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Abstract

Nonlinear Persistence

and Copersistence

In a nonlinear framework, temporal dependence of time series is sensitive to trans-
formations. The aim of this paper is to examine in detail the relationships between
various forms of persistence and nonlinear transformations of stationary and nonsta-
tionary processes. We introduce the concept of persistence space and use it to de�ne
the degrees of persistence of univariate or multivariate processes. For illustration, we
examine and compare the persistence structure of a fractionally integrated process
and a beta mixture of AR(1) processes. The study of multivariate processes is fo-
cused on nonlinear comovements between the components, called the copersistence
directions, or cointegration directions in the nonstationary case. We �nd that, in
general, there is a multiplicity of such directions, causing an identi�cation problem
in the analysis of nonlinear cointegration.

Keywords: Nonlinear Autocorrelogram, Canonical Analysis, Persistence, Chaos, Unit
Root, Cointegration.

JEL : C14



THIS VERSION: November 23, 1999 0

R�esum�e

Dans un contexte non lin�eaire, l'importance de la d�ependence temporelle peut
d�ependre de la transformation consid�er�ee de la s�erie. Le but de ce papier est de
d�ecrire soigneusement les divers degr�es de persistence et les transformations qui leur
sont associ�ees. Pour des s�eries multivari�ees, l'analyse de persistence peut être utilis�ee
pour mettre en �evidence des comouvements non lin�eaires entre les composantes, c'est
�a dire le ph�enom�ene de copersistence (ou de coint�egration non lin�eaire dans le cas non
stationnaire). G�en�eralement il y a une multiplicit�e de directions de copersistence, ce
qui induit un probl�eme d'identi�cation.

Mots cl�es: Autocorr�elogramme non lin�eaire, analyse canonique, persistence, chaos,
racine unitaire, coint�egration.

JEL : C14
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1 Introduction

Although structural econometrics does not ignore nonlinear dynamics in relations between macroe-

conomic or �nancial variables, in practice time series are often examined using standard instru-

ments. These instruments, such as the autocorrelation and partial autocorrelation functions, spec-

tral densities, unit root tests, techniques of �nding cointegrating vectors, E.C.M. representations

[Granger (1986), Engle, Granger (1987), Johansen (1988)], or long memory patterns [Hosking

(1981)] have been however designed for linear dynamics. Despite this, researchers commonly apply

the traditional methods to various nonlinear transformations of time series. A typical example

is the autocorrelogram, which occasionally becomes rede�ned as the autocorrelation function of

a nonlinear transform of the series [Lepnik (1958), Granger, Newbold (1976), Granger, Hallman

(1991), Ding, Granger, Engle (1993)]. Widely known empirical evidence shows however that the

pattern of autocorrelations may strongly depend on the applied nonlinear transformation. For

instance, the autocorrelogram of �nancial returns often shows an absence of (linear) dependence

whereas the autocorrelogram of squares or absolute values of these returns features long memory

[Engle (1982), Ding, Granger, Engle (1987)]. Similarly, there exist nonlinear transformations yield-

ing stationary transformed processes whereas some others induce various nonstationary features 1.

This leads to spurious results when, for instance, a standard Dickey-Fuller test is applied to the

transformed series [Granger, Hallman (1989), Corradi (1995)].

Rather than investigating the properties of linear techniques applied to speci�c nonlinear dy-

namics, we prefer in this paper to come back on the notion of persistence in a nonlinear framework.

We propose persistence measures which show how temporal dependence evolves with the prediction

horizon and depends on the nonlinear transformations of interest. Our approach is developped for

both stationary and nonstationary processes, and concerns both short and long memory phenom-

ena. The nonstationarity case covers nonlinear unit roots processes [see, Park, Phillips (1998a,

1998b)] and nonlinear cointegration analysis. Recently, the nonlinear comovements of nonstation-

ary processes have received a considerable attention [see, Bierens (1999), Chang, Park, Phillips

(1999), Karlsen, Myklebust, Tjosheim (1999), De Jong (1999)]. Researchers often draw parallels

between the linear and nonlinear cointegration, and expect to �nd a �nite number of cointegrat-

ing relations. We caution against it, since as our approach indicates, there exist in general a

multiplicity of cointegrating relations which requires a judicious choice of identifying constraints.

The �rst �ve sections cover strongly stationary processes. We introduce in section 2 the

transformed autocorrelogram, which measures the dependence between a transformed future value

1(i)If (�t) is a gaussian white noise and Zt =
Pt

�=1
�� the associated random walk, the process de�ned by

Xt = sgn (�t)Z2
t is such that: sgn (Xt) = sgn (�t) is stationary whereas jXtj = Z2

t is nonstationary.
(ii) A convex transformation of a zero mean random walk (Zt) will include a deterministic trend [Corradi(1995)].
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g(Xt+h) and the information contained in the current observation Xt. We compare this measure

with the autocorrelogram of g(Xt) usually considered in the literature. The transformed autocor-

relogram is used in section 3 to de�ne the persistence decomposition into degrees of persistence and

the associated persistence spaces. In section 4 we illustrate the approach by showing persistence

decompositions of various processes including long memory processes, processes generated from

gaussian time series or discretized di�usions. The de�nition of copersistence for multivariate time

series is introduced in section 5. We emphasize there the importance of the concept of underly-

ing universe. The analysis is extended in section 6 to processes featuring nonstationarities. In

particular, we focus on the persistence by trajectory of nonlinear unit root processes, and discuss

nonlinear cointegration. Section 7 covers statistical inference and presents a simulation study.

Section 8 concludes the paper.

2 Transformed Autocorrelograms

2.1 De�nition of the Autocorrelogram

A common approach to investigating the e�ect of a nonlinear scalar transformation g on a strongly

stationary time series is to examine the autocorrelation function:

rh(g) = Corr[g(Xt+h); g(Xt)]; h � 0; (2.1)

[see, e.g Ding, Engle, Granger (1993), Ding, Granger (1996), Granger, Terasvirta (1997), He,

Terasvirta (1997), Gourieroux, Jasiak (1998)]. This method may not be precise enough to de�ne

appropriately the degree of persistence. The dependence between g(Xt+h) and the information

contained in Xt appears to be better measured by:

�h(g) = max
g2

Corr[g(Xt+h); g2(Xt)]; h � 0: (2.2)

Note that this autocorrelation function is similar to the traditional one in that it represents the

dependence between a pair of variables, i.e. Xt and Xt+h
2. We can easily verify that it admits

the optimum for g2(Xt) = E[g(Xt+h)jXt] [see Appendix 1], and that:

�h(g) = Corr[g(Xt+h); E(g(Xt+h)jXt)] =

s
VarE(g(Xt+h)jXt)

Var g(Xt)
: (2.3)

From this formula we deduce that:

2An alternative is to measure instead the dependence between g(Xt+h) and the past of the process, i.e. Xt =
[Xt; Xt�1;Xt�2; :::]. Then the transformed autocorrelogram would be: ��

h
(g) = maxg2 Corr[g(Xt+h); g2(Xt)].

Even if the autocorrelogram ��
h
(g) is more informative than the autocorrrelogram �h(g), it is also more di�cult to

implement in practice. Of course the two types of autocorrelograms coincide for a Markov process of order one.
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1� �2h(g) =
E Var [g(Xt+h)jXt]

Var g(Xt)
;

measures the accuracy of the nonlinear prediction of the transformed series at horizon h 3.

By construction, the transformed autocorrelogram (�h(g); h varying) [T-autocorrelogram hence-

forth] takes nonnegative values, and we have �h(g) � jrh(g)j; 8 h; g 4.

In practice we can estimate the T-autocorrelogram in the following way. Let us denote by K a

kernel function, and by ĝ2;h the associated regressogram of g(Xt+h) on Xt:

ĝ2;h(x) =

PT�h
�=1 K [(X� � x)=�] g(X�+h)PT�h

�=1 K [(X� � x)=�]
; (2.4)

where � denotes the bandwidth. The T-autocorrelogram is approximated by the empirical corre-

lation between g(Xt+h) and ĝ2;h(Xt):

�̂h(g) = Corre[g(Xt+h); ĝ2;h(Xt)]:

2.2 Nonlinear Canonical Analysis

Let us consider a stationary process with a continuous distribution, and denote by fh the joint

density of (Xt; Xt+h), and by f the marginal density of Xt. Under weak conditions 5, the joint

density can be decomposed as [Dunford, Schwartz (1968), Lancaster(1968)]:

fh(xt; xt+h) = f(xt)f(xt+h)f1 +
1X
j=1

�j;haj;h(xt+h)bj;h(xt)g; (2.5)

where the canonical correlations �j;h; j varying, are decreasing �1;h � �2;h � ::: � 0; 8h, the
canonical directions satisfy the orthogonality conditions:

E[aj;h(Xt)ak;h(Xt)] = 0; 8k 6= j; 8h,
E[bj;h(Xt)bk;h(Xt)] = 0; 8k 6= j; 8h,
Eaj;h(Xt) = Ebj;h(Xt) = 0; 8j; h;
and the normalization conditions:

Varaj;h(Xt) = Var bj;h(Xt) = 1; 8j; h:

Therefore in nonlinear framework, the canonical analysis involves the joint density function instead

of linear regression coe�cients, which are used in the standard linear setup [see e.g. Tiao, Tsay

(1989), Johansen (1988)].

3When E[g(Xt+h)jXt] is constant, the correlation �h(g) is conventionally set equal to zero.
4If we de�ned �h(g) for all h, the resulting autocorrelogram would not be an even function, i.e. we would have

�h(g) 6= ��h(g), violating the condition of the traditional autocorrelation function.
5For instance, if

R R
[f2

h
(xt; xt+h)] = [f(xt)f(xt+h)]dxtdxt+h < +1; 8h.
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The transformed autocorrelogram can be easily written in terms of the components of the

canonical decomposition.

Property 2.1: We have:

�2h(g) =

P1
j=1 �

2
j;h < g; aj;h >

2P1
j=1 < g; aj;h >2

;

where < g; aj;h >= E[g(Xt)aj;h(Xt)] = Cov[g(Xt); aj;h(Xt)].

Proof: For any nonlinear function g, we get:

E[g(Xt+h)jXt] = Eg(Xt+h) +

1X
j=1

�j;hE[g(Xt+h)aj;h(Xt+h)]bj;h(Xt):

Since bj;h; h varying, and aj;h; j varying, form an orthonormal basis, we directly deduce that:

�h(g) =

s
VarE[g(Xt+h)jXt]

Var[g(Xt+h)]
=

"P1
j=1 �

2
j;h < g; aj;h >

2P1
j=1 < g; aj;h >2

#1 = 2
:

Q.E.D.

3 Persistence Decomposition

In this section we de�ne the degrees of persistence and the associated persistence spaces. The

results are derived for a strictly stationary univariate or multivariate process (Xt).

3.1 Persistence Spaces

Let � = (�h; h � 0) denote a positively valued sequence converging to zero at in�nity. Henceforth

the sequence � will be a priori called the degree of persistence and will be used to measure how the

temporal dependence of the transformed series evolves with the prediction horizon 6. For example,

we may consider: �h = rh or �h = h2d�1 where r; r � 0, and d; d � 1=2, are predetermined to

describe geometric or hyperbolic decay patterns.

De�nition 3.1: The persistence space of order � is de�ned by 7:

E� = fg : �h(g) = 0(�h)g; (3.1)

where the symbol 0 means that there exists a constant c such that j�h(g)j � c �h.

Property 3.1: E� is a vector space.

Proof: Let us consider a linear combination of two elements g and g� in E�. We have:

6More precisely a degree of persistence is a class of equivalence of scalar sequences with the same asymptotic
behaviour for large h; � and � provide the same degree of persistence, if �h � �h for large h.

7Since Corr(a; g2(Xt�h)) = 0; 8a 2 R, this space contains at least the constants.
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Corr [(ag + a�g�)(Xt+h); g2(Xt)] =
Cov [(ag + a�g�)(Xt+h); g2(Xt)]p
Var (ag + a�g�)(Xt)

p
Var g2(Xt)

=
aCov [g(Xt+h); g2(Xt)]p

Var (ag + a�g�)(Xt)
p
Var g2(Xt)

+
a�Cov [g�(Xt+h); g2(Xt)]p

Var (ag + a�g�)(Xt)
p
Var g2(Xt)

= a

p
Var gp

Var (ag + a�g�)
Corr[g(Xt+h); g2(Xt)]

+a�
p
Var g�p

Var (ag + a�g�)
Corr [g�(Xt+h); g2(Xt)]:

This implies that:

�h(ag + a�g�) � a

p
Var gp

Var (ag + a�g�)
�h(g) + a�

p
Var g�p

Var (ag + a�g�)
�h(g

�) = 0(�h):

Q.E.D.

Next, we set �h = 0.

Corollary: E0 = fg : Corr [g(Xt+h); g2(Xt)] = 0; 8g2; hg is a vector space.
It forms the space of nonlinear independence directions.

From (2.3), g 2 E0 if and only if E[g(Xt+h)jXt] = Eg(Xt+h); 8h � 1. In particular for

a Markov process, g 2 E0 if and only if the process g(Xt) � Eg(Xt) is a martingale di�erence

sequence with respect to the �ltration Xt
8.

At this point, it is interesting to note that the set of functions E0 = fg : rh(g) = 0; 8hg
does not de�ne a vector space. Indeed, even if [g(Xt)] and [g�(Xt)] are two weak white noises,

[g(Xt) + g�(X�
t )] may feature temporal dependence due to cross-correlations between the two

processes. This di�culty does not arise with our de�nition of the nonlinear autocorrelogram, since

the past information (g2(Xt); g2 varying) is independent of the transformation g
9.

3.2 Properties of the Persistence Spaces

Various properties of the persistence space can easily be derived.

monotonicity

If (�h) and (�h) are two sequences such that �h = 0(�h), then E� � E�.

8If we modify the de�nition of 0 by considering that �h(g) = 0(�h) i� there exists a constant c such that
limh!1 sup j�h(g)j � c�h, the space E0 becomes: E0 = fg : 9q with E[g(Xt+h)jXt] = Eg(Xt+h) 8h � q +
1g. Therefore E0 de�nes the (nonlinear) moving average directions called codependence directions in the linear
framework [Gourieroux, Peaucelle (1992), Vahid, Engle (1997)].

9The same type of remark applies to the analysis by Corradi (1995), where the markovian properties of the
transformed process g(Xt) are considered with respect to the �ltration generated by the transformation, not by the
initial process Xt itself.
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invariance by one-to-one transformation

Let us consider a one-to-one transformation Yt = a(Xt), (say) of the initial process. The persistence

spaces of X and Y can now be compared. Indeed we have:

EY
� = fg : max

g2
Corr [g(Yt+h); g2(Yt)] = 0(�h)g

= fg : max
g2

Corr [g � a(Xt+h); g2(Xt)] = 0(�h)g:

We deduce that:

g 2 EY
� , g � a 2 EX

� :

3.3 Degree of Persistence

In this section we proceed to de�ne the set of degrees of persistence. This task is not easy due to

the absence of a complete ordering of the set of sequences (�h). Indeed, there can exist sequences

(�h) and (�h) which are not comparable, i.e. such that neither the condition �h = 0(�h), nor

�h = 0(�h) are satis�ed. There are two possible ways of solving this problem.

i) We can select from the set of sequences a restricted subset which can be ordered without

ambiguity. For example, we could consider only either the geometric sequences:

�h = rh; with r � 0;

or the hyperbolic ones.

Let us suppose, for example, such a family �h(�) depending continuously on a parameter

� 2 R+, and such that if �1 > �2, �h(�2) = o[�h(�1)]. In this case, the persistence spaces

can be introduced for various values of � and, according to the monotonicity property, we have

E�(�1) � E�(�2). This allows us to de�ne the limiting parameter values:

�� = f� : E�(�) 6= [��<�E�(��)g: (3.2)

The set of sequences [�h(�); � 2 ��] is the set of constrained degrees of persistence of the process.

This set can be quite complex and contain an in�nite number of basic sequences. It can however

be de�ned for any process.

ii) We can alternatively impose some constraints on the dynamics in order to de�ne the implied

degrees of persistence without ambiguity.

De�nition 3.2: The process (Xt) admits a decomposition of persistence i� there exists a

countable set of sequences (�n;h), n 2 N , such that:
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(i) 8n �n;h = o(�n�1;h),

and

(ii) 8g in the supplement of E�n in E�n�1 , we have:

�h(g) � �n�1;h; for h large:

For such a process, the sequences (�n;h), n varying, de�ne the succession of persistence degrees,

whereas E�n are the corresponding persistence spaces. In general all processes do not admit a

persistence decomposition. In section 4 we describe classes of processes for which a persistence

decomposition exists.

3.4 Change of Universe

The de�nitions of the transformed autocorrelogram and the associated persistence decomposition

can be extended to a universe Zt (say), possibly di�erent from Xt. More precisely, if the process

(Xt; Zt) is jointly stationary, we can introduce the transformed autocorrelogram of X with respect

to the universe :

�h(g; Z) = max
g2

Corr [g(Xt+h); g2(Zt)]: (3.3)

The concept of universe is of particular importance in the multivariate framework. Let us consider

a bivariate stationary process Xt = (X1;t; X2;t)
0, and analyze the persistence properties of the �rst

component. We can naturally consider two types of transformed autocorrelograms.

� The marginal transformed autocorrelogram corresponds to the universe Z = X1 and is de�ned

by:

�1;mh (g) = max
g2

Corr [g(X1;t+h); g2(X1;t)]: (3.4)

� The global transformed autocorrelogram corresponds to the universe Z = X and is de�ned by:

�1h(g) = max
g2

Corr [g(X1;t+h); g2(Xt)]: (3.5)

We denote by E1;m
� and E1

� the associated persistence spaces. The property below relates the

marginal and global persistence decompositions.

Property 3.3: We have:

(i) �1;mh (g) � �1h(g); 8 h; g:
(ii) E1;m

� � E1
�; 8�:
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4 Examples of Persistence Decomposition

4.1 Processes with Stable Canonical Decompositions

Let us consider a stationary process, with canonical variates independent of the horizon h:

fh(xt; xt+h) = f(xt)f(xt+h)f1 +
1X
j=1

�j;haj(xt+h)bj(xt)g; (4.1)

where j�1;hj � j�2;hj:::: � 0 and the functions aj ; bj ; j varying, satisfy the orthogonality and

normalization conditions described in subsection 2.2.

Property 4.1: Any process with a stable canonical decomposition (4.1), where �j;h = o(�j�1;h),

8j, admits a persistence decomposition. The degrees of persistence are the sequences (j�j;hj), j
varying, whereas the associated persistence spaces are:

Ej�j j = fg : < g; ak >= 0; 8 k � j � 1g:

Proof: This is a direct consequence of the property 2.1.

Q.E.D.

Therefore the degrees of persistence coincide with the sequences of canonical correlations of var-

ious orders. These correlations, jointly displayed, form the nonlinear autocorrelogram [Gourieroux,

Jasiak (1998)].

Example 1: Gaussian processes

Let us consider a gaussian process with zero mean, unitary variance and autocorrelation function

(�h). The canonical decomposition is given by [Cramer (1963), Barrett, Lampard (1955)]:

fh(xt; xt+h) = �(xt)�(xt+h)f1 +
1X
j=1

(�h)
jHj(xt+h)Hj(xt)g;

where � denotes the p.d.f. of the standard normal distribution and Hj is the Hermite polynomial

of order j. The persistence degrees are: (�j;h) = (j�hjj); j varying, and the persistence spaces E�j

are generated by the Hermite polynomials of degrees larger or equal to j. In particular, we can

consider an AR(1) gaussian process with �h = �h, and a fractional gaussian process (1�L)dXt =

�t; d < 1=2, with �h � Ah2d�1. Since (�h)j = (�j)h in the autoregressive case and

(�h)j � Ah(2d�1)j = Ah2(dj+
1�j
2

)�1;

we directly deduce the patterns of the persistence degrees.
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Table 4.1: Persistence degrees for gaussian processes

Process pattern parametrization

AR(1) gaussian geometric: �j;h = rhj rj = j�jj

I(d) gaussian hyperbolic: �j;h = Ajh
2dj�1 Aj = A; dj = dj + 1�j

2

In the hyperbolic case the fractional degrees dj decrease arithmetically at rate d = 0:5. They

become equal in the limiting case d = 0:5 of nonstationarity.

Example 2: Mixture of gaussian processes

This example illustrates non gaussian long memory processes derived from a mixture of AR(1)

gaussian processes. More precisely, let us consider an AR(1) gaussian process, with a stochastic

autoregressive parameter following a distribution �. The joint distribution of (Xt; Xt+h) becomes:

fh(xt; xt+h) =

Z
�(xt)�(xt+h)f1 +

1X
j=1

�jhHj(xt+h)Hj(xt)gd�(�)

= �(xt)�(xt+h)f1 +
1X
j=1

E�(�
jh)Hj(xt+h)Hj(xt)g:

In general E�(�
jh) 6= (E��

h)j . This implies that this process is not gaussian, even if it is marginally

gaussian and admits the same canonical directions as a gaussian process.

We can easily �nd the long memory persistence degrees when the heterogeneity distribution is

a beta distribution B(�; 1� �); 0 < � < 1 [Granger, Joyeux (1980)]:

�(�) =
���1(1� �)��

�(�)�(1� �)
1[0;1](�):

In this case E��
k = �(�+k)

�(�)
1

�(1+k) . We deduce:

�j;h = E��
jh =

�(� + jh)

�(�)

1

�(1 + jh)
� 1

�(�)

1

j��1

1

h��1
;

and the patterns of the persistence degrees.

Table 4.2: Persistence degrees of a mixture of gaussian processes

Process pattern parametrization

beta mixture hyperbolic �j;h = Ajh
2dj�1 Aj =

1
�(�)j��1

; dj = � = 2

It is interesting to note the striking di�erence between the nonlinear dynamics of this beta mix-

ture and the I(d) gaussian process, despite their common feature of long memory in all directions.

We observe that the fractional order dj = � = 2 is independent of j in the mixture case.
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4.2 Deterministic Autoregression

It is di�cult to discuss nonlinear dynamics without mentioning the chaos. Let us consider a

deterministic stationary autoregression:

Xt+1 = c(Xt); (4.2)

where the function c is not constant.

Property 4.2: The stationary process (Xt) is a deterministic autoregression if and only if

�h(g) = 1; 8h; 8g not constant.

Proof:

Necessary condition:

Without loss of generality we can choose h = 1. We get:

�1(g) = max
g2

Corr [g(Xt+1); g2(Xt)]

= max
g2

Corr [g(c(Xt)); g2(Xt)]

� Corr [g(c(Xt)); g(c(Xt))] = 1:

Su�cient condition:

If we consider the identity function g, there exists g�2 such that: Corr [Xt+1; g
�
2(Xt)] = 1. We

deduce that 9 a; b : Xt+1 = ag�2(Xt) + b, a.s.

Q.E.D.

The above property gives a characterization of the deterministic autoregressions in terms of

persistence decomposition. It is interesting to note that this characterization follows from the

appropriate de�nition of the transformed autocorrelogram. Indeed, if we study the well-known

quadratic map: Xt+1 = 4Xt(1�Xt),
10 [Tong (1990), section 3.3.2] and the identity transformation

g = Id, we get:

�h(g) = 1; 8h;

whereas rh(g) = Corr(Xt+h; Xt) = 0; 8h. The quadratic map represents a weak white noise

process featuring strong nonlinear dependence.

Finally note that stationary deterministic autoregressions feature a "unit root" property (since

limh!1 �h(g) = 1). Therefore the relationship between unit roots and nonstationarity needs to be

precisely characterized in a nonlinear framework.

10The marginal distribution is uniform on the interval [0; 1].
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4.3 Discretized Unidimensional Di�usion Process

Let us now consider a stationary unidimensional di�usion process de�ned by:

dXt = �(Xt)dt+ �(Xt)dWt; (4.3)

where (Wt) is a brownian motion and � and � denote the drift and volatility respectively. Under

compactness conditions 11, this process admits the canonical decomposition:

fh(xt; xt+h) = f(xt)f(xt+h)f1 +
1X
j=1

(�j)
haj(xt)aj(xt+h)g; (4.4)

where the canonical elements are derived from the spectral analysis of the in�nitesimal generator:

A = � d
dx +

1
2�

2 d2

dx2 . More precisely, they satisfy:

�(x)
daj(x)

dx
+

1

2
�2(x)

d2aj(x)

dx2
= log�j aj(x): (4.5)

We deduce geometric patterns of the persistence degrees:

�j;h = j�j jh; j varying:

It is interesting to note that Sturm-Liouville theorem provides information on the canonical vari-

ates. The canonical variate aj admits exactly j zeros, and its derivative is equal to zero at a single

point between two successive zeros of aj . In particular the �rst canonical variate is a monotone

function.

4.4 Discretized Re
ected Brownian Motion

The brownian motion re
ected on the interval [0; l] is another example of a stationary Markov

continuous time process, which is not a di�usion process and admits a persistence decomposition.

The canonical decomposition is:

fh(xt; xt+h) = f(xt)f(xt+h)

8<
:1 +

1X
j=1

exp

"
�h
2

�
j�

l

�2
#
cos

�
j�

l
xt+h

�
cos

�
j�

l
xt

�9=
; : (4.6)

5 Copersistence

5.1 De�nition

The concept of linear comovements between time series and their analysis has been developped for

both stationary series [the so-called codependence, see e.g. Kugler, Neusser (1990), Engle, Kozicki

11see Hansen, Scheinkman, Touzi (1998) for discussion
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(1993), Gourieroux, Peaucelle (1994)] and nonstationary series [the so-called cointegration, see

e.g. Granger (1986), Engle, Granger (1987)]. Broadly speaking there exists a linear comovement

between the (stationary) series (X1t); (X2t) with equivalent patterns of time dependence, if and

only if there exists a non degenerate combination Yt = a1X1t + a2X2t, say, whose autocorrelation

pattern is negligible with respect to the autocorrelation patterns of the initial series (X1t); (X2t).

Such linear combinations are unique, up to some multiplicative factor, and both coe�cients

a1; a2 are di�erent from zero. Then it is common to write the relation:

a1X1t + a2X2t = �t; (5.1)

where (�t) features less persistence than the initial series. This relation is often interpreted in

structural terms either as a stable relationship (e.g. less sensitive to shocks), or a long run rela-

tionship.

A similar approach can be followed in the nonlinear framework to derive nonlinear relationships

between the initial series. Let us consider a bivariate stationary series Xt = (X1t; X2t), and

introduce the (maximal) degree of persistence of the univariate series X1 say, as:

��h(X1) = max
g

�h[g(X1t)] = max
g1;g2

Corr[g(X1;t+h); g2(Xt)]: (5.2)

Note that this (maximal) degree of persistence is computed with respect to the whole universe.

De�nition 5.1: (X1t) and (X2t) are copersistent if and only if there exists a transformation

Yt = a(X1t; X2t), which depends both on X1 and X2 ( non degeneracy condition), is one to one

with respect to one of the arguments, and such that:

��h(Y ) = o[��h(X1)] = o[��h(X2)]:

It is important to impose the non degeneracy condition in the nonlinear framework. Indeed,

we know that some nonlinear transformations of (X1t) , for example, may feature less persistence

that (X1t) itself, but they clearly do not generate a relationship between X1 and X2.

Moreover, if the transformation a is one to one with respect to X1 (say), we can write:

a(X1t; X2t) = �t;

or

X1t = a�1
1 (�t; X2t); (5.3)
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where a�1
1 denotes the inverse with respect to the �rst argument. Therefore it is possible to express

X1t as a nonlinear function of X2t and �t with di�erent persistence.

Finally note that the de�nition of copersistence is invariant with respect to one-to-one nonlinear

transformations of either (X1t) or (X2t).

By allowing for nonlinear transformations, we have a better chance to �nd nonlinear comove-

ments along with the linear ones. There may exist however series without copersistence.

5.2 The Multiplicity of Copersistence Directions

The aim of this subsection is to show that there may exist a very large number of copersistence

directions, which renders di�cult the identi�cation of a nonlinear relationship with structural

interpretation.

We consider a bivariate Markov model with �nite dimensional dependence [Gourieroux, Jasiak

(1999)]. The joint distribution of (Xt; Xt+h) = [(X1t; X2t); (X1;t+h; X2;t+h)] is:

fh(xt; xt+h) = 1 + �h[
p
12(x1;t+h + x2;t+h � 1)][

p
12(x1t � 1=2)];

wher � 2 [0; 1=12]. The marginal distribution of Xt is such that X1t and X2t are independent, with

a marginal uniform distribution on [0; 1]. The canonical decomposition involves a single term [one

dimensional time dependence], with the canonical directions a1(x) =
p
12(x1 + x2 � 1); b1(x) =

p
12(x1 � 1=2). The parameter � is bounded to ensure the positivity of the joint p.d.f..

For any nonlinear transformation a(x), we have:

�h(a(x)) =

s
VarE(a(Xt+h)jXt)

Var a(Xt)

=
�hjE[p12(X1t +X2t � 1)a(Xt)]j

Var a(Xt)1=2
:

Therefore we have two di�erent patterns for the transformed autocorrelogram:

� If E[p12(X1t +X2t � 1)a(Xt)] 6= 0, it features a geometric decay �h;

� If E[p12(X1t +X2t � 1)a(Xt)] = 0, it is equal to zero.

We easily verify that the initial series X1t and X2t admit transformed autocorrelograms (and

also maximal degree of persistence) with the same geometric decay �h.

Let us now consider a nonlinear transformation of the type:

a(X) = X1 + �c(X2);

where c is a given function such that Cov [X2; c(X2)] 6= 0. We get:
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E[
p
12(X1t +X2t � 1)a(Xt)] = Cov

hp
12(X1t +X2t � 1); X1t + �c(X2t)

i
=

p
12 (VarX1t + �Cov [X2t; c(X2t)]) :

We deduce that, for any function c such that Cov [X2; c(X2)] 6= 0, the transformation:

a(X) = X1 � VarX1t

Cov [X2t; c(X2t)]
c(X2) (5.4)

is a copersistence direction. Therefore we get an in�nite number of relations of the type:

X1t = d(X2t) + �t;

with an interpretation in terms of copersistence.

6 Persistence by Trajectories and Nonlinear Cointegration

The persistence degrees have been de�ned in section 3.5 for stationary processes as measures of

the e�ect of declining memory in terms of both correlation and prediction [see equation (2.3)].

The aim of this section is to extend this notion to homogenous processes, which may feature non

stationarities. We �rst discuss the case of the gaussian random walk to show that persistence

assessment in terms of correlations and predictions may di�er signi�cantly in the presence of

nonstationarities. This leads to the notion of persistence by trajectory, which is de�ned in the

second subsection. Finally we discuss nonlinear cointegration.

6.1 Gaussian Random Walk

Let us consider a gaussian random walk:

Xt =

tX
�=1

�� ; (6.1)

where the components of the noise are i.i.d., with N(0,1) distribution. This is a homogenousMarkov

process. It has been proven in Ermini, Granger (1993) that the exponential transformations of the

random walk are such that:

E[exp�Xt+hjXt] = exp
h�2

2
exp�Xt; (6.2)

and
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�t;h = max
g2

Corr [exp�Xt+h; g2(Xt)]

= Corr (exp�Xt+h; exp�Xt)

=

s
exp�2t� 1

exp�2(t+ h)� 1
: (6.3)

The exponential random walk clearly features an explosive behaviour, implied by the autoregressive

representation (6.2), where the autoregressive coe�cient exp h�2

2 is larger than one. However when

we consider the behaviour of the autocorrelation function for large t, we get:

��h = lim
t!1

�t;h = exp��
2h

2
=

�
exp��

2

2

�h

;

which resembles the autocorrelation of a stationary AR(1) process. This implies that, in general,

an assessment of persistence based on the asymptotic properties of the prediction is preferable.

6.2 Persistence by Trajectory (b.t.)

We consider a process (Xt) and a possibly extended universe (Zt). We assume that the process

is homogenous with respect to the universe, i.e. that the conditional distributions of Xt given

Zt�1 do not depend on the date t. Then, the conditional expectations E[g(Xt+h)jZt] are also time
independent.

Let us now introduce a positively valued sequence � = (�h; h � 0) converging to zero at

in�nity.

De�nition 6.1: The by trajectory (b.t.) persistence space of order � is de�ned by:

Eb:t:
� = fg such that there exists a scalar c(g) with: E(g(Xt+h)jZt)� c(g) = 0(�h) a.s. g.

Therefore we have jE(g(Xt+h)jZt)� c(g)j � �(Zt)�h a.s.. It is easily veri�ed that Eb:t:
� is a vector

space, has the monotonicity property, and b.t. persistence degrees can be de�ned along the lines

of subsection 3.3. However we also need to separate the stationary and nonstationary components

of the process (Xt). For this purpose, we can consider the vector space:

Eb:t:(0) = [�Eb;t
� ; (6.4)

where the union is taken over all possible � sequences. A transformation g belongs to the space

Eb:t:(0) if and only if the prediction E[g(Xt+h)jZt] becomes independent of Zt when the horizon

h tends to in�nity. This condition is satis�ed for stationary regular processes, usually called I(0)

in the literature. It is not satis�ed when g(Xt) features nonstationarities or nonregularities.
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De�nition 6.2: If g belongs to Eb:t:(0), the transformed process is NLI(0) (nonlinearly inte-

grated of order 0).

If g does not belong to Eb:t:(0), the transformed process is NLI (nonlinearly integrated).

6.3 Nonlinear Cointegration

Let us consider a bivariate process Xt = (X1t; X2t)
0 homogenous with respect to the information

(Zt) = (Xt).

De�nition 6.3: The components X1 and X2 are nonlinearly cointegrated i�:

(i) (X1t) and (X2t) are NLI with respect to the universe (Zt) = (Xt);

(ii) There exists a transformation Yt = a(X1t; X2t), which depends both on X1 and X2, is one to

one with respect to one of the arguments and such that (Yt) is NLI(0) with respect to the universe

(Xt).

We see that as comovements, there may exist a large multiplicity of cointegration directions, causing

an identi�cation problem.

Example 6.1:

Let us consider three independent gaussian white noises (�1;t); (�2;t); (�3;t), and de�ne:

Z1;t = �1Z1;t�1 + �1;t (AR(1) process),

Z2;t = �2Z2;t�1 + �2;t (AR(1) process),

Z3;t =
Pt

�=1 �3;� (random walk),

X1;t = sgn(�1;t)jZ1;tj jZ3;tj,
X2;t = sgn(�2;t)jZ2;tj jZ3;tj.

The components (X1;t) and (X2;t) are NLI due to the presence of the random walk jZ3;tj. More-

over any transformation of X1;t=X2;t, sgn(X1;t), sgn(X2;t) is NLI(0). For instance the directions

X1;t=X2;t + a sgn(X2;t) are cointegration directions for any scalar a.

There exist various ways to handle the multiplicity problem.

(i) We can try to �nd the set of all nonlinear cointegration directions in a nonparametric approach.

Such an approach, however is likely unfeasible except for cases where either the associated space,

or its supplement are included in a vector space of a small dimension.

(ii) Alternatively we can consider the problem under constraints. We can restrict the set of admis-

sible distributions of the process (Xt) and/or of the admissible forms of cointegration directions.

This approach is generally followed in the literature as illustrated by the examples below.

Example 6.2

For a bivariate process we know that linear cointegration directions are included in a space of
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dimension equal or less than one. Therefore the linearity of the cointegration direction is a kind

of identifying constraint. However there may exist strictly nonlinear cointegration directions in

the absence of linear cointegration directions, and some nonlinear directions may coexist with the

linear ones.

Example 6.3

In a series of papers Park, Phillips (1998;a,b), Karlsen, Myklebust, Tjostheim (1999) considered the

estimation of nonlinear relations of the type X1;t = f(X2;t)+u1;t, where X2;t features nonstation-

arities, and they introduced various assumptions on the error term u1;t. In Park, Phillips (1998;a),

Karlsen, Myklebust, Tjostheim (1999) the assumption imposes the independence between the pro-

cesses X2 and u1. It is easily seen that this is an identi�cation condition of the regression function

f . Indeed, if we consider two admissible decompositions X1;t = f(X2;t) + u1;t = ~f(X2;t) + ~u1;t,

we deduce u1;t = ~f(X2;t) � f(X2;t) + ~u1;t, and (u1;t) is independent of (X2;t) if and only if

f = ~f . In Park, Phillips (1998;b), the error term is assumed to be a martingale di�erence

sequence with respect to the information (Xt). If we consider two admissible decompositions

X1;t = f(X2;t) + u1;t = ~f(X2;t) + ~u1;t, we get u1;t � ~u1;t = ~f(X2;t) � f(X2;t). We �nd that f is

identi�able if and only if the only martingale di�erence sequence deterministic function of (X2;t)

is zero.

6.4 Markov Process with Finite Dimensional Dependence

Let us consider a homogenous Markov process with the transition function:

p(xt+1jxt) =
JX

j=1

bj(xt+1)aj(xt)

= b0(xt+1)a(xt); say: (6.5)

It is equivalent to assume the previous decomposition or a �nite dimensional predictor space

[Gourieroux, Jasiak (1999)]. The predictors, such as E[g(Xt+h)jXt], g; h varying, belong to the �-

nite dimensional space generated by aj(Xt), j = 1; :::; J . The elements a and b of the decomposition

(6.5) are de�ned up to an inversible linear transformation.

The transition function h-step ahead is given by:

p(h)(xt+hjxt) = b0(xt+h)C
h�1a(xt); (6.6)

where the elements of the C matrix are ci;j =
R
ai(x)bj(x)dx. The predictors are easily derived

from:
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E[g(Xt+h)jXt] =

Z
g(xt+h)p

(h)(xt+hjXt)dxt+h

=

Z
g(x)b0(x)dxCh�1a(Xt): (6.7)

To simplify the discussion we assume that the matrix C can be diagonalized with real eigenvalues

�j ; j = 1; :::; J . We denote by C =
PJ

j=1 �jujv
0
j a spectral decomposition of C. We get:

E[g(Xt+h)jXt] =

JX
j=1

�h�1
j

Z
g(x)[b0(x)uj ]dx v

0
ja(Xt): (6.8)

We can search now for the NLI(0) directions. Two cases have to be distinguished, depending

on the eigenspace associated to the unitary eigenvalues 12.

Case 1: The eigenspace associated to the unitary eigenvalue does not contain the constant

function.

The space Eb:t:(0) is:

Eb:t:(0) = fg :
Z
g(x)[b0(x)uj ]dx = 0; for any j with j�j j � 1g:

Case 2: The eigenspace associated to the unitary eigenvalue contains the constant function.

Up to a change of basis we can always assume that �1 = 1 is associated with v01a(xt) = 1. We

get:

Eb:t:(0) = fg :
Z
g(x)[b0(x)uj ]dx = 0; for any j � 2; with j�j j � 1g:

The spaces Eb:t:(0) have an in�nite dimension and for a bivariate process Xt = (X1t; X2t) there is

in general a multiplicity of cointegration directions.

We note that there exist NLI(0) transformations which are linear combinations of the bj func-

tions. Therefore, after an appropriate change of the factor a and b, we can write (in case 1):

p(xt+1jxt) =
J1X
j=1

bj(xt+1)aj(xt) +

JX
j=J1+1

bj(xt+1)aj(xt); (6.9)

where bj ; j = J1 + 1; :::; J [resp. j = 1; :::; J1] are NLI(0) transformations [resp. NLI transfor-

mations]. Then, it is possible to separate the stationary and "nonstationary" components of the

transition function.

12Markov processes with �nite dimensional dependence are direct extensions of Markov chains with a �nite state
space. Let us denote by j = 1; :::; J the admissible states and by P = (pi;j) the transition matrix. The transition
function can be written:

p(xt+1jxt) = a0(xt+1)Pa(xt);

where aj(xt) = 1; if xt = j; 0 otherwise. In this particular case b = P 0a, C = P , and p(h)(xt+1jxt) =
a(xt+1)0Pha(xt). The persistence analysis is based on the analysis of the eigenvalues of P .
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7 Statistical Inference

7.1 Empirical Nonlinear Canonical Analysis

In practice the analysis of persistence and copersistence directions can be based on the empirical

nonlinear canonical decomposition of univariate or bivariate time series.

More precisely, let us consider the covariance operator at lag h:

< �(Xt);  (Xt+h) >h=

Z Z
�(xt) (xt+h)fh(xt; xt+h)dxtdxt+h: (7.1)

It can be approximated by replacing the unknown joint p.d.f. fh by a kernel estimator. The

approximated operator is:

< �(Xt);  (Xt+h) >h;T=

Z Z
�(xt) (xt+h)f̂h;T (xt; xt+h)dxtdxt+h; (7.2)

where f̂h;T (x; y) =
1
T

PT
t=1

1
h2d

K
�
Xt�x
h

�
K
�
Xt+h�y

h

�
, K is a kernel, and h is the bandwidth.

Next, we use the approximated kernel, to obtain the estimated canonical correlations and

canonical variates, i.e.:

f̂h;T (xt; xt+h) = f̂h;T (xt)f̂h;T (xt+h)f1 +
1X
j=1

�̂j;hâj;h(xt+h)b̂j;h(xt)g: (7.3)

The consistency and asymptotic distributional properties of the estimated correlations and of the

functional approximations of canonical directions have been derived in Darolles, Florens, Gourier-

oux (1998), for stationary, geometrically mixing processes. In particular these results can be used

to check if the canonical directions become stable for large lag h 13. When this condition is satis�ed

it is possible to proceed with the persistence decomposition as shown in subsection 4.1.

7.2 Simulations of Fractional Gaussian Processes

The theoretical properties of nonlinear kernel-based canonical analysis have not been derived yet

in the long memory framework. To provide some insights on the performance of this method,

we examine simulated realizations of a gaussian, fractionally integrated process with parameter

d. From Example 1 of section 4 we know that the expressions of canonical directions are Hermite

polynomials, and that the limiting behaviour of the canonical correlations is a hyperbolic decay.

We wish to investigate the performance of correlations obtained from the canonical analysis by

comparing the following correlation estimators:

(i) �̂
(1)
j;h = Ĉorr(Hj(xt); Hj(xt+h)), i.e. the autocorrelogram computed for the Hermite poly-

nomial of degree j;

13It is interesting to note that this stability has been observed in intertrade duration data, from �nancial markets
[Gourieroux, Jasiak (1998)].
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(ii) �̂
(2)
j;h = �̂h(Hj(xt+h)), i.e. the transformed autocorrelogram for the Hermite polynomial of

degree j;

(iii) �̂
(3)
j;h the kernel based canonical correlation of order j.

These estimators require a diminishing amount of information on the canonical directions.

Indeed �̂(1) requires the knowledge of the current and lagged canonical directions, whereas �̂(2)

only requires the current directions, and �̂(3) none of them, i.e. no information about the canonical

directions at all. For real series �̂(3) is the only implementable method. In the second step our

analysis consists in using the estimated correlations to build crude estimators of the fractional order,

and comparing their performance. This study is based on the following simulation experiment.

We simulate a trajectory of a fractionally integrated process (1� L)dXt = �t; �t � N(0; 1) of

length T = 4000. Figures 7.1, 7.2, 7.3 display the three types of autocorrelograms, for J=1,...,4, h

=1,...,500, and d=0.45.

[Insert Figure 7.1: Autocorrelogram of Hj(x)]

[Insert Figure 7.2: Transformed Autocorrelogram of Hj(x)]

[Insert Figure 7.3: Nonlinear Autocorrelogram]

The formulas of estimators imply that in general �̂
(1)
j;h � �̂

(2)
j;h � �̂

(3)
j;h, as it is observed from the

Figures. In the second step we use the estimated autocorrelograms to derive various estimators

of the fractional degree d. For a given autocorrelogram �̂
(k)
j;h ; k = 1; :::; 3; j = 1; :::; 4 we regress

log j�̂(k)j;h j on 1 and logh for large h. The regression coe�cient of logh provides an estimator of

2dj � 1, and of d using the formulas of Table 4.1. We have run such regressions for h=1,...500 and

two simulated series of length 4000 corresonding to d=0.45, and d=0.3 respectively.

Table 7.1: Estimation of d (true value d = 0:45)

j acf T-acf nonlinear acf

1 0.465 0.475 0.485
(2.72) (3.66) (3.57)

2 0.45 0.48 0.485
(6.62) (8.53) (6.85)

3 0.44 0.485 0.49
(3.00) (3.94) (3.76)

4 0.45 0.48 0.49
(2.65) (3.88) (3.71)

Table 7.2: Estimation of d (true value d = 0:3)



THIS VERSION: November 23, 1999 21

j acf T-acf nonlinear acf

1 0.34 0.42 0.41
(3.07) (1.44) (2.08)

2 0.54 0.50 0.45
(1.41) (1.79) (1.90)

3 0.50 0.52 0.47
(0.72) (2.42) (2.05)

4 0.50 0.49 0.49
(0.01) (0.71) (1.35)

The crude estimator of the fractional order is known for its lack of precision. Indeed, we �nd

estimates di�ering signi�cantly from true d's in the columns showing results based on standard

a.c.f. of Hermite polynomials in both Tables. Especially this di�erence is more pronounced in

Table 7.2 for d = 0:3 which lies further from the region of nonstationarity, and for polynomials of

higher degrees. In fact, for large values of the (Xt) process, the polynomials display an explosive

behavior, resulting in more extreme values, with a stronger serial correlation in polynomials of

higher orders. The large number of extremes reduces the precision of autocorrelation estimators

whereas their serial correlation induces a �nite sample positive bias in the estimated persistence

coe�cient [see, Deo, Hurvich (1999) for a similar analysis].

In Figure 7.4 we display the extreme values of Hermite polynomials for a simulated long memory

process with d = 0:3. The extremes are de�ned as observations di�ering from the mean by more

than three standard deviations.

[Insert Figure 7.4: Extremes of Hermite Polynomials, j = 1,2,3,4,]

The behaviour of polynomials may even result in estimated values of d beyond the stationarity

region (see Table 7.2). This e�ect may be weaker for the nonlinear a.c.f., where the (unknown)

canonical directions are kernel smoothed, and hence extreme values of the transformed series are

less frequent.

8 Conclusions

In this paper we investigated various aspects of persistence in nonlinear time series. We introduced

the concept of persistence space and de�ned the degrees of persistence of nonlinear processes.

Several examples of persistence decomposition were discussed, including the long memory processes

where we highlighted the di�erence between a fractionally integrated process and a beta mixture

of AR(1) processes, continuous time processes and chaos.

In the multivariate framework we pointed out the problem of multiplicity of copersistence or

cointegration directions. We emphasized the role of identifying constraints, and commented on
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some results from recent literature on nonlinear cointegration, where this problem may arise.
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Appendix 1

The Analytical Expression of the T-autocorrelogram

The de�nition of correlation implies that:

Corr[g(Xt+h); g2(Xt)] =
Cov [E(g(Xt+h)jXt); g2(Xt)]p

Var g(Xt+h)
p
Var g2(Xt)

=

s
VarE(g(Xt+h)jXt)

Var g(Xt+h)
Corr[E(g(Xt+h)jXt); g2(Xt)]:

It admits the maximum for g2(Xt) = E(g(Xt+h)jXt). At this point Corr[g(Xt+h); g2(Xt)] = 1,

and the expression of �h(g) is easily found.
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Figure 7.1: Autocorrelogram of H_j(x)
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Figure 7.2: Transformed Autocorrelogram of H_j(x)
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Figure 7.3: Nonlinear Autocorrelogram of H_j(x)
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Figure 7.4: Extremes of Hermite Polynomials, j=1,2,3,4
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