trust region method, set co Trust to a nonzero value. If progress
continues to be slow, set the trust radius to a larger value by setting co TrustRadius
to that value. The default value is .01.

The trust region method can also be interactively toggled on and off during the
iterations by pressing “t” on the keyboard.

2.6.3 One of the parameters gets very large and CO bombs

This indicates that the function is underconstrained. If the increase in size is rapid, the
Hessian is probably ill-conditioned. In effect, the objective surface is flattening out
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along one of the coefficients, turning into a valley, and the descent is wandering down
the valley.

This can be solved by constraining the errant parameter. Either a boundary could be
placed, or a more complicated constraint that brings the Hessian back into condition.

2.6.4 How to interpret the constraint number when CO halts with
“constraint no. inconsistent”

This error is written when the quadratic programming solve fails due to an
inconsistency in the constraints. A constraint inconsistency means that there is no
value for a coefficient that can satisfy all of the constraints. This would occur if, for
example, a coefficient was constrained in one instance to be greater than zero and in
another to be less than zero.

The constraint number referred to in the error message is to a list of the constraints in
the following order

1 inactivated coefficients using co Active, if any
2 linear equality constraints, if any
3 nonlinear equality constraints, if any
4 linear inequality constraints, if any
5 nonlinear inequality constraints, if any
6 lower bounds
7 upper bounds

There are always lower and upper bounds on coefficients. If there are no other
constraints placed on the coefficients, a dummy equality constraint is placed because at
least one constraint is required by the quadratic programming solve.

If, for example, there are no inactivated coefficients, no equality constraints, five linear
inequality constraints, no nonlinear inequality constraints, and 10 coefficients, then an
error message stating that the 7th constraint is inconsistent would indicate that the
second lower bound was inconsistent with one or more preceding constraints.

2.6.5 Re-using calculation results between the objective function proc
and the gradient proc

When analytical gradients are provided, it is often the case that the function proc and
the gradient proc contain identical calculations. If the problem is large and
time-consuming, some gain in speed can be achieved by sharing these calculations.

The function and gradient are computed separately because in many instances in the
iterations one or the other are needed but not both. Computing them together would
then add considerably to the computational burden.
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Even though they are computed separately, calculational results can be shared through
globals. First, initialize the necessary globals in the command file before the call to CO.
One of these globals should be used to store the coefficient vector being passed to the
proc, and other globals will contain the calculational results to be shared.

In the function proc, test the difference between the coefficient vector stored in the
global against the coefficient vector passed to it by CO. If they are the same, use the
results stored in the other globals, otherwise re-compute the calculations.

In the gradient proc, also test the difference between the coefficient vector stored in the
global against that passed to it by CO. If they are the same, use the stored results, but
if they are different, recompute the results and then update the globals.

After a new direction has been computed and the line search completed, the gradient is
the first quantity calculated with the new direction, and therefore that is where the
updating should occur.

2.7 EXAMPLES

2.7.1 Nonlinear Programming Problem

The following example is taken from Hock and Schittkowski (1981, page 76): minimize

F (θ)(θ1 − θ2)
2 + (θ2 + θ3 − 2)2 + (θ4 − 1)2 + (θ5 − 1)2

subject to equality constraints
θ1 + 3θ2 = 0

θ3 + θ4 − 2θ5 = 0

θ2 − θ5 = 0
and bounds

−10 ≤ θi ≤ 10, i = 1, · · · , 5
The starting point

θst =
(

2 2 2 2 2
)

is infeasible, i.e, doesn’t satisfy the equality constraints. This usually won’t be a
problem. Failing to satisfy inequality constraints can sometimes be a problem however,
in particular when the inequality constraints are enforcing well-defined behavior.
Therefore, feasibility of starting points should be considered when there are inequality
constraints.

The published solution is

θsol =
[ −33

43
11
43

27
43

−5
43

11
43

]

=
[
−.7674 0.2558 0.6279 −.1163 0.2558

]

The procedure for solving this problem is
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library co,qp;

coset;

proc fct(x);

retp((x[1]-x[2])^2+(x[2]+x[3]-2)^2+(x[4]-1)^2+(x[5]-1)^2);

endp;

proc eqp(x);

local result;

result = zeros(3,1);

result[1] = x[1] + 3*x[2];

result[2] = x[3] + x[4] - 2 * x[5];

result[3] = x[2] - x[5];

retp(result);

endp;

_co_Bounds = { -10 10 };

_co_EqProc = &eqp;

start = { 2,2,2,2,2 };

output file = co6.out reset;

{ x,f,g,ret } = co( &fct,start );

call coprt(x,f,g,ret);

print;

print "Equality Lagrangeans";

print vread(_co_Lagrange,"nlineq");

print;

print "Boundary Lagrangeans";

print vread(_co_Lagrange,"bounds");

The output from this run is

=================================================================

CO Version 1.0.0 2/20/95 10:28 am

=================================================================

return code = 0

normal convergence

Value of objective function 4.093023
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Parameters Estimates Gradient

-----------------------------------------

P01 -0.7674 -2.0465

P02 0.2558 -0.1861

P03 0.6279 -2.2326

P04 -0.1163 -2.2326

P05 0.2558 -1.4884

Number of iterations 4

Minutes to convergence 0.00650

Equality Lagrangeans

-2.0465

-2.2326

5.9535

Boundary Lagrangeans

.

The missing value for the Lagrangeans associated with the bounds indicates that none
of the bounds constraints are active.

2.7.2 Providing Procedures for Gradients and Jacobians

The following example illustrates furnishing procedures for computing gradients and
Jacobians. It is taken from Hock and Schittkowski (1981, page 55). The function to be
minimized is

F (θ) = (θ1 + 3θ2 + θ3)
2 + 4(θ1 − θ2)2

subject to the inequality constraint,

6θ2 + 4θ3 − θ3
1 − 3 ≥ 0

and the equality constraint

1−
3∑

i=1

θi = 0

and bounds
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θi ≥ 0, i = 1, 2, 3

The starting point

[
.1 .7 .2

]

is feasible. The published solution is

[
0 0 1

]

The procedure for solving this problem is

library co;

coset;

proc fct(x);

retp( (x[1] + 3*x[2] + x[3])^2 + 4*(x[1] - x[2])^2 );

endp;

proc ineqp(x);

retp(6*x[2] + 4*x[3] - x[1]^3 - 3);

endp;

proc ineqj(x);

retp(-3*x[1]^2~6~4);

endp;

proc eqp(x);

retp(1-sumc(x));

endp;

proc eqj(x);

retp(-ones(1,3));

endp;

proc gp(x);

local g, t;

g = zeros(3,1);

g[1] = 10*x[1] - 2*x[2] + 2*x[3];

g[2] = -2*x[1] + 26*x[2] + 6*x[3];

g[3] = 2*x[1] + 6*x[2] + 2*x[3];

retp(g);

endp;
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proc hsp(x);

local h;

h = zeros(3,3);

h[1,1] = 10;

h[1,2] = -2;

h[1,3] = 2;

h[2,1] = -2;

h[2,2] = 26;

h[2,3] = 6;

h[3,1] = 2;

h[3,2] = 6;

h[3,3] = 2;

retp(h);

endp;

_co_Bounds = { 0 1e256 };

start = { .1, .7, .2 };

_co_GradProc = &gp;

_co_HessProc = &hsp;

_co_IneqProc = &ineqp;

_co_IneqJacobian = &ineqj;

_co_EqProc = &eqp;

_co_EqJacobian = &eqj;

{ x,f,g,ret } = co( &fct,start );

call coprt(x,f,g,ret);

print;

print;

print "published solution";

print " 0 0 1";

print;

print "nonlinear equality Lagrangeans";

print vread(_co_Lagrange,"nlineq");

print;

print "nonlinear inequality Lagrangeans";

print vread(_co_Lagrange,"nlinineq");

print;

print "boundary Lagrangeans";

print vread(_co_Lagrange,"bounds");
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The output from this run is

===============================================================

CO Version 1.0.0 2/20/95 1:05 pm

===============================================================

return code = 0

normal convergence

Value of objective function 1.000000

Parameters Estimates Gradient

-----------------------------------------

P01 0.0000 2.0000

P02 0.0000 6.0000

P03 1.0000 2.0000

Number of iterations 3

Minutes to convergence 0.00267

published solution

0 0 1

nonlinear equality Lagrangeans

-2.0000

nonlinear inequality Lagrangeans

0.0000

boundary Lagrangeans

.

The missing value for the boundary Lagrangeans indicates that they are all inactive.
The zero nonlinear inequality Lagrangean indicates that the nonlinear inequality
boundary was encountered somewhere during the iterations, but is now inactive.

2.7.3 A Portfolio Optimization Problem

Because CO handles general nonlinear functions and constraints, it can solve a more
general problem than the Markowitz problem. The efficient frontier is essentially a
quadratic programming problem where the Markowitz Mean/Variance portfolio
allocation model is solved for a range of expected portfolio returns which are then
plotted against the portfolio risk measured as the standard deviation:
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min w′kΣwk
s.t. w′kµ = rk

wkι = 1

0 ≤ wk ≤ 1

where ι is a conformable vector of ones, and where Σ is the observed covariance matrix
of the returns of a portfolio of securities, and µ are their observed means.

This model is solved for rk, k = 1, . . . ,K, and the efficient frontier is the plot of
rk, k = 1, . . . ,K, on the vertical axis against

√
w′kΣwk, k = 1, . . . ,K, on the horizontal

axis. The portfolio weights in wk describe the optimum distribution of portfolio
resources across the securities given the amount of risk to return one is comfortable
with.

Because of CO’s ability to handle general constraints, more elaborate models may be
considered. For example, this model frequently concentrates the allocation into a
minority of the securities. To spread out the allocation one could solve the problem
subject to a maximum variance for the weights, i.e., subject to

w′kwk ≤ φ

where φ is a constant setting a ceiling on the sums of squares of the weights.

Alternatively, you might have a previous portfolio allocation, and you might want to
develop an allocation based on new data that only departed some maximum amount
from the old allocation. Let w0 be the original portfolio allocation. Then we might
want to find an optimum set of weights, w, such that

−δ ≤ w − w0 ≤ δ

where δ is set to the maximum amount of change in allocation.

In this example, efficient frontiers and associated allocations are computed for both
cases where the portfolio allocation is unrestricted and where the change in allocation is
restricted to be between -.3 and +.3, i.e., δ = 3, and the previous weights are
.6, .05, .1, 0, .2, .05.

library co, pgraph;

coset;

graphset;

/*

** The data are taken from from Harry S. Marmer and F.K. Louis Ng,

** "Mean-Semivariance Analysis of Option-Based Strategies: A Total

** Asset Mix Perspective", Financial Analysts Journal, May-June 1993:

*/
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corr = {

1,

.097, 1,

-.039, .231, 1,

.159, .237, .672, 1,

-.035, .211, .391, .454, 1,

-.024, .247, .424, .432, .941, 1 };

s = { .94, 11.26, 19.21, 13.67, 17.73, 12.19 };

Sigma = xpnd(corr) .* s .* s’;

Mu = { 10.67, 10.54, 12.76, 13.67, 17.73, 13.68 };

proc ObjectiveFunction(w);

retp(w’ * Sigma * w); /* volatility */

endp;

/*

** Constraints

*/

_co_A = ones(1,6);

_co_B = 1;

_co_A = _co_A | Mu’;

_co_B = _co_B | 0;

_co_Bounds = { 0 1 };

start = { 1, 0, 0, 0, 0, 0 };

MN = seqa(10.75,.025,20);

W = {};

SD = {};

for i(1,20,1);

_co_B[2,1] = MN[i];

__output = 0;

{ x,f,g,ret } = co(&ObjectiveFunction,start);

start = x;

w = w | x’;

SD = SD | sqrt(f); /* portfolio volatility */
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endfor;

output file = eff.out reset;

format /rd 8,4;

print "Unrestricted Weights and Efficient Frontier";

print;

print " r_{k} sd_{k} w_{k}";

print mn~sd~w;

print;

print;

/*

** Now an efficient frontier restricting change from previous weights

*/

PreviousWeights = {.6,.05,.1,.0, .2,.05 };

/*

** Inequality Constraints

*/

_co_C = -eye(6) | eye(6);

_co_D = (- PreviousWeights - .3) | (PreviousWeights - .3);

W1 = {};

SD1 = {};

for i(1,20,1);

_co_B[2,1] = MN[i];

{ x,f,g,ret } = co(&ObjectiveFunction,start);

start = x;

w1 = w1 | x’;

SD1 = SD1 | sqrt(f); /* portfolio volatility */

endfor;

print "Restricted Weights and Efficient Frontier";

print;

print " r_{k} sd_{k} w_{k}";

print mn~sd1~w1;

output off;
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title("Efficient Frontier");

Xlabel("Variance");

Ylabel("Return");

_plegstr = "Unrestricted Solution\000Restricted Solution";

_plegctl = { 1 5 .95 11.1 };

xy(SD~SD1,MN~MN);

The Results are

Unrestricted Weights and Efficient Frontier

r_{k} sd_{k} w_{k}

10.7500 0.9431 0.9872 0.0000 0.0021 0.0000 0.0107 0.0000

10.7750 0.9534 0.9839 0.0000 0.0017 0.0000 0.0144 0.0000

10.8000 0.9677 0.9807 0.0000 0.0012 0.0000 0.0181 0.0000

10.8250 0.9857 0.9775 0.0000 0.0007 0.0000 0.0217 0.0000

10.8500 1.0072 0.9743 0.0000 0.0003 0.0000 0.0254 0.0000

10.8750 1.0321 0.9710 0.0000 0.0000 0.0000 0.0290 0.0000

10.9000 1.0601 0.9674 0.0000 0.0000 0.0000 0.0326 0.0000

10.9250 1.0911 0.9639 0.0000 0.0000 0.0000 0.0361 0.0000

10.9500 1.1247 0.9603 0.0000 0.0000 0.0000 0.0397 0.0000

10.9750 1.1608 0.9568 0.0000 0.0000 0.0000 0.0432 0.0000

11.0000 1.1991 0.9533 0.0000 0.0000 0.0000 0.0467 0.0000

11.0250 1.2394 0.9497 0.0000 0.0000 0.0000 0.0503 0.0000

11.0500 1.2815 0.9462 0.0000 0.0000 0.0000 0.0538 0.0000

11.0750 1.3253 0.9426 0.0000 0.0000 0.0000 0.0574 0.0000

11.1000 1.3706 0.9391 0.0000 0.0000 0.0000 0.0609 0.0000

11.1250 1.4173 0.9356 0.0000 0.0000 0.0000 0.0644 0.0000

11.1500 1.4652 0.9320 0.0000 0.0000 0.0000 0.0680 0.0000

11.1750 1.5141 0.9285 0.0000 0.0000 0.0000 0.0715 0.0000

11.2000 1.5641 0.9246 0.0000 0.0000 0.0006 0.0748 0.0000

11.2250 1.6149 0.9207 0.0000 0.0000 0.0012 0.0781 0.0000

Restricted Weights and Efficient Frontier

r_{k} sd_{k} w_{k}

10.7500 1.3106 0.9000 0.0684 0.0066 0.0000 0.0000 0.0249

10.7750 1.2891 0.9000 0.0604 0.0068 0.0000 0.0000 0.0328

10.8000 1.2771 0.9000 0.0528 0.0057 0.0027 0.0000 0.0388

10.8250 1.2734 0.9000 0.0454 0.0038 0.0073 0.0000 0.0435

10.8500 1.2778 0.9000 0.0379 0.0019 0.0119 0.0000 0.0483
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Figure 2.1: Efficient Frontier for Restricted and Unrestricted Portfolio Weights

10.8750 1.2903 0.9000 0.0305 0.0001 0.0164 0.0000 0.0530

10.9000 1.3077 0.9000 0.0300 0.0000 0.0172 0.0058 0.0470

10.9250 1.3265 0.9000 0.0299 0.0000 0.0177 0.0119 0.0405

10.9500 1.3466 0.9000 0.0298 0.0000 0.0183 0.0180 0.0340

10.9750 1.3679 0.9000 0.0297 0.0000 0.0189 0.0240 0.0274

11.0000 1.3904 0.9000 0.0296 0.0000 0.0195 0.0301 0.0209

11.0250 1.4140 0.9000 0.0294 0.0000 0.0200 0.0362 0.0143

11.0500 1.4387 0.9000 0.0293 0.0000 0.0206 0.0423 0.0078

11.0750 1.4643 0.9000 0.0292 0.0000 0.0212 0.0484 0.0012

11.1000 1.4914 0.9000 0.0264 0.0000 0.0212 0.0524 0.0000

11.1250 1.5209 0.9000 0.0229 0.0000 0.0212 0.0559 0.0000

11.1500 1.5526 0.9000 0.0195 0.0000 0.0211 0.0594 0.0000

11.1750 1.5863 0.9000 0.0161 0.0000 0.0211 0.0629 0.0000

11.2000 1.6220 0.9000 0.0126 0.0000 0.0210 0.0664 0.0000

11.2250 1.6596 0.9000 0.0092 0.0000 0.0210 0.0699 0.0000

Figure 2.1 contains the efficient frontiers for both the restricted and unrestricted
analyses

2.8 Run-Time Switches

If the user presses H (or h) during the iterations, a help table is printed to the screen
which describes the run-time switches. By this method, important global variables may
be modified during the iterations.
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G (or g) Toggle co GradMethod
V (or v) Revise co DirTol
O (or o) Toggle output
M (or m) Maximum Tries
I (or i) Compute Hessian
E (or e) Edit Parameter Vector
C (or c) Force Exit
A (or a) Change Algorithm
J (or j) Change Line Search Method
T (or t) Trust Region
H (or h) Help Table

The algorithm may be switched during the iterations either by pressing A (or a), or by
pressing one of the following:

1 Broyden-Fletcher-Goldfarb-Shanno (BFGS)
2 Davidon-Fletcher-Powell (DFP)
3 Newton-Raphson (NEWTON) or (NR)
4 Scaled Broyden-Fletcher-Goldfarb-Shanno (BFGS-SC)
5 Scaled Davidon-Fletcher-Powell (DFP-SC)

The line search method may be switched during the iterations either by pressing S, or
by pressing one of the following:

Shift-1 no search (1.0 or 1 or ONE)
Shift-2 cubic or quadratic method (STEPBT)
Shift-3 step halving method (HALF)
Shift-4 Brent’s method (BRENT)

2.9 Error Handling

2.9.1 Return Codes

The fourth argument in the return from CO contains a scalar number that contains
information about the status of the iterations upon exiting CO. The following table
describes their meanings:
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0 normal convergence
1 forced exit
2 maximum iterations exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 function cannot be evaluated at

initial parameter values
8 error with gradient
9 error with constraints
10 quasi-Newton update failed
11 maximum time exceeded
13 quadratic program failed
14 equality Jacobian failed
15 inequality Jacobian failed
20 Hessian failed to invert
99 termination condition unknown

2.9.2 Error Trapping

Setting the global output = 0 turns off all printing to the screen. Error codes,
however, still are printed to the screen unless error trapping is also turned on. Setting
the trap flag to 4 causes CO to not send the messages to the screen:

trap 4;

Whatever the setting of the trap flag, CO discontinues computations and returns with
an error code. The trap flag in this case only affects whether messages are printed to
the screen or not. This is an issue when the CO function is embedded in a larger
program, and you want the larger program to handle the errors.
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Purpose

Computes estimates of parameters of a constrained optimization function.

Library

co

Format

{ x ,f ,g ,retcode } = CO(&fct ,start)

Input

&fct a pointer to a procedure that returns the function evaluated at the
parameters

start K × 1 vector, start values.

Output

x K × 1 vector, estimated parameters

f scalar, function at minimum

g K × 1 vector, gradient evaluated at x

retcode scalar, return code. If normal convergence is achieved, then retcode = 0,
otherwise a positive integer is returned indicating the reason for the
abnormal termination:

0 normal convergence

1 forced exit.

2 maximum iterations exceeded.

3 function calculation failed.

4 gradient calculation failed.

5 Hessian calculation failed.

6 line search failed.

7 function cannot be evaluated at initial parameter values.

8 error with gradient

9 error with constraints

10 secant update failed

11 maximum time exceeded

36



CO
 Reference

3. CONSTRAINED OPTIMIZATION REFERENCE CO

13 quadratic program failed

20 Hessian failed to invert

99 termination condition unknown.

Globals

The globals variables used by CO can be organized in the following categories according
to which aspect of the optimization they affect:

Options co Options

Constraints co A, co B, co C, co D, co EqProc, co IneqProc,
co EqJacobian, co IneqJacobian, co Bounds, co Lagrange

Descent and Line Search co Algorithm, co Delta, co LineSearch,
co MaxTry, co Extrap, co FeasibleTest, co Interp,
co RandRadius, co UserSearch co Switch, co Trust,
co TrustRadius,

Gradient co GradMethod, co GradProc, co UserNumGrad, co HessProc,
co UserNumHess, co GradStep, co GradCheckTol

Terminations Conditions co DirTol, co MaxIters, co MaxTime

Parameters co Active, co ParNames

Miscellaneous title, co IterData, co Diagnostic

The list below contains an alphabetical listing of each global with a complete
description.

co A M1 ×K matrix, linear equality constraint coefficient matrix co A is
used with co B to specify linear equality constraints:

_co_A * X = _co_B

where X is the K × 1 unknown parameter vector.

co Active vector, defines fixed/active coefficients. This global allows you to fix a
parameter to its starting value. This is useful, for example, when you
wish to try different models with different sets of parameters without
having to re-edit the function. When it is to be used, it must be a vector
of the same length as the starting vector. Set elements of co Active to
1 for an active parameter, and to zero for a fixed one.

co Algorithm scalar, selects optimization method:
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1 BFGS - Broyden, Fletcher, Goldfarb, Shanno method

2 DFP - Davidon, Fletcher, Powell method

3 NEWTON - Newton-Raphson method

4 scaled BFGS

5 scaled DFP

Default = 3

co Delta scalar, floor for eigenvalues of Hessian in the NEWTON algorithm. When
nonzero, the eigenvalues of the Hessian are augmented to this value.

co B M1 × 1 vector, linear equality constraint constant vector co B is used
with co A to specify linear equality constraints:

_co_A * X = _co_B

where X is the K × 1 unknown parameter vector.

co Bounds K × 2 matrix, bounds on parameters. The first column contains the
lower bounds, and the second column the upper bounds. If the bounds
for all the coefficients are the same, a 1x2 matrix may be used. Default =
{ -1e256 1e256 }.

co C M3 ×K matrix, linear inequality constraint coefficient matrix co C is
used with co D to specify linear inequality constraints:

_co_C * X = _co_D

where X is the K × 1 unknown parameter vector.

co D M3 × 1 vector, linear inequality constraint constant vector co D is
used with co C to specify linear inequality constraints:

_co_C * X = _co_D

where X is the K × 1 unknown parameter vector.

co Diagnostic scalar.

0 nothing is stored or printed

1 current estimates, gradient, direction, function value, Hessian, and
step length are printed to the screen

2 the current quantities are stored in co Diagnostic using the
VPUT command. Use the following strings to extract from
co Diagnostic using VREAD:
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function “function”
estimates “params”
direction “direct”
Hessian “hessian”
gradient “gradient”

step “step”

co DirTol scalar, convergence tolerance for gradient of estimated coefficients. When
this criterion has been satisifed CO exits the iterations. Default = 1e-5.

co EqJacobian scalar, pointer to a procedure that computes the Jacobian of the
nonlinear equality constraints with respect to the parameters. The
procedure has one input argument, the K × 1 vector of parameters, and
one output argument, the M2 ×K matrix of derivatives of the
constraints with respect to the parameters. For example, if the nonlinear
equality constraint procedure was,

proc eqproc(p);

retp(p[1]*p[2]-p[3]);

endp;

the Jacobian procedure and assignment to the global would be,

proc eqj(p);

retp(p[2]~p[1]~-1);

endp;

_co_EqJacobian = &eqj;

co EqProc scalar, pointer to a procedure that computes the nonlinear equality
constraints. For example, the statement:

_co_EqProc = &eqproc;

tells CO that nonlinear equality constraints are to be placed on the
parameters and where the procedure computing them is to be found. The
procedure must have one input argument, the K × 1 vector of
parameters, and one output argument, the M2 × 1 vector of computed
constraints that are to be equal to zero. For example, suppose that you
wish to place the following constraint:

P[1] * P[2] = P[3]

The proc for this is:

proc eqproc(p);

retp(p[1]*[2]-p[3]);

endp;

co Extrap scalar, extrapolation constant in BRENT. Default = 2.
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co FeasibleTest scalar, if zero, testing for feasibility in the line search is turned off.
Default = 1, i.e., the test for feasibility is turned on.

co FinalHess K ×K matrix, the Hessian used to compute the covariance matrix of
the parameters is stored in co FinalHess. This is most useful if the
inversion of the hessian fails, which is indicated when CO returns a
missing value for the covariance matrix of the parameters. An analysis of
the Hessian stored in co FinalHess can then reveal the source of the
linear dependency responsible for the singularity.

co GradCheckTol scalar. Tolerance for the deviation of numerical and analytical
gradients when proc’s exist for the computation of analytical gradients,
Hessians, and/or Jacobians. If set to zero, the analytical gradients will
not be compared to their numerical versions. When adding procedures
for computing analytical gradients it is highly recommended that you
perform the check. Set co GradCheckTol to some small value, 1e-3,
say when checking. It may have to be set larger if the numerical
gradients are poorly computed to make sure that CO doesn’t fail when
the analytical gradients are being properly computed.

co GradMethod scalar, method for computing numerical gradient.

0 central difference

1 forward difference (default)

co GradProc scalar, pointer to a procedure that computes the gradient of the
function with respect to the parameters. For example, the statement:

_co_GradProc=&gradproc;

tells CO that a gradient procedure exists as well where to find it. The
user-provided procedure has one input argument, a K × 1 vector of
parameter values The procedure returns a single output argument, a
K × 1 vector of gradients of the function with respect to the parameters
evaluated at the vector of parameter values.

For example, suppose the function is b1 exp−b2, then the following would
be added to the command file:

proc lgd(b);

retp(exp(-b[2])|-b[1]*b[2]*exp(-b[2]));

endp;

_co_GradProc = &lgd;

Default = 0, i.e., no gradient procedure has been provided.

co GradStep scalar, or 1× 2 or K × 1, or K × 2 matrix, increment size for
computing gradient and/or Hessian. If scalar, stepsize will be value times
parameter estimates for the numerical gradient. If 1x2, the first element
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is multiplied times parameter value for gradient and second element the
same for the Hessian. If Kx1, the step size for the gradient will be the
elements of the vector, i.e., it will not be multiplied times the parameters,
and if Kx2, the second column sets the step sizes for the Hessian.

When the numerical gradient is not performing well, set to a larger value
(1e-3, say). Default is the cube root of machine precision.

co HessProc scalar, pointer to a procedure that computes the hessian, i.e., the
matrix of second order partial derivatives of the function with respect to
the parameters. For example, the instruction:

_co_HessProc = &hessproc;

tells CO that a procedure has been provided for the computation of the
hessian and where to find it. The procedure that is provided by the user
must have one input argument, a K × 1 vector of parameter values. The
procedure returns a single output argument, the K ×K symmetric
matrix of second order derivatives of the function evaluated at the
parameter values.

co IneqJacobian scalar, pointer to a procedure that computes the Jacobian of the
nonlinear equality constraints with respect to the parameters. The
procedure has one input argument, the K × 1 vector of parameters, and
one output argument, the M4 ×K matrix of derivatives of the
constraints with respect to the parameters. For example, if the nonlinear
equality constraint procedure was,

proc ineqproc(p);

retp(p[1]*p[2]-p[3]);

endp;

the Jacobian procedure and assignment to the global would be,

proc ineqj(p);

retp(p[2]~p[1]~-1);

endp;

_co_IneqJacobian = &ineqj;

co IneqProc scalar, pointer to a procedure that computes the nonlinear inequality
constraints. For example the statement:

_co_IneqProc = &ineqproc;

tells CO that nonlinear equality constraints are to be placed on the
parameters and where the procedure computing them is to be found. The
procedure must have one input argument, the K × 1 vector of
parameters, and one output argument, the M4 × 1 vector of computed
constraints that are to be equal to zero. For example, suppose that you
wish to place the following constraint:
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P[1] * P[2] >= P[3]

The proc for this is:

proc ineqproc(p);

retp(p[1]*[2]-p[3]);

endp;

co Interp scalar, interpolation constant in BRENT. Default = .25.

co IterData 2x1 vector, contains information about the iterations. The first element
contains the # of iterations, the second element contains the elapsed
time in minutes of the iterations.

co Lagrange vector, created using VPUT. Contains the Lagrangean coefficients for
the constraints. They may be extracted with the VREAD command
using the following strings:

“lineq” linear equality constraints
“nlineq” nonlinear equality constraints
“linineq” linear inequality constraints
“nlinineq” nonlinear inequality constraints
“bounds” bounds

When an inequality or bounds constraint is active, its associated
Lagrangean is nonzero. The linear Lagrangeans preceed the nonlinear
Lagrangeans in the covariance matrices.

co LineSearch scalar, selects method for conducting line search. The result of the
line search is a step length, i.e., a number which reduces the function
value when multiplied times the direction..

1 step length = 1.

2 cubic or quadratic step length method (STEPBT)

3 step halving (HALF)

4 Brent’s step length method (BRENT)

Default = 2.

Usually co LineSearch = 2 is best. If the optimization bogs down, try
setting co LineSearch = 1, 4 or 5. co LineSearch = 3 generates
slower iterations but faster convergence and co LineSearch = 1
generates faster iterations but slower convergence.

When any of these line search methods fails, CO attempts a random
search of radius co RandRadius times the truncated log to the base 10
of the gradient when co RandRadius is set to a nonzero value. If
co UserSearch is set to 1, CO enters an interactive line search mode.
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co MaxIters scalar, maximum number of iterations.

co MaxTime scalar, maximum time in iterations in minutes. Default = 1e+5,
about 10 weeks.

co MaxTry scalar, maximum number of tries to find step length that produces a
descent.

co Options character vector, specification of options. This global permits setting
various CO options in a single global using identifiers. For example

_co_Options = { newton brent trust central file };

sets the line search method to BRENT, the descent method to
NEWTON, trust region on, the numerical gradient method to central
differences, and output = 1.

The following is a list of the identifiers:

Algorithms BFGS, DFP, NEWTON, BFGS-SC, DFP-SC

Line Search ONE, STEPBT, HALF, BRENT

Trust Method TRUST

Gradient method CENTRAL, FORWARD

Output method NONE, FILE, SCREEN

co ParNames K × 1 character vector, parameter labels.

co RandRadius scalar, if set to a nonzero value (1e-2, say) and all other line search
methods fail then CO attempts co MaxTry tries to find a random
direction within radius determined by co RandRadius that is a
descent. Default = 1e-2.

co Switch 3× 1 vector, algorithm switching. The first element is the descent
algorith to which the iterations will be switched. The second element is
amount of change in the function less than which the algorithm will be
switched. The idea here is that the algorithm should be switched when
the descent progress is too small, that is, when the function changes less
than some value. The third element is the iteration number at which the
algorithm is to be switched. By default switching is turned off.

co Trust scalar, if nonzero, the trust region method is turned on. Default = 0.

co TrustRadius scalar. The trust region if the trust region method is turned on.
Default = .01.

co UserNumGrad scalar, pointer to user provided numerical gradient procedure.
The instruction

_co_UserNumGrad = &userproc;
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tells CO that a procedure for computing the numerical gradients exists.
The user-provided procedure has three input arguments, a pointer to a
function that computes the function, and a K × 1 vector of parameter
values. The procedure returns a single output argument, a K × 1 matrix
of gradients of the function with respect to each parameter.

title string title of run

co UserNumHess scalar, pointer to user provided numerical Hessian procedure.
The instruction

_co_UserHess = &hessproc;

tells CO that a procedure for computing the numerical Hessian exists.
The user-provided procedure three input arguments, a pointer to a
function that computes the function, and a K × 1 vector of parameter
values. The procedure returns a single output argument, a K ×K
Hessian matrix of the function with respect to the parameters.

co UserSearch scalar, if nonzero and if all other line search methods fail CO enters
an interactive mode in which the user can select a line search parameter

Remarks

Specifying Constraints.

There are five types of constraints: linear equality, linear inequality, nonlinear equality,
nonlinear inequality, bounds Linear constraints are specified by initializing the
appropriate CO globals to known matrices of constants. The linear equality constraint
matrices are co A and co B, and they assume the following relationship with the
parameter vector:

_co_A * x = _co_B

where x is the parameter vector.

Similarly, the linear inequality constraint matrices are co C and co D, and
assume the following relationship with the parameter vector:

_co_C * x >= _co_D

The nonlinear constraints are specified by providing procedures and assigning their
pointers to CO globals. These procedures take a single argument, the vector of
parameters, and return a column vector of evaluations of the constraints at the
parameters. Each element of the column vector is a separate constraint.

For example, suppose you wish to constrain the product of the first and third
coefficients to be equal to 10, and the squared second and fourth coefficients to be equal
to the squared fifth coefficient:
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proc eqp(x);

local c;

c = zeros(2,1);

c[1] = x[1] * x[3] - 10;

c[2] = x[2] * x[2] + x[4] * x[4] - x[5] * x[5];

retp(c);

endp;

_co_EqProc = &eqp;

The nonlinear equality constraint procedure causes CO to find estimates for which its
evaluation is equal to a conformable vector of zeros.

The nonlinear inequality constraint procedure is similar to the equality procedure. CO
finds estimates for which the evaluation of the procedure is greater than or equal to
zero. The nonlinear inequality constraint procedure is assigned to the global
co IneqProc. For example, suppose you wish to constrain the norm of the

coefficients to be greater than one:

proc ineqp(x);

retp(x’x-3);

endp;

_co_IneqProc = &ineqp;

Bounds are a type of linear inequality constraint. They are specified separately for
computational and notational convenience. To declare bounds on the parameters assign
a two column vector with rows equal to the number of parameters to the CO global,
co Bounds. The first column is the lower bounds and the second column the upper

bounds. For example,

_co_Bounds = { 0 10,

-10 0

-10 20 };

If the bounds are the same for all of the parameters, only the first row is required.

Writing the Function to be Minimized

The user must provide a procedure for computing the function The procedure has one
input argument, a vector of parameters. The output is the scalar value of the function
evaluated at the current parameters values. Suppose that the function procedure has
been named pfct , the following considerations apply:

The format of the procedure is:
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f = fct(x);

where x is a column vector of parameters.

Supplying an Analytical GRADIENT Procedure

To decrease the time of computation, the user may provide a procedure for the
calculation of the gradient of the function. The global variable co GradProc must
contain the pointer to this procedure. Suppose the name of this procedure is gradproc.
Then,

g = gradproc(x);

where the input argument is the vector of parameters and the output argument is g is
column vector of gradients of the function with respect to coefficients

Providing a procedure for the calculation of the first derivatives also has a significant
effect on the calculation time of the Hessian. The calculation time for the numerical
computation of the Hessian is a quadratic function of the size of the matrix. For large
matrices, the calculation time can be very significant. This time can be reduced to a
linear function of size if a procedure for the calculation of analytical first derivatives is
available. When such a procedure is available, CO automatically uses it to compute the
numerical Hessian.

The major problem one encounters when writing procedures to compute gradients and
Hessians is in making sure that the gradient is being properly computed. CO checks
the gradients and Hessian when co GradCheckTol is nonzero. CO generates both
numerical and analytical gradients, and viewing the discrepancies between them can
help in debugging the analytical gradient procedure.

Supplying an Analytical HESSIAN Procedure.

Selection of the NEWTON algorithm becomes feasible if the user supplies a procedure
to compute the Hessian. If such a procedure is provided, the global variable
co HessProc must contain a pointer to this procedure. Suppose this procedure is

called hessproc, the format is

h = hessproc(x);

The input argument is the K × 1 vector of parameter values. The output argument is
the K ×K matrix of second order partial derivatives evaluated at the coefficients in x .

46



CO
 Reference

3. CONSTRAINED OPTIMIZATION REFERENCE CO

Supplying Analytical Jacobians of the Nonlinear Constraints.

At each iteration the Jacobians of the nonlinear constraints, if they exist, are computed
numerically. This is time-consuming and generates a loss of precision. For models with
a large number of inequality constraints a significant speed-up can be achieved by
providing analytical Jacobian procedures. The improved accuracy can also have a
significant effect on convergence.

The Jacobian procedures take a single argument, the vector of parameters, and return a
matrix of derivatives of each constraint with respect to each parameter. The rows are
associated with the constraints and the columns with the parameters. The pointer to
the nonlinear equality Jacobian procedure is assigned to co EqJacobian. The pointer
to the nonlinear inequality Jacobian procedure is assigned to co IneqJacobian.

For example, suppose the following procedure computes the equality constraints:

proc eqp(x);

local c;

c = zeros(2,1);

c[1] = x[1] * x[3] - 10;

c[2] = x[2] * x[2] + x[4] * x[4] - x[5] * x[5];

retp(c);

endp;

_co_EqProc = &eqp;

Then the Jacobian procedure would look like this:

proc eqJacob(x);

local c;

c = zeros(2,5);

c[1,1] = x[3];

c[1,3] = x[1];

c[2,2] = 2*x[2];

c[2,4] = 2*x[4];

c[3,5] = -2*x[5];

retp(c);

endp;

_co_EqJacobian = &eqJacob;

The Jacobian procedure for the nonlinear inequality constraints is specified similarly,
except that the associated global containing the pointer to the procedure is
co IneqJacobian.

Source

co.src
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Purpose

Resets CONSTRAINED OPTIMIZATION global variables to default values.

Library

co

Format

COSet;

Input

None

Output

None

Remarks

Putting this instruction at the top of all command files that invoke CO is generally
good practice. This prevents globals from being inappropriately defined when a
command file is run several times or when a command file is run after another
command file has executed that calls CO.

Source

co.src
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Purpose

Formats and prints the output from a call to CO.

Library

co

Format

{ x ,f ,g ,retcode } = COPrt(x ,f ,g ,retcode);

Input

x K × 1 vector, parameter estimates

f scalar, value of function at minimum

g K × 1 vector, gradient evaluated at x

retcode scalar, return code.

Output

The input arguments are returned unchanged.

Globals

header string. This is used by the printing procedure to display information
about the date, time, version of module, etc. The string can contain one
or more of the following characters:

“t” print title (see title)
“l” bracket title with lines
“d” print date and time
“v” print version number of program
“f” print file name being analyzed

Example:

__header = "tld";

Default = “tldvf”.

title string, message printed at the top of the screen and printed out by
COPrt. Default = “”.

Remarks

The call to CO can be nested in the call to COPrt:

{ x,f,g,retcode } = COPrt(CO(&fct,start));

Source

co.src
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