
Discrete Choice
for GAUSS

TM

Version 1.0

Aptech Systems, Inc.

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software described in
this document is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.
The purchaser may make one copy of the software for backup purposes. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose other than the
purchaser’s personal use without the written permission of Aptech Systems, Inc.
c©Copyright 1998-2003 by Aptech Systems, Inc., Maple Valley, WA.

All Rights Reserved.

GAUSS, GAUSS Engine, GAUSS Light are trademarks of Aptech Systems, Inc. All
other trademarks are the properties of their respective owners.

Documentation Version: August 19, 2003

Part Number: 003651

Contents

1 Installation 1

1.1 UNIX . 1

1.1.1 Download . 1

1.1.2 Floppy . 1

1.1.3 Solaris 2.x Volume Management 2

1.2 Windows/NT/2000 . 3

1.2.1 Download . 3

1.2.2 Floppy . 3

1.3 Differences Between the UNIX and Windows/NT/2000 Versions 3

2 Introduction 5

2.1 Getting Started . 5

3 Discrete Choice 7

3.1 Poisson Model . 7

3.1.1 Poisson Overdispersion . 8

3.2 Negative Binomial Model . 8

3.3 Truncation and Censoring . 9

3.4 Zero-Inflated Models . 10

3.4.1 Testing Zero-Inflated Regime Assumptions 11

3.5 Multinomial Logit Model . 11

3.6 Adjacent Categories Multinomial Logit . 12

3.7 Stereotype Multinomial Logit . 12

3.8 Ordered Logit/Probit . 12

3.9 Conditional Logit . 13

3.9.1 Example . 13

3.10 Nested Logit . 19

3.10.1 Example . 20

3.11 Summary Statistics . 27

4 Estimation and Optimization 29

4.0.1 Constraints . 31

4.0.2 Linear Equality Constraints . 32

4.0.3 Linear Inequality Constraints . 32

4.0.4 Nonlinear Equality . 32

4.0.5 Nonlinear Inequality . 33

4.0.6 Bounds . 33

4.0.7 Imposing Constraints in DISCRETE CHOICE models 34

4.1 Direction . 36

4.2 Line Search . 37

4.2.1 Line Search Methods . 37

4.3 Managing Optimization . 38

4.3.1 Scaling . 38

4.3.2 Condition . 38

4.3.3 Starting Point . 39

5 References 41

6 Procedure Reference 43

ii

Installation

Chapter 1

Installation

1.1 UNIX

If you are unfamiliar with UNIX, see your system administrator or system
documentation for information on the system commands referred to below. The device
names given are probably correct for your system.

1.1.1 Download

1. Copy the .tar.gz file to /tmp.

2. Unzip the file.

gunzip appxxx.tar.gz

3. cd to the GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss

4. Untar the file.

tar xvf /tmp/appxxx.tar

1.1.2 Floppy

1. Make a temporary directory.

mkdir /tmp/workdir

1

1. INSTALLATION

2. cd to the temporary directory.

cd /tmp/workdir

3. Use tar to extract the files.

tar xvf device name

If this software came on diskettes, repeat the tar command for each diskette.

4. Read the README file.

more README

5. Run the install.sh script in the work directory.

./install.sh

The directory the files are install to should be the same as the install directory
of GAUSS or the GAUSS Engine.

6. Remove the temporary directory (optional).

The following device names are suggestions. See your system administrator. If you are
using Solaris 2.x, see Section 1.1.3.

Operating System 3.5-inch diskette 1/4-inch tape DAT tape

Solaris 1.x SPARC /dev/rfd0 /dev/rst8

Solaris 2.x SPARC /dev/rfd0a (vol. mgt. off) /dev/rst12 /dev/rmt/1l

Solaris 2.x SPARC /vol/dev/aliases/floppy0 /dev/rst12 /dev/rmt/1l

Solaris 2.x x86 /dev/rfd0c (vol. mgt. off) /dev/rmt/1l

Solaris 2.x x86 /vol/dev/aliases/floppy0 /dev/rmt/1l

HP-UX /dev/rfloppy/c20Ad1s0 /dev/rmt/0m

IBM AIX /dev/rfd0 /dev/rmt.0

SGI IRIX /dev/rdsk/fds0d2.3.5hi

1.1.3 Solaris 2.x Volume Management

If Solaris 2.x volume management is running, insert the floppy disk and type

volcheck

to signal the system to mount the floppy.

The floppy device names for Solaris 2.x change when the volume manager is turned off
and on. To turn off volume management, become the superuser and type

/etc/init.d/volmgt off

To turn on volume management, become the superuser and type

/etc/init.d/volmgt on

2

Installation

1. INSTALLATION

1.2 Windows/NT/2000

1.2.1 Download

Unzip the .zip file into the GAUSS or GAUSS Engine installation directory.

1.2.2 Floppy

1. Place the diskette in a floppy drive.

2. Call up a DOS window

3. In the DOS window log onto the root directory of the diskette drive. For
example:

A:<enter>

cd\<enter>

4. Type: ginstall source drive target path

source drive Drive containing files to install
with colon included

For example: A:

target path Main drive and subdirectory to install
to without a final \

For example: C:\GAUSS

A directory structure will be created if it does not already exist and the files
will be copied over.

target path\src source code files
target path\lib library files
target path\examples example files

1.3 Differences Between the UNIX and Windows/NT/2000
Versions

• If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press Enter after the keystroke in the
UNIX version.

3

1. INSTALLATION

• On the Intel math coprocessors used by the Windows/NT/2000 machines,
intermediate calculations have 80-bit precision, while on the current UNIX
machines, all calculations are in 64-bit precision. For this reason, GAUSS
programs executed under UNIX may produce slightly different results, due to
differences in roundoff, from those executed under Windows/NT/2000.

4

Introduction

Chapter 2

Introduction

DISCRETE CHOICE estimation uses the sqpsolvemt procedure, a seqential quadratic
programming method that solves general nonlinear programming problems. Data are
passed in a dcDesc structure instance. The optimization process is controlled with a
dcControl structure instance. Output arguments are in a dcOut structure instance and
an array of ds structure instances.

2.1 Getting Started

GAUSS 5.0.30+ is required to use the DISCRETE CHOICE procedures.

5

2. INTRODUCTION

6

Discrete Choice

Chapter 3

Discrete Choice

3.1 Poisson Model

Given independent variables xi for an observation with count yi, the Poisson density
function is

P (yi|xi) =
exp(−µi)µyii

yi!

where

µi = E(yi|xi) = exp(xiβ)

is the number of events expected to occur per unit time (or space).

The Poisson regression model log likelihood function is:

lnL =
n∑

i=1

[−µi + yiβ
′xi − ln(yi!)]

The Poisson distribution function is

F (c) = P (yi ≤ c) =
c∑

j=0

P (yi = j|xi)

7

3. DISCRETE CHOICE

3.1.1 Poisson Overdispersion

The psnprt function shows three tests for overdispersion when a Poisson model is
estimated.

Following Cameron and Trivedi’s (1998, p62) notation, let ωi = V [yi|xi] be the
conditional variance of yi. Two possible variance functions are the NB1 and NB2
functions:

NB1 : ωi = (1 + α)µi

NB2 : ωi = µi + αµ2
i

Tests of Ho : α = 0 in both cases are conducted using auxillary regressions.
Overdispersion of the NB1 form is indicated by a significant t statistic for α̂ in the

regression (yi−µ̂i)2−yi
µ̂i

= α+ ui. Overdispersion of the NB2 form is indicated by a

significant t statistic for α̂ in the regression (yi−µ̂i)2−yi
µ̂i

= αµ̂i + ui. In both cases ui is

an i.i.d. disturbance term. psnprt reports the t statistics for both cases and their
probability values, against a two sided alternative hypothesis.

A Lagrange Multiplier test for overdispersion is presented by Greene (2000, pp 885-886).
The Poisson model is a restriction on the Negative Binomial model. The LM statistic
has a χ2(1) distribution under the null hypothesis that the mean equals the variance.

LM =
(e′e− Ny)2

2µ̂′µ̂

where e is an Nx1 vector of residuals and µ̂ the Nx1 vector of fitted values. psnprt
reports this statistic and its probability value.

3.2 Negative Binomial Model

The Poisson model assumes that the conditional variance always equal the conditional
mean. Consistent but inefficient Poisson model estimates and downward biased
standard errors result if this assumption is not true (Gourieroux et al, 1984, Cameron
and Trivedi, 1986, p. 31).

The negative binomial regression model lets the conditional variance exceed the
conditional mean. Let the conditional mean, µi be:

µi = exp(xiβ + εi)

8

Discrete Choice

3. DISCRETE CHOICE

where ε is random and uncorrelated with x. Rewrite (3.1) in terms of the Poisson mean
to get

µi = exp(xiβ) exp(εi) = µi exp(εi) = µiδi

Assume that δi has a gamma distribution with parameter υi (this sets E(δi) = 1,
identifying the model, and V ar(δi) = 1/υi) and integrate P (yi|xi; δi) over the unknown
δi to get the negative binomial density function:

P (yi|xi) =
Γ(yi + υi)

yi!Γ(υi)
(

υi
υi + µi

)υi (
µi

υi + µi
)yi

with distribution function

F (c) = P (yi ≤ c) =
c∑

j=0

P (yi = j|xi)

The conditional variance is

V ar(yi|xi) = µi(1 +
µi
υi

) = exp(xiβ)(1 +
xiβ

υi
)

which is greater than the conditional variance of the Poisson distribution.

3.3 Truncation and Censoring

This discussion of truncated and censored models closely follows Hayashi (2000) and
Long (1997). It assumes that {yt,xt} is i.i.d.

yt is truncated if observations above or below given levels are not in the sample. A
double truncation rule is that yt is observable if it is greater than cl or less than cu.
The density function is

f(y|(y > cl)and(y < cu)) = f(y)
P ((y>cl)and(y<cu))

= f(y)
F (cl)(1−F (cu))

where F is the cumulative distribution function of y. The corresponding log conditional
likelihood function is

L(yt|xt; θ, cl, cu) = log(f(yt|xt; θ, cl, cu)) − log(F (cl|xt; θ, cl, cu))

− log(1− F (cu|xt; θ, cl, cu))

9

3. DISCRETE CHOICE

where θ represents all parameters of the distribution.

A censored model is defined by

y∗t = xtβ + εt, t = 1, 2, ..., n

with observed yt values:

yt =

y∗t if y∗t > cl and y∗t < cu
cl if y∗t < cl
cu if y∗t > cu

where cl and cu are known. All observations are in the sample, though the observable
values, yt, for which y∗t > cl and y∗t < cu are set equal to cl and cu respectively.

The density of yt is

[f(yt|xt, θ, cu, cl)]1−(Du+Dl) × [F (cl)]
Dl × [1− F (cu)]Du

where

Dl =
0 if yt > cl (i.e. y∗t > cl)
1 if yt = cl (i.e. y∗t ≤ cl)

Du =
0 if yt < cu (i.e. y∗t ≤ cu)
1 if yt = cu (i.e. y∗t > cu)

with the corresponding conditional log likelihood

log f(yt|xt; θ, cu, cl) = (1− (Du + Dl)) log f(yt|xxx)

+Dl logF (cl) +Du log[1− F (cu)]

3.4 Zero-Inflated Models

A zero-inflated (sometimes called zero-altered) model allows for the possibility that
count outcomes equal to zero are generated by two regimes, a regime where the
outcome is always zero and either a Poisson or Negative Binomial model with zero as
one of the outcomes.

Suppose zi = 0 when regime 1 generates outcome i (equalling zero) and zi = 1 when
regime two generates outcome i (possibly equalling zero).

P [zi = 1] is determined by a logit or probit model and P [yi = j|zi = 1] is given by a
Poisson probability density function.

Greene (2000, p890) summarizes these ideas, citing works by Mullahey (1986), Heilbron
(1989), Lambert (1992), Johnson and Kotz (1970), and Greene (1994):

P [yi = 0] = P [yi = 0|regime1]P [regime1] + P [yi = 0|regime2]P [regime2]

= P [regime1] + P [yi = 0|regime2]P [regime2]

P [yi = j] = P [yi = j|regime2]P [regime2] j = 1, 2, ...

10

Discrete Choice

3. DISCRETE CHOICE

3.4.1 Testing Zero-Inflated Regime Assumptions

Vuong (1989) proposes a method that can be used to test whether two regimes likely
generate the data. The statistic compares the probabilities of counts occurring under
two regimes. Following Greene’s (2000, p891) notation, let fi(yi|xi) be the predicted
probability that yi is observed assuming the data are sampled from distribution j,
j = 1, 2. Compare these values with

mi = log

(
f1(yi|xi)
f1(yi|xi)

)

Vuong’s statistic is:

ν =

√
N [1

N

∑N
i=1mi]√

1
N

∑N
i=1(mi −m)2

which converges in distribution to a standard normal distribution. Large values of ν
suggest that model 1 more likely generates the data while small values of ν suggest that
model 2 more likely generates the data.

3.5 Multinomial Logit Model

The MultinomialLogit procedure estimates a multinomial logit model.

For the probability of observing yi = m we have

Pr(yi = m|xi) =
exp(xiβm)

∑J
j=1 exp(xiβj)

By d efault the set of coefficients for the first category, β1, is set to a zero vector as a
“reference” category. This can be modified by the user to any of the categories.

Estimates are found by minimizing

−lnL = −
N∑

i=1

Pr(yi = m|xi)

11

3. DISCRETE CHOICE

3.6 Adjacent Categories Multinomial Logit

The adjacent categories model is a special case of multinomial logit (Long, 1997, p
146). It specifies that the log odds of one category versus the next higher category is
linear in the cutpoints and explanatory variables, i.e.

ln

[
P (yi = j + 1|xi)
P (yi = j|xi)

]
= xiβj

This implies
βmnl1 = βacl1

βmnl2 = βacl2 + βacl1

βmnl3 = βacl3 + βacl2 + βacl1

...

AdjacentCategories first estimates the standard multinomial logit model, transforms
the βmnlm parameters to the βaclm parameters and computes the covariance matrix of the
parameters by the delta method.

3.7 Stereotype Multinomial Logit

For the stereotype model, regression vectors across categories are constrained to a
linear function of each other. For Pr(yi = m|xi) we have

Pr(yi = m|xi) =
exp(xiφmβm)

∑J
j=1 exp(xiφjβj)

where φm is a distance coefficient. This model requires two reference categories, one
with the distance set to zero, and another which is set to one. By default φ0 = 0 and
φM = 1, The remaining distances are constrained to be between zero and one.

3.8 Ordered Logit/Probit

Suppose y∗i = xiβ + ε is an unobserved latent variable where xi is 1xK , β is Kx1, and

ε is i.i.d. logistic with zero mean and variance π2

3 .There are J ordinal categories. The
model is identified by excluding the constant term. (See Long, 1997, page 124 for
discussion of alternate parameterizations).

12

Discrete Choice

3. DISCRETE CHOICE

The observed y for an individual depends on the intensity of y∗ relative to cutpoint
parameters τi i = 1, ..., J − 1, defined by

P (yi = j|xi) = P (τj−1 ≤ y∗i < τj |xi) = F (τj − xiβ|xi)− F (τj−1 − xiβ|xi)

where τ0 = −∞, 0 < τ1 < ... < τJ−1 and F (j|xi) = P (yi ≤ j|xi) =
∑j
k=1P (yi = k|xi).

F is a logit cumulative distribution function.

The cumulative log odds in the ordered logit model is linear in the cutpoints and
explanatory variables, i.e.

ln

[
P (yi ≤ j|xi)
P (yi > j|xi)

]
= τj − xiβ

The ordered log likelihood is:

lnL(β, τ) =
J∑

j=1

∑

yi=j

ln[F (τj − xiβ|xi) − F (τj−1 − xiβ|xi)]

For the ordered logit model, F is the cdf of the logistic distribution and for the ordered
probit model, F is the Normal cdf.

3.9 Conditional Logit

In the conditional logit model variables that measure the attributes of the categories
are added to the model.

Pr(yi = m|xi, zij) =
exp(xiβm + zimγ)

∑J
j=1 exp(xiβj + zijγ)

3.9.1 Example

We have 152 respondents reporting preferences for mode of transportation between
Sydney and Melbourne by train, bus, and car (Hensher and Greene, 1995; air travel
excluded for the purposes of this example). Several attributes of these categories were
recorded, TTME - terminal waiting time (zero for car), INVT – in-vehicle time, INVC
– in-vehicle cost, and GC – a generalized cost measure. The command file for this
estimation is

library dc;

#include dc.sdf

13

3. DISCRETE CHOICE

struct dcDesc d1;

d1 = dcDescCreate;

d1.yname = "Mode";

d1.catvarname = "choiceno";

d1.catnames = "train"$|"bus"$|"car";

d1.atnames = "ttme"$|"invc"$|"invt"$|"GC";

d1.noconstant = 1;

struct dcout dcout1;

dcout1 = dcConditionalLogit("powersxie",d1,dccontrolCreate);

call dcprt(dcout1);

The results are

CONDITIONAL LOGIT RESULTS

2003-08-17 14:50:27

Number of Observations: 152

Degrees of Freedom: 148

1 - train

2 - bus

3 - car

DISTRIBUTION AMONG OUTCOME CATEGORIES for Mode

Dependent Variable Proportion

train 0.4145

bus 0.1974

car 0.3882

ATTRIBUTES

ttme

Attribute Variable Mean Std Dev Minimum Maximum

14

Discrete Choice

3. DISCRETE CHOICE

train 0.0000 0.0000 0.0000 0.0000

bus 6.4934 17.1293 -46.0000 43.0000

car -34.6250 13.8744 -99.0000 -1.0000

invc

Attribute Variable Mean Std Dev Minimum Maximum

train 0.0000 0.0000 0.0000 0.0000

bus -15.4737 20.5984 -61.0000 25.0000

car -28.5263 23.8895 -87.0000 26.0000

invt

Attribute Variable Mean Std Dev Minimum Maximum

train 0.0000 0.0000 0.0000 0.0000

bus 24.6842 94.7064 -317.0000 552.0000

car -30.5461 131.0412 -327.0000 522.0000

GC

Attribute Variable Mean Std Dev Minimum Maximum

train 0.0000 0.0000 0.0000 0.0000

bus -12.0461 27.4335 -86.0000 105.0000

car -32.4079 32.9388 -120.0000 78.0000

ATTRIBUTE COEFFICIENTS

Variable Coefficient Std Err t-stat Prob

ttme -0.0022 0.0071 -0.3138 0.7537

invc -0.4351 0.1328 -3.2770 0.0010

invt -0.0772 0.0194 -3.9912 0.0001

GC 0.4312 0.1332 3.2371 0.0012

MARGINAL EFFECTS OF ATTRIBUTE VARIABLES

15

3. DISCRETE CHOICE

partial probability with respect to mean attribute

train

train

Variable Coefficient Std Err t-stat Prob

ttme -0.0003 0.0009 -0.3129 0.7544

invc -0.0564 0.0159 -3.5477 0.0004

invt -0.0100 0.0023 -4.4402 0.0000

GC 0.0559 0.0161 3.4728 0.0005

bus

Variable Coefficient Std Err t-stat Prob

ttme 0.0001 0.0003 0.3222 0.7473

invc 0.0184 0.0053 3.5069 0.0005

invt 0.0033 0.0008 4.2558 0.0000

GC -0.0183 0.0053 -3.4586 0.0005

car

Variable Coefficient Std Err t-stat Prob

ttme 0.0002 0.0006 0.3085 0.7577

invc 0.0379 0.0111 3.4094 0.0007

invt 0.0067 0.0016 4.2251 0.0000

GC -0.0376 0.0113 -3.3322 0.0009

bus

train

Variable Coefficient Std Err t-stat Prob

16

Discrete Choice

3. DISCRETE CHOICE

ttme 0.0001 0.0003 0.3222 0.7473

invc 0.0184 0.0053 3.5069 0.0005

invt 0.0033 0.0008 4.2558 0.0000

GC -0.0183 0.0053 -3.4586 0.0005

bus

Variable Coefficient Std Err t-stat Prob

ttme -0.0002 0.0007 -0.3188 0.7499

invc -0.0423 0.0123 -3.4475 0.0006

invt -0.0075 0.0017 -4.3723 0.0000

GC 0.0419 0.0122 3.4304 0.0006

car

Variable Coefficient Std Err t-stat Prob

ttme 0.0001 0.0004 0.3161 0.7520

invc 0.0238 0.0074 3.2256 0.0013

invt 0.0042 0.0010 4.0875 0.0000

GC -0.0236 0.0073 -3.2303 0.0012

car

train

Variable Coefficient Std Err t-stat Prob

ttme 0.0002 0.0006 0.3085 0.7577

invc 0.0379 0.0111 3.4094 0.0007

invt 0.0067 0.0016 4.2251 0.0000

GC -0.0376 0.0113 -3.3322 0.0009

bus

17

3. DISCRETE CHOICE

Variable Coefficient Std Err t-stat Prob

ttme 0.0001 0.0004 0.3161 0.7520

invc 0.0238 0.0074 3.2256 0.0013

invt 0.0042 0.0010 4.0875 0.0000

GC -0.0236 0.0073 -3.2303 0.0012

car

Variable Coefficient Std Err t-stat Prob

ttme -0.0003 0.0010 -0.3114 0.7555

invc -0.0618 0.0181 -3.4109 0.0006

invt -0.0110 0.0025 -4.3221 0.0000

GC 0.0612 0.0182 3.3648 0.0008

********************SUMMARY STATISTICS********************

MEASURES OF FIT:

-2 Ln(Lu): 192.6971

-2 Ln(Lr): All coeffs equal zero 333.9781

-2 Ln(Lr): J-1 intercepts 320.0034

LR Chi-Square (coeffs equal zero): 141.2811

d.f. 4.0000

p-value = 0.0000

LR Chi-Square (J-1 intercepts): 127.3064

d.f. 2.0000

p-value = 0.0000

Count R2, Percent Correctly Predicted: 0.8092

Adjusted Percent Correctly Predicted: -0.6988

Madalla’s pseudo R-square: 0.5672

McFadden’s pseudo R-square: 0.3978

Ben-Akiva and Lerman’s Adjusted R-square: 0.3978

Cragg and Uhler’s pseudo R-square: 0.1818

Akaike Information Criterion: 1.3204

Bayesian Information Criterion1: 0.0796

Hannan-Quinn Information Criterion: 1.3527

OBSERVED and PREDICTED OUTCOMES

| Predicted

Observed | Y01 Y02 Y03 Total

18

Discrete Choice

3. DISCRETE CHOICE

--

Y01 | 47 0 16 63

Y02 | 0 23 7 30

Y03 | 3 3 53 59

--

Total| 50 26 76 152

3.10 Nested Logit

NestedLogit is a generalization of the conditional logit model in which categories are
grouped into subcategories. Define the probability of an observation being in the m-th
category given being in the j-th subcategory:

Pm|j =
exp(zm|jβ1)
∑J
k exp(zk|jβ1)

Now let

Pj =
exp(zjβ2 + τjIj)∑J
k exp(zjβ2 + τkIk)

where

Ij = ln

Kj∑

k=1

exp(zm|jβ1)

ρj = 1− τj can be interpreted as an approximate subcategory correlation (Maddala,
1983.

Then the joint probability of category and subcategory is

Pm,j = Pm|jPj

and maximum likelihood estimates are produced by minimizing

−lnL = −
N∑

i=1

Pm,j

This model can be generalized to any number of levels of subcategories (Maddala, 1983;
Greene, 2000).

19

3. DISCRETE CHOICE

3.10.1 Example

This example is presented in Greene, 2000, page 868, and the data are from Greene and
Hensher, 1997. The dataset contains 210 observations on choices between air, train,
bus, and car modes of transportation. Attributes of the first level categories are TTME
– terminal time, and GC – a generalized cost of transportation. These categories are
grouped into two subcategories, Air and Ground, and an attribute of these categories is
AIRHINC – traveling by air times household income.

The command file for this problem is

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.level = reshape(d1.level,2,1);

d1.yname = "Mode";

d1.catnames = "Air"$|"Train"$|"Bus"$|"Car";

d1.refcatName = "Car";

d1.level[1].atNames = "TTME"$|"GC";

d1.level[1].nests = { 1, 2, 2, 2 };

d1.level[2].catnames = "Fly"$|"Ground";

d1.level[2].atNames = "airhinc";

struct dcout dcout1;

struct ds d0;

dcout1 = dcNestedLogit("hensher",d1,dccontrolCreate);

call dcprt(dcout1);

The results are

NESTED LOGIT RESULTS

2003-08-17 16:27:06

Number of Observations: 210

Degrees of Freedom: 202

1 - Air

2 - Train

20

Discrete Choice

3. DISCRETE CHOICE

3 - Bus

4 - Car

DISTRIBUTION AMONG OUTCOME CATEGORIES for Mode

Dependent Variable Proportion

Air 0.2762

Train 0.3000

Bus 0.1429

Car 0.2810

CONSTANTS

Variable Comparison Coefficient Std Err t-stat Prob

Air 1/4 6.0423 1.3313 4.5386 0.0000

Train 2/4 5.0646 0.6760 7.4919 0.0000

Bus 3/4 4.0963 0.6289 6.5138 0.0000

ATTRIBUTE COEFFICIENTS

level 1

Variable Coefficient Std Err t-stat Prob

TTME -0.1126 0.0118 -9.5232 0.0000

GC -0.0316 0.0074 -4.2490 0.0000

level 2

Variable Coefficient Std Err t-stat Prob

airhinc 0.0153 0.0111 1.3785 0.1681

21

3. DISCRETE CHOICE

1 - correlations

Variable Coefficient Std Err t-stat Prob

Fly 0.5860 0.1131 5.1833 0.0000

Ground 0.3890 0.1579 2.4633 0.0138

MARGINAL EFFECTS OF ATTRIBUTE VARIABLES

partial probability with respect to mean attributes

Air

Air

Variable Coefficient Std Err t-stat Prob

TTME -0.0130 0.0031 -4.1503 0.0000

GC -0.0036 0.0010 -3.6320 0.0003

Train

Variable Coefficient Std Err t-stat Prob

TTME 0.0055 0.0016 3.4465 0.0006

GC 0.0015 0.0006 2.7311 0.0063

Bus

Variable Coefficient Std Err t-stat Prob

TTME -0.0017 0.0007 -2.5782 0.0099

GC -0.0005 0.0002 -2.1611 0.0307

22

Discrete Choice

3. DISCRETE CHOICE

Car

Variable Coefficient Std Err t-stat Prob

TTME 0.0058 0.0015 3.8266 0.0001

GC 0.0016 0.0008 2.0445 0.0409

Train

Air

Variable Coefficient Std Err t-stat Prob

TTME 0.0036 0.0018 2.0331 0.0420

GC 0.0010 0.0003 3.2721 0.0011

Train

Variable Coefficient Std Err t-stat Prob

TTME -0.0216 0.0034 -6.4167 0.0000

GC -0.0061 0.0017 -3.4736 0.0005

Bus

Variable Coefficient Std Err t-stat Prob

TTME 0.0022 0.0007 3.2351 0.0012

GC 0.0006 0.0002 2.4789 0.0132

Car

Variable Coefficient Std Err t-stat Prob

TTME 0.0139 0.0032 4.3983 0.0000

GC 0.0039 0.0012 3.1612 0.0016

23

3. DISCRETE CHOICE

Bus

Air

Variable Coefficient Std Err t-stat Prob

TTME 0.0011 0.0013 0.8568 0.3916

GC 0.0003 0.0005 0.6127 0.5400

Train

Variable Coefficient Std Err t-stat Prob

TTME 0.0041 0.0019 2.2059 0.0274

GC 0.0011 0.0005 2.1280 0.0333

Bus

Variable Coefficient Std Err t-stat Prob

TTME -0.0033 0.0009 -3.4924 0.0005

GC -0.0009 0.0004 -2.5794 0.0099

Car

Variable Coefficient Std Err t-stat Prob

TTME 0.0043 0.0019 2.2819 0.0225

GC 0.0012 0.0009 1.3605 0.1737

Car

Air

24

Discrete Choice

3. DISCRETE CHOICE

Variable Coefficient Std Err t-stat Prob

TTME 0.0038 4.5025 0.0009 0.9993

GC 0.0011 0.0006 1.7829 0.0746

Train

Variable Coefficient Std Err t-stat Prob

TTME 0.0139 5.7323 0.0024 0.9981

GC 0.0039 0.0015 2.5925 0.0095

Bus

Variable Coefficient Std Err t-stat Prob

TTME 0.0023 1.1325 0.0020 0.9984

GC 0.0006 0.0003 2.1380 0.0325

Car

Variable Coefficient Std Err t-stat Prob

TTME -0.0220 9.2929 -0.0024 0.9981

GC -0.0062 0.0016 -3.7781 0.0002

Fly

Fly

Variable Coefficient Std Err t-stat Prob

airhinc 0.0030 0.0006 4.8805 0.0000

25

3. DISCRETE CHOICE

Ground

Variable Coefficient Std Err t-stat Prob

airhinc -0.0013 0.0009 -1.3862 0.1657

Ground

Fly

Variable Coefficient Std Err t-stat Prob

airhinc -0.0030 4.0953 -0.0007 0.9994

Ground

Variable Coefficient Std Err t-stat Prob

airhinc 0.0013 4.8130 0.0003 0.9998

********************SUMMARY STATISTICS********************

MEASURES OF FIT:

-2 Ln(Lu): 387.3123

-2 Ln(Lr): All coeffs equal zero 582.2436

-2 Ln(Lr): J-1 intercepts 567.5175

LR Chi-Square (coeffs equal zero): 194.9313

d.f. 8.0000

p-value = 0.0000

LR Chi-Square (J-1 intercepts): 180.2052

d.f. 5.0000

p-value = 0.0000

Count R2, Percent Correctly Predicted: 0.7048

Adjusted Percent Correctly Predicted: -0.4238

Madalla’s pseudo R-square: 0.5760

McFadden’s pseudo R-square: 0.3175

Ben-Akiva and Lerman’s Adjusted R-square: 0.3175

26

Discrete Choice

3. DISCRETE CHOICE

Cragg and Uhler’s pseudo R-square: 0.0976

Akaike Information Criterion: 1.9205

Bayesian Information Criterion1: 0.1275

Hannan-Quinn Information Criterion: 1.9721

OBSERVED and PREDICTED OUTCOMES

| Predicted

Observed | Y01 Y02 Y03 Y04 Total

Y01 | 37 3 2 16 58

Y02 | 2 49 1 11 63

Y03 | 0 3 23 4 30

Y04 | 5 14 1 39 59

Total | 44 69 27 70 210

3.11 Summary Statistics

Several goodness-of-fit measures are printed by mnlprt. Suppose the dependent variable
is y; there are N observations and K + 1 explanatory variables (including a constant
term); the fitted values are µ̂i; L(r) is the restricted likelihood of the model with only
an intercept and no other explanatory variables and L(u) is the unrestricted likelihood,
the model estimated with an intercept and all explanatory variables.

These include

1. The likelihood ratio statistic is:

LR = −2 ln[
L(r)

L(u)
]

Under the null hypothesis that the K − 1 explanatory variables have no information
about the dependent variable, LR is distributed χ2(K − 1).

2. McFadden’s (1973) pseudo R-square is:

R2
McF = 1− 2 ln[

L(u)

L(r)
]

3. Ben-Akiva and Lerman (1985) revise McFadden’s measure to compensate for the
effect of additional variables on a regression’s explanatory power. Their measure,
analogous to adjusted R2, is

R
2
McF = 1− lnL(u)−K

lnL(r)

27

3. DISCRETE CHOICE

4. Greene (2000, p882) presents an R2 measure based on standardized residuals.

R2
p = 1−

∑N
i=1[yi−µ̂i√

µ̂i
]2

∑N
i=1[yi−y√

y
]2

5. As noted in Greene (2000, p 883), Cameron and Windmeijer (1993) present an R2

measure based on the deviances of individual observations,
di = 2[yi ln(yi

µ̂i
) − (yi − µ̂i)]:

R2
d = 1−

∑N
i=1[yi log(yi

µ̂i
)− (yi − µ̂i)]

∑N
i=1[yi log(yi

µ̂i
)]

6. Cragg and Uhler (1970) propose a normed likelihood ratio, based on Maddala’s
(1983) showing that the maximum of R2

ML is 1− L(r)2/N

R2
C&U =

R2
ML

maxR2
ML

=
1− [L(r)/L(u)]2/N

1− L(r)2/N

7. The count R2 is the proportion of correct predictions, i.e.

R2
Count =

1

N

∑

j

njj

where njj is the number of correct predictions for outcome j.

8. The adjusted count R2 uses the highest marginal frequency to adjust for the
“spurious” successes that result by predicting that an outcome will fall in the
category with the greatest percentage of observed successes. It is the proportion of
successful categorizations occurring above what would occur by simply choosing the
category with the greatest prior chance of success.

R2
AdjCount =

∑
j njj −maxr(nr+)

N −maxr(nr+)

where max(nr+) is the maximum of the contingency table row marginals, the
“number of cases in the outcome with the most observations” (Long, 1997, p 108).

9. The average Akaike information criterion (AIC) is

AIC =
−2[lnL(u)−K]

N

10. The average Bayesian (Schwarz) information criterion (BIC) is

BIC =
−2 lnL(u) + K ln(N)

N

11. The average Hannan-Quinn criterion is

HQIC =
−2[lnL(u) −K ln(ln(N))]

N

28

Estim
ation and O

ptim
ization

Chapter 4

Estimation and Optimization

A general constrained maximum likelihood estimation problem is:

max
θ
L =

N∑

i=1

logP (Yi|xi; θ)

where N is the number of observations, P (Yi|xi; θ) is the probability of Yi given xi, and
θ, a vector of parameters subject to linear constraints, nonlinear constraints, and
bounds constraints.

The linear constraints are:

Aθ = B

Cθ ≥ D

The nonlinear constraints are:

G(θ) = 0

H(θ) ≥ 0

The bounds constraints are:

θl ≤ θ ≤ θu

G(θ) and H(θ) are functions provided by the user and must be differentiable at least
once with respect to θ.

29

4. ESTIMATION AND OPTIMIZATION

Under sqpSolvemt, parameters are updated in a series of iterations beginning with
starting values provided by the user. Let θt be the current parameter values. Successive
values are

θt+1 = θt + ρδ

where δ is a K × 1 direction vector, and ρ a scalar step length.

sqpSolvemt finds values for the parameters in θ such that L is maximized (the actual
procedure is to minimize −L.)

Numerous user controllable variables affect the sqpSolvemt optimization. These are
put into a dcControl structure instance. Suppose this instance has the name dc1, i.e.

struct dcControl cont;

cont = dcControlCreate;

The following are the members of the dcControl structure relevant to the management
of the optimization:

cont.A M ×K matrix, linear equality constraint coefficients: cont.A * p =

cont.B where p is a vector of the parameters.

cont.B M × 1 vector, linear equality constraint constants: cont.A * p =

cont.B where p is a vector of the parameters.

cont.C M ×K matrix, linear inequality constraint coefficients: tt cont.C * p ¿=
cont.D where p is a vector of the parameters.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p >=

cont.D where p is a vector of the parameters.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear equality
constraints. When such a procedure has been provided, it has two input
arguments, a PV parameter structure and a DS data structure, and one
output argument, a vector of computed equality constraints. For more
details see Remarks below. Default = {.}, i.e., no equality procedure.

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear inequality
constraints. When such a procedure has been provided, it has two input
arguments, a PV parameter structure and a DS data structure, and one
output argument, a vector of computed inequality constraints. For more
details see Remarks below. Default = {.}, i.e., no inequality procedure.

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all parameters
have same bounds. Default = { -1e256 1e256 }.

30

Estim
ation and O

ptim
ization

4. ESTIMATION AND OPTIMIZATION

cont.GradProc scalar, pointer to a procedure that computes the gradient of the
function with respect to the parameters. When such a procedure has
been provided, it has two input arguments, a PV parameter structure
and a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see Remarks below.
Default = {.}, i.e., no gradient procedure has been provided.

cont.HessProc scalar, pointer to a procedure that computes the Hessian, i.e., the
matrix of second order partial derivatives of the function with respect to
the parameters. When such a procedure has been provided, it has two
input arguments, a PV parameter structure and a DS data structure,
and one output argument, a vector of computed inequality constraints.
For more details see Remarks below. Default = ., i.e., no Hessian
procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e+ 5.

cont.MaxTries scalar, maximum number of attemps in random search. Default = 100.

cont.DirTol scalar, convergence tolerance for gradient of estimated coefficients.
Default = 1e− 5. When this criterion has been satisifed sqpSolvemt exits
the iterations.

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined outside
inequality boundaries, then this test can be turned off. Default = 1;

cont.randRadius scalar, If zero, no random search is attempted. If nonzero, it is the
radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing, trust region not
applied. The trust sets a maximum amount of the direction at each
iteration. Default = .001.

cont.output scalar, if nonzero, optimization results are printed. Default = 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default = 0.

4.0.1 Constraints

The dc1.A, dc1.B, dc1.C, dc1.D, dc1.EqProc, dc1.IneqProc, and dc1.Bounds matrix
structure members control constraints in the DISCRETE CHOICE procedures. Each
row in one of these matrices is associated with a single constraint.

For computational convenience, nonlinear equality constraints and nonlinear inequality
constraints are divided into five types: linear equality, linear inequality, nonlinear
equality, nonlinear inequality, and bounds constraints.

31

4. ESTIMATION AND OPTIMIZATION

4.0.2 Linear Equality Constraints

Linear constraints are of the form:

Aθ = B

where A is an m1 × k matrix of known constants, B an m1 × 1 vector of known
constants, and θ the vector of parameters.

To specify linear equality constraints, assign the A and B matrices to the to the dc1.A
and dc1.B structure members. To constrain the first of four parameters to equal the
third,

dc1.A = { 1 0 -1 0 };

dc1.B = { 0 };

4.0.3 Linear Inequality Constraints

Linear constraints are of the form:

Cθ ≥ D
where C is an m2 × k matrix of known constants, D an m2 × 1 vector of known
constants, and θ the vector of parameters.

To specify linear inequality constraints, assign the C and D matrices to the structure
members dc1.C and dc1.D. To constrain the first of four parameters to be greater than
the third, and the second plus the fourth to be greater than 10:

dc1.C = { 1 0 -1 0,

0 1 0 1 };

dc1.D = { 0,

10 };

4.0.4 Nonlinear Equality

Nonlinear equality constraints are of the form:

G(θ) = 0

where θ is the vector of parameters and G(θ) is an arbitrary, user-supplied function.

To specify nonlinear equality constraints, assign the pointer to the user-supplied
constraint function to the dc1.EqProc member. To constrain the norm of the
parameters to equal 1:

proc eqp(b);

retp(b’b - 1);

endp;

dc1.EqProc = &eqp;

32

Estim
ation and O

ptim
ization

4. ESTIMATION AND OPTIMIZATION

4.0.5 Nonlinear Inequality

Nonlinear inequality constraints are of the form:

H(θ) ≥ 0

where θ is the vector of parameters, and H(θ) is an arbitrary, user-supplied function.

To specify nonlinear inequality constraints, assign the pointer to the user-supplied
constraint function to the structure member dc1.IneqProc. To constrain a covariance
matrix to be positive definite, the lower left nonredundant portion of which is stored in
elements r : r + s of the parameter vector:

proc ineqp(b);

local v;

v = xpnd(b[r:r+s]); /* r and s defined elsewhere */

retp(minc(eigh(v)) - 1e-5);

endp;

dc1.IneqProc = &ineqp;

This constrains the minimum eigenvalue of the covariance matrix to be greater than a
small number (1e-5), guaranteeing that the covariance matrix is positive definite.

4.0.6 Bounds

Bounds are a type of linear inequality constraint. For computational convenience they
are specified separately from the other inequality constraints.

To specify bounds constraints, enter the lower and upper bounds respectively in the
first and second columns of a matrix that has the same number of rows as the
parameter vector. Assign this matrix to the structure member dc1.Bounds. Only the
first row is necessary if the bounds are the same for all of the parameters. To bound
four parameters:

dc1.Bounds = { -10 10,

-10 0,

1 10,

0 1 };

To bound all the parameters between -50 and +50:

dc1.Bounds = { -50 50 };

33

4. ESTIMATION AND OPTIMIZATION

4.0.7 Imposing Constraints in DISCRETE CHOICE models

To impose constraints in DISCRETE CHOICE models, you will need to know the order
of parameters in the parameter vector. The simplest way to do this is to first run the
model unconstrained and inspect the parameter vector upon output. For example run
your command file adding a call to pvGetParNames:

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.yname = "occatt";

d1.xnames = "exper" $| "educ" $| "white";

d1.catnames = "Menial" $| "BC" $| "Craft" $| "WC" $| "Pro";

struct dcControl c0;

c0 = dcControlCreate;

struct dcout dcout1;

dcout1 = mnl("gssocc",d1,c0);

print (ftostrC(seqa(1,1,pvLength(dcout1.par)),"%1.0lf")

$~ pvGetParNames(dcout1.par));

1 b0[1,2]

2 b0[1,3]

3 b0[1,4]

4 b0[1,5]

5 b[1,2]

6 b[1,3]

7 b[1,4]

8 b[1,5]

9 b[2,2]

10 b[2,3]

11 b[2,4]

12 b[2,5]

13 b[3,2]

14 b[3,3]

15 b[3,4]

16 b[3,5]

Now suppose you want to constrain columns two and three of b to be equal to each
other (the first column is the reference column fixed to zeros), the last two columns to

34

Estim
ation and O

ptim
ization

4. ESTIMATION AND OPTIMIZATION

be equal to each other (a type of adjacent categories model), i.e., b[1,3] = b[1,2], b[2,3]
= b[2,2], etc., and b[1,5] = b[1,4], b[2,5] = b[2,4], etc., and as well, b[1,4] ¿= b[1,2],
b[2,4] ¿= b[2,2], etc.

To accomplish this we set up the following constraint matrices:

/* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 */

c0.A = { 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0,

0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0,

0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 };

c0.B = { 0,

0,

0,

0,

0,

0 };

Now suppose we wish to constrain the second column to be equal to the square of the
third column, i.e., b[1,2] = b[1,3]^2, b[2,2] = b[2,3]^2, etc. For nonlinear constraints we
must provide a procedure for computing the constraint. Our command file now looks
like this:

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.yname = "occatt";

d1.xnames = "exper" $| "educ" $| "white";

d1.catnames = "Menial" $| "BC" $| "Craft" $| "WC" $| "Pro";

struct dcControl c0;

c0 = dcControlCreate;

proc eqp(struct PV par, struct DS d);

local p,r;

p = pvGetParVector(par);

35

4. ESTIMATION AND OPTIMIZATION

r = zeros(3,1);

r[1] = p[5] - p[6]^2;

r[2] = p[9] - p[10]^2;

r[3] = p[13] - p[14]^2;

retp(r);

endp;

c0.eqProc = &eqp;

struct dcout dcout1;

dcout1 = mnl("gssocc",d1,c0);

Equality constraints aren’t required to be feasible. Inequality constraints however must
be feasible. If you are imposing inequality constraints, start values computed by the
procedures may not be feasible and the optimization will fail. In that case you will have
to supply feasible start values.

4.1 Direction

Define the likelihood function’s gradient and Hessian:

Ψ(θ) =
∂L

∂θ

Σ(θ) =
∂2L

∂θ∂θ′

and the Jacobians

Ġ(θ) =
∂G(θ)

∂θ

Ḣ(θ) =
∂H(θ)

∂θ

For the purposes of this exposition and without loss of generality, assume that the
linear constraints and bounds have been incorporated into G and H.

In practice, linear constraints are specified separately from the G and H because their
Jacobians are known and easy to compute. The bounds are more easily handled
separately from the linear inequality constraints.

36

Estim
ation and O

ptim
ization

4. ESTIMATION AND OPTIMIZATION

The direction, δ, solves the quadratic program

minimize
1

2
δ′Σ(θt)δ + Ψ(θt)δ

subject to Ġ(θt)δ +G(θt) = 0

Ḣ(θt)δ +H(θt) ≥ 0

This solution requires that Σ be positive semi-definite.

4.2 Line Search

Define the merit function

m(θ) = L + max | κ |
∑

j

| gj(θ) | −max | λ |
∑

`

min(0, h`(θ))

where gj is the j-th row of G, h` is the `-th row of H, κ is the vector of Lagrangean
coefficients of the equality constraints, and λ the Lagrangean coefficients of the
inequality constraints.

The line search finds a value of ρ that minimizes or decreases m(θt + ρδ).

4.2.1 Line Search Methods

Given a direction vector d, the updated estimate of the parameters is computed

θt+1 = θt + ρδ

where ρ is a constant, usually called the step length, that increases the descent of the
function given the direction. The value of the function to be minimized as a function of
ρ is

m(θt + ρδ)

Given θ and d, this is a function of a single variable ρ. The STEPBT polynomial line
fitting/line search method attempts to find a value for ρ that decreases m.

STEPBT is an implementation of a similarly named algorithm described in Dennis and
Schnabel (1983). It first attempts to fit a quadratic function to m(θt + ρδ), computing
a ρ that minimizes the quadratic. If that fails it attempts to fit a cubic function. The
cubic function is more costly to compute.

If dc1.RandRadius is greater than zero, a random search is tried if STEPBT fails. The
random search uses the radius specified by dc1.RandRadius.

37

4. ESTIMATION AND OPTIMIZATION

4.3 Managing Optimization

The critical elements in optimization are scaling, the starting point, and the condition
of the model. When the data are scaled, the starting point is reasonably close to the
solution, and the data and model go together well, the iterations converge quickly and
without difficulty.

When the optimization is not proceeding well, it is sometimes useful to examine the
function, the gradient Ψ , the direction δ, the Hessian Σ, the parameters θt, or the step
length ρ, during the iterations.

Unless user-supplied functions are provided, sqpSolvemt calculates the gradient and
Hessian numerically, using gradmt and hessmt. They have the same input arguments
as sqpSolvemt, a PV instance containing the parameters and a DS instance containing
the data.

Pointers to explicit gradient and Hessian functions are assigned to dc1.gradproc and
dc1.hessproc respectively, i.e.

dc1.gradproc = &mygradproc;

dc1.hessproc = &myhessproc;

4.3.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be roughly
equal. If some diagonal elements contain numbers that are very large and/or very small
with respect to the others, sqpSolvemt has difficulty converging. It’s not always
obvious how to scale the diagonal elements of the Hessian. One rule-of-thumb is that
the data be of roughly of the same magnitude.

4.3.2 Condition

The specification of the model may be measured by the condition of the Hessian, the
ratio of the Hessian’s largest to smallest eigenvalues.

The optimization solution is found by searching for parameter values for which the
gradient is zero. It is difficult to determine a parameter’s optimal value when the
gradient of the function with respect to a parameter is nearly flat. When this occurs,
elements of the Hessian associated with the parameter are very small and the inverse of
the Hessian contains very large numbers. The search direction gets buried in the large
numbers. In this case it is necessary to respecify the model to exclude the parameter.

38

Estim
ation and O

ptim
ization

4. ESTIMATION AND OPTIMIZATION

Poor condition can be caused by bad scaling. It can also be caused by a poor
specification of the model or by bad data. A poorly specified model and bad data are
two sides of the same coin.

If the problem is highly nonlinear, it is important that data be available to describe the
features of the curve described by each of the parameters. For example, one of the
parameters of the Weibull function describes the shape of the curve as it approaches
the upper asymptote. This parameter is poorly estimated if data are not available on
for that portion of the curve.

4.3.3 Starting Point

When the model is not particularly well-defined, the starting point can be critical. Try
different starting points when the optimization doesn’t seem to be working. A closed
form solution may exist for a simpler problem with the same parameters. For example,
ordinary least squares estimates may be used for nonlinear least squares problems or
nonlinear regressions like probit or logit. There are no general methods for computing
starting values. It may also be necessary to attempt the estimation from a variety of
starting points.

39

4. ESTIMATION AND OPTIMIZATION

40

References

Chapter 5

References

Ben-Akiva, M. and Lerman. S.R. 1985. Discrete Choice Analysis: Theory and
Application to Travel Demand, Cambridge, MA: MIT Press

Cameron, A. Colin and Trivedi, P.K. Regression Analysis of Count Data, Cambridge,
UK: Cambridge University Press

Cragg, J.G. and Uhler, R., 1970. The Demand for Automobiles, Canadian Journal of
Economics, 3:386-406

Dennis, Jr., J.E., and Schnabel, R.B., 1983. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ:
Prentice-Hall.

Greene, W.H., 2000. Econometric Analysis, 4th ed, Prentice Hall, NJ.

Greene, W.H., 1994. ‘Accounting for Excess Zeros and Sample Selection in Poisson and
Negative Binomial Regression Models,’ Working Paper No. 94-10, New
York: Stern School of Business, New York University, Department of
Economics

Hayashi, F. 2000, Econometrics, Princeton University Press, NJ

Heilbron, D. 1989. ‘Generalized Linear Models for Altered Zero Probabilities and
Overdispersion in Count Data,’ Technical Report, Department of
Epidemiology and Biostatistics, University of California, San Francisco.

Greene, W. and D. Hensher, 1997, “Multinomial Logit and Discrete CHoice Models,” in
Greene, W., LIMDEP, Version 7.0 User’s Manual, Revised, Plainview
NY: Econometric Software, Inc.

41

5. REFERENCES

Johnson, N.L. and Kotz, S., and Balakrishnan, N. 1994., Continuous Univariate
Distributions, vol 1 (2nd ed.) New York: John Wiley

Lambert, D. 1992. Zero-inflated Poisson Regression with an Application to
Manufacturing.? Technometrics, 34:1-14

Long, J.S. 1997. Regression Models for Categorical and Limited Dependent Variables,
Sage Publications

Maddala, G. 1983. Limited Dependent and Qualitative Variables in Econometrics, New
York: Cambridge University Press

McFadden, D. 1974. ‘Conditional Logit Analysis of Qualitative Choice Behavior,’ in P.
Zarembka (ed.), Frontiers of Econometrics, New York: Academic Press

McKelvey, R.D. and Zavoina, W. 1975. ‘A Statistical Model for the Analysis of Ordinal
Level Dependent Variables,’ Journal of Mathematical Sociology, 4:103-120

Mullahey, J. 1986. ‘Specification and Testing of Some Modified Count Models,’ Journal
of Econometrics, 33:341-365.

42

Procedure Reference

Chapter 6

Procedure Reference

43

dcAdjacentCategories 6. PROCEDURE REFERENCE

Purpose

Estimates the Adjacent Categories Multinomial Logit model.

Library

dc

Format

{ out } = dcAdjacentCategories(data, desc, cont)

Input

data string or N ×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc1 an instance of a dcDesc structure

desc.yname name of dependent variable

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified. If data is
matrix of data desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable, otherwise 1 if
numeric. Default = 1.

desc.xnames K × 1 string vector, names of the independent variable(s).

desc.xvars K × 1 vector, indices of the independent variable(s). If data
is name of GAUSS dataset, either desc.xnames or desc.xvars may be
specified. If data is matrix of data desc.xvars must be specified.

desc.catnames L × 1 string vector, names of categories

desc.refcat reference category. If desc.refcatName is specified desc.refcat
is optional. Default = 1.

desc.refcatName string, reference category name. If desc.refcat has been
specified desc.refcatName is optional. Default = desc.catnames[1] .

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with respect to
independent variables, 0 - partial probability with respect to mean x.
Default = 0.

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional. Default = ;

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional. Default = 0;

44

Procedure Reference

6. PROCEDURE REFERENCE dcAdjacentCategories

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values, if
not provided, Adjacent Categories computes start values.

b0 1 1× L matrix, constants in regression

b 2 K × L matrix, regression coefficients (if any). Coefficients
associated with reference category are fixed to zeros.

For example:

struct dcControl cont;

cont = dcControlCreate;

b0 = { 0 1 1 };

b = { 0 .1 .1

0 .1 .1 };

mask = { 0 1 1,

0 1 1,

0 1 1 };

cont.startValues =

pvPackmi(cont.startValues,b0,"b0",mask[1,.],1);

cont.startValues =

pvPackmi(cont.startValues,b,"b",mask,2);

cont.A M ×K matrix, linear equality constraint coefficients: cont.A *

p = cont.B where p is a vector of the parameters. For more details
see section4.0.7.

cont.B M × 1 vector, linear equality constraint constants: cont.A * p

= cont.B where p is a vector of the parameters. For more details see
section4.0.7.

cont.C M ×K matrix, linear inequality constraint coefficients: cont.C

* p >= cont.D where p is a vector of the parameters. For more
details see section4.0.7.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p

>= cont.D where p is a vector of the parameters. For more details
see section4.0.7.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed equality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no equality procedure. For more details see section4.0.7.

45

dcAdjacentCategories 6. PROCEDURE REFERENCE

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed inequality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no inequality procedure.For more details see section4.0.7.

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all
parameters have same bounds. Default = { -1e256 1e256 }. For
more details see section4.0.7.

cont.GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one output
argument, a vector of computed inequality constraints. For more
details see section4.0.7. Default = {.}, i.e., no gradient procedure
has been provided.

cont.HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has been
provided, it has two input arguments, a PV parameter structure and
a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see section4.0.7.
Default = ., i.e., no Hessian procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e+ 5.

cont.MaxTries scalar, maximum number of attemps in random search.
Default = 100.

cont.DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e− 5. When this criterion has been satisifed
sqpSolvemt exits the iterations.

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned off.
Default = 1;

cont.randRadius scaar, If zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = .001.

cont.output scalar, if nonzero, optimization results are printed. Default
= 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default
= 0.

46

Procedure Reference

6. PROCEDURE REFERENCE dcAdjacentCategories

Output

out An instance of a dcOut structure.

out.par instance of PV structure containing estimates

b0 1 L × 1 matrix, constants in regression

b 2 L ×K matrix, regression coefficients (if any). Coefficients
associated with reference category are fixed to zeros.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvgetParNames(out.par);

if model doesn’t contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM ×NPARM variance-covariance matrix of coefficient
estimates

out.ydist L × 1 vector, percentages of dependent variable by category

out.xdata K × 4 matrix, the means, standard deviations, minimums, and
maximums of independent variables

out.margineffects L × 1×K array, marginal effects of independent
variables by category of dependent variable

out.marginvc L ×K ×K array, covariance matrices of marginal effects
of independent variables by category of dependent variable

out.fittedvals N × 1 matrix of predicted (fitted) counts

out.resids N × 1 matrix of residuals

out.gf 12× 1 matrix of goodness-of-fit measures

1 Log-Likelihood, full model

2 Log-Likelihood, restricted model (all slope coefficients equal zero)

3 Chi-square statistic

4 Agresti’s G-Squared statistic

5 Likelihood Ratio statistics (from the full and restricted models
above)

6 Probability values for the likelihood ratio statistics

47

dcAdjacentCategories 6. PROCEDURE REFERENCE

7 McFadden’s Pseudo R-Squared

8 McKelvey and Zovcina’s Pseudo R-Squared

9 Cragg and Uhler’s normed likelihood ratios

10 Count R-Squared

11 Adjusted Count R-Squared

12 Akaike information criterion (AIC)

13 Bayesian information criterion (BIC)

Example

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.yname = "occatt";

d1.xnames = "exper" $| "educ" $| "white";

d1.catnames = "Menial" $| "BC" $| "Craft" $| "WC" $| "Pro";

struct dcout dcout1;

dcout1 = dcAdjacentCategories("gssocc",d1,dccontrolCreate);

call dcprt(dcout1);

Remarks

The adjacent category model is a special case of the multinomial logit model where the
coefficients of succeeding categories are constrained to be greater than their preceding
counterparts.

Source

dcaclogit.src

48

Procedure Reference

6. PROCEDURE REFERENCE dcBinaryLogit

Purpose

Estimates a logit regression model

Library

dc

Format

{ out } = dcBinaryLogit(data, desc, cont)

Input

data string or N ×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc1 an instance of a dcDesc structure

desc.yname name of dependent variable

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified. If data is
matrix of data desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable, otherwise 1 if
numeric. Default = 1.

desc.xnames K × 1 string vector, names of the independent variable(s).

desc.xvars K × 1 vector, indices of the independent variable(s). If data
is name of GAUSS dataset, either desc.xnames or desc.xvars may be
specified. If data is matrix of data desc.xvars must be specified.

desc.catnames L× 1 string vector, names of categories

desc.refcat reference category. If desc.refcatName is specified desc.refcat
is optional. Default = 1.

desc.refcatName string, reference category name. If desc.refcat has been
specified desc.refcatName is optional. Default = desc.catnames[1] .

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional. Default = ;

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional. Default = 0;

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with respect to
independent variables, 0 - partial probability with respect to mean x.
Default = 0.

49

dcBinaryLogit 6. PROCEDURE REFERENCE

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values, if
not provided, dcBinaryLogit computes start values.

b0 1 constant in regression

b 2 regression coefficients (if any)

For example:

struct dcControl cont;

cont = dcControlCreate;

b0 = 1;

b = { .1, .2 };

cont.startValues = pvPacki(cont.startValues,b0,"b0",1);

cont.startValues = pvPacki(cont.startValues,b,"b",2);

cont.A M ×K matrix, linear equality constraint coefficients: cont.A *

p = cont.B where p is a vector of the parameters. For more details
see section4.0.7.

cont.B M × 1 vector, linear equality constraint constants: cont.A * p

= cont.B where p is a vector of the parameters. For more details see
section4.0.7.

cont.C M ×K matrix, linear inequality constraint coefficients: cont.C

* p >= cont.D where p is a vector of the parameters. For more
details see section4.0.7.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p

>= cont.D where p is a vector of the parameters. For more details
see section4.0.7.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed equality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no equality procedure. For more details see section4.0.7.

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed inequality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no inequality procedure.For more details see section4.0.7.

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all
parameters have same bounds. Default = { -1e256 1e256 }. For
more details see section4.0.7.

50

Procedure Reference

6. PROCEDURE REFERENCE dcBinaryLogit

cont.GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one output
argument, a vector of computed inequality constraints. For more
details see section4.0.7. Default = {.}, i.e., no gradient procedure
has been provided.

cont.HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has been
provided, it has two input arguments, a PV parameter structure and
a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see section4.0.7.
Default = ., i.e., no Hessian procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e + 5.

cont.MaxTries scalar, maximum number of attemps in random search.
Default = 100.

cont.DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e− 5. When this criterion has been satisifed
sqpSolvemt exits the iterations.

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned off.
Default = 1;

cont.randRadius scaar, If zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = .001.

cont.output scalar, if nonzero, optimization results are printed. Default
= 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out An instance of a dcOut structure.

out.par instance of PV structure containing estimates

b0 1 constant in regression

b 2 regression coefficients (if any)

To retrieve, e.g., regression coefficients:

51

dcBinaryLogit 6. PROCEDURE REFERENCE

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvgetParNames(out.par);

if model doesn’t contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM × NPARM variance-covariance matrix of coefficient
estimates

out.ydist L× 1 vector, percentages of dependent variable by category

out.xdata K × 4 matrix, the means, standard deviations, minimums, and
maximums of independent variables

out.margineffects L× 1×K array, marginal effects of independent
variables by category of dependent variable

out.marginvc L×K ×K array, covariance matrices of marginal effects
of independent variables by category of dependent variable

out.fittedvals N × 1 matrix of predicted (fitted) counts

out.resids N × 1 matrix of residuals

out.gf 12× 1 matrix of goodness-of-fit measures

1 Log-Likelihood, full model

2 Log-Likelihood, restricted model (all slope coefficients equal zero)

3 Chi-square statistic

4 Agresti’s G-Squared statistic

5 Likelihood Ratio statistics (from the full and restricted models
above)

6 Probability values for the likelihood ratio statistics

7 McFadden’s Pseudo R-Squared

8 McKelvey and Zovcina’s Pseudo R-Squared

9 Cragg and Uhler’s normed likelihood ratios

10 Count R-Squared

11 Adjusted Count R-Squared

12 Akaike information criterion (AIC)

13 Bayesian information criterion (BIC)

Example

52

Procedure Reference

6. PROCEDURE REFERENCE dcBinaryLogit

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.yname = "A";

d1.xnames = "GPA" $| "TUCE" $| "PSI";

struct dcout dcout1;

dcout1 = dcBinaryLogit("aldnel",d1,dccontrolCreate);

call dcprt(dcout1);

Source

dcbin.src

53

dcBinaryProbit 6. PROCEDURE REFERENCE

Purpose

Estimates a probit regression model.

Library

dc

Format

{ out } = dcBinaryProbit(data, desc, cont)

Input

data string or N ×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc1 an instance of a dcDesc structure

desc.yname name of dependent variable

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified. If data is
matrix of data desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable, otherwise 1 if
numeric. Default = 1.

desc.xnames K × 1 string vector, names of the independent variable(s).

desc.xvars K × 1 vector, indices of the independent variable(s). If data
is name of GAUSS dataset, either desc.xnames or desc.xvars may be
specified. If data is matrix of data desc.xvars must be specified.

desc.catnames L × 1 string vector, names of categories

desc.refcat reference category. If desc.refcatName is specified desc.refcat
is optional. Default = 1.

desc.refcatName string, reference category name. If desc.refcat has been
specified desc.refcatName is optional. Default = desc.catnames[1] .

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional. Default = ;

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional. Default = 0;

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with respect to
independent variables, 0 - partial probability with respect to mean x.
Default = 0.

54

Procedure Reference

6. PROCEDURE REFERENCE dcBinaryProbit

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values, if
not provided, dcBinaryProbit computes start values.

b0 1 constant in regression

b 2 regression coefficients (if any)

For example:

struct dcControl cont;

cont = dcControlCreate;

b0 = 1;

b = { .1, .2 };

cont.startValues = pvPacki(cont.startValues,b0,"b0",1);

cont.startValues = pvPacki(cont.startValues,b,"b",2);

cont.A M ×K matrix, linear equality constraint coefficients: cont.A *

p = cont.B where p is a vector of the parameters. For more details
see section4.0.7.

cont.B M × 1 vector, linear equality constraint constants: cont.A * p

= cont.B where p is a vector of the parameters. For more details see
section4.0.7.

cont.C M ×K matrix, linear inequality constraint coefficients: cont.C

* p >= cont.D where p is a vector of the parameters. For more
details see section4.0.7.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p

>= cont.D where p is a vector of the parameters. For more details
see section4.0.7.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed equality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no equality procedure. For more details see section4.0.7.

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed inequality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no inequality procedure.For more details see section4.0.7.

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all
parameters have same bounds. Default = { -1e256 1e256 }. For
more details see section4.0.7.

55

dcBinaryProbit 6. PROCEDURE REFERENCE

cont.GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one output
argument, a vector of computed inequality constraints. For more
details see section4.0.7. Default = {.}, i.e., no gradient procedure
has been provided.

cont.HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has been
provided, it has two input arguments, a PV parameter structure and
a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see section4.0.7.
Default = ., i.e., no Hessian procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e+ 5.

cont.MaxTries scalar, maximum number of attemps in random search.
Default = 100.

cont.DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e− 5. When this criterion has been satisifed
sqpSolvemt exits the iterations.

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned off.
Default = 1;

cont.randRadius scaar, If zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = .001.

cont.output scalar, if nonzero, optimization results are printed. Default
= 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out An instance of a dcOut structure.

out.par instance of PV structure containing estimates

b0 1 constant in regression

b 2 regression coefficients (if any)

To retrieve, e.g., regression coefficients:

56

Procedure Reference

6. PROCEDURE REFERENCE dcBinaryProbit

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvgetParNames(out.par);

if model doesn’t contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM ×NPARM variance-covariance matrix of coefficient
estimates

out.ydist L × 1 vector, percentages of dependent variable by category

out.xdata K × 4 matrix, the means, standard deviations, minimums, and
maximums of independent variables

out.margineffects L × 1×K array, marginal effects of independent
variables by category of dependent variable

out.marginvc L ×K ×K array, covariance matrices of marginal effects
of independent variables by category of dependent variable

out.fittedvals N × 1 matrix of predicted (fitted) counts

out.resids N × 1 matrix of residuals

out.gf 12× 1 matrix of goodness-of-fit measures

1 Log-Likelihood, full model

2 Log-Likelihood, restricted model (all slope coefficients equal zero)

3 Chi-square statistic

4 Agresti’s G-Squared statistic

5 Likelihood Ratio statistics (from the full and restricted models
above)

6 Probability values for the likelihood ratio statistics

7 McFadden’s Pseudo R-Squared

8 McKelvey and Zovcina’s Pseudo R-Squared

9 Cragg and Uhler’s normed likelihood ratios

10 Count R-Squared

11 Adjusted Count R-Squared

12 Akaike information criterion (AIC)

13 Bayesian information criterion (BIC)

Example

57

dcBinaryProbit 6. PROCEDURE REFERENCE

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.yname = "A";

d1.xnames = "GPA" $| "TUCE" $| "PSI";

struct dcout dcout1;

dcout1 = dcBinaryProbit("aldnel",d1,dccontrolCreate);

call dcprt(dcout1);

Source

dcbin.src

58

Procedure Reference

6. PROCEDURE REFERENCE dcConditionalLogit

Purpose

Estimates the Conditional Logit model.

Library

dc

Format

{ out } = dcConditionalLogit(data, desc, cont)

Input

data string or N ×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc1 an instance of a dcDesc structure

desc.dataType scalar, if 1, the dataset contains a single row for each
observation and attribute variables are stored in separate columns in
that row. If 0, category data are stored by row within observation
and attribute data are stored in single columns

desc.yname name of dependent variable

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified. If data is
matrix of data desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable, otherwise 1 if
numeric. Default = 1.

desc.xnames K × 1 string vector, names of the independent variable(s).

desc.xvars K × 1 vector, indices of the independent variable(s). If data
is name of GAUSS dataset, either desc.xnames or desc.xvars may be
specified. If data is matrix of data desc.xvars must be specified.

desc.catnames L× 1 string vector, names of categories

desc.refcat reference category. If desc.refcatName is specified desc.refcat
is optional. Default = 1.

desc.refcatName string, reference category name. If desc.refcat has been
specified desc.refcatName is optional. Default = desc.catnames[1] .

desc.atNames P × 1 string vector, names of the attribute variable(s).

desc.atVars P × 1 numeric vector, indices of the attribute variable(s).

desc.atCatNames P × L string array, names of the categories of
attribute variable(s). Required if desc.datatype = 1 and
desc.atCatVars not specified.

59

dcConditionalLogit 6. PROCEDURE REFERENCE

desc.atCatVars P × L numeric vector, indices of the categories of
attribute variable(s). Required if desc.datatype = 1 and
desc.atCatNames not specified.

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional. Default = ;

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional. Default = 0;

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with respect to
independent variables, 0 - partial probability with respect to mean x.
Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values, if
not provided, Adjacent Categories computes start values.

b0 1 1× L vector, constants in regression

b 2 K × L Matrix, regression coefficients of independent variables
if any. Coefficients associated with reference category are fixed to
zeros.

gm 3 M × 1 vector, coefficients of attribute variables.

For example:

struct dcControl cont;

cont = dcControlCreate;

b0 = { 0 1 1 };

b = { 0 .1 .1

0 .1 .1 };

mask = { 0 1 1,

0 1 1,

0 1 1 };

gm = { .1, .1 };

cont.startValues =

pvPackmi(cont.startValues,b0,"b0",mask[1,.],1);

cont.startValues =

pvPackmi(cont.startValues,b,"b",mask,2);

cont.startValues =

pvPackmi(cont.startValues,gm,"gm",mask,3);

60

Procedure Reference

6. PROCEDURE REFERENCE dcConditionalLogit

cont.A M ×K matrix, linear equality constraint coefficients: cont.A *

p = cont.B where p is a vector of the parameters. For more details
see section4.0.7.

cont.B M × 1 vector, linear equality constraint constants: cont.A * p

= cont.B where p is a vector of the parameters. For more details see
section4.0.7.

cont.C M ×K matrix, linear inequality constraint coefficients: cont.C

* p >= cont.D where p is a vector of the parameters. For more
details see section4.0.7.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p

>= cont.D where p is a vector of the parameters. For more details
see section4.0.7.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed equality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no equality procedure. For more details see section4.0.7.

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed inequality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no inequality procedure.For more details see section4.0.7.

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all
parameters have same bounds. Default = { -1e256 1e256 }. For
more details see section4.0.7.

cont.GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one output
argument, a vector of computed inequality constraints. For more
details see section4.0.7. Default = {.}, i.e., no gradient procedure
has been provided.

cont.HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has been
provided, it has two input arguments, a PV parameter structure and
a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see section4.0.7.
Default = ., i.e., no Hessian procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e + 5.

cont.MaxTries scalar, maximum number of attemps in random search.
Default = 100.

61

dcConditionalLogit 6. PROCEDURE REFERENCE

cont.DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e− 5. When this criterion has been satisifed
sqpSolvemt exits the iterations.

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned off.
Default = 1;

cont.randRadius scaar, If zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = .001.

cont.output scalar, if nonzero, optimization results are printed. Default
= 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out An instance of a dcOut structure.

out.par instance of PV structure containing estimates

b0 1 L× 1 matrix, constants in regression

b 2 L×K matrix, regression coefficients (if any). Coefficients
associated with reference category are fixed to zeros.

gm 3 M × 1 vector, coefficients of attribute variables.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvgetParNames(out.par);

if model doesn’t contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM × NPARM variance-covariance matrix of coefficient
estimates

62

Procedure Reference

6. PROCEDURE REFERENCE dcConditionalLogit

out.ydist L × 1 vector, percentages of dependent variable by category

out.xdata K × 4 matrix, the means, standard deviations, minimums, and
maximums of independent variables

out.margineffects L × 1×K array, marginal effects of independent
variables by category of dependent variable

out.marginvc L ×K ×K array, covariance matrices of marginal effects
of independent variables by category of dependent variable

out.atmargineffects L × L × 1× R array, marginal effects by category of
attribute variables by category of dependent variable

out.atmarginvc L × L ×R× R array, covariance matrices of marginal
effects by category of attribute variables by category of dependent
variable

out.fittedvals N × 1 matrix of predicted (fitted) counts

out.resids N × 1 matrix of residuals

out.gf 12× 1 matrix of goodness-of-fit measures

1 Log-Likelihood, full model

2 Log-Likelihood, restricted model (all slope coefficients equal zero)

3 Chi-square statistic

4 Agresti’s G-Squared statistic

5 Likelihood Ratio statistics (from the full and restricted models
above)

6 Probability values for the likelihood ratio statistics

7 McFadden’s Pseudo R-Squared

8 McKelvey and Zovcina’s Pseudo R-Squared

9 Cragg and Uhler’s normed likelihood ratios

10 Count R-Squared

11 Adjusted Count R-Squared

12 Akaike information criterion (AIC)

13 Bayesian information criterion (BIC)

Example

new;

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.yname = "Mode";

d1.catvarname = "choiceno";

63

dcConditionalLogit 6. PROCEDURE REFERENCE

d1.catnames = "train"$|"bus"$|"car";

d1.atnames = "ttme"$|"invc"$|"invt"$|"GC";

d1.noconstant = 1;

struct dcout dcout1;

dcout1 = dcConditionalLogit("powersxie",d1,dccontrolCreate);

call dcprt(dcout1);

64

Procedure Reference

6. PROCEDURE REFERENCE dcMultinomialLogit

Purpose

Estimates the Multinomial Logit model.

Library

dc

Format

{ out } = dcMultinomialLogit(data, desc, cont)

Input

data string or N ×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc1 an instance of a dcDesc structure

desc.yname name of dependent variable

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified. If data is
matrix of data desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable, otherwise 1 if
numeric. Default = 1.

desc.xnames K × 1 string vector, names of the independent variable(s).

desc.xvars K × 1 vector, indices of the independent variable(s). If data
is name of GAUSS dataset, either desc.xnames or desc.xvars may be
specified. If data is matrix of data desc.xvars must be specified.

desc.catnames L× 1 string vector, names of categories

desc.refcat reference category. If desc.refcatName is specified desc.refcat
is optional. Default = 1.

desc.refcatName string, reference category name. If desc.refcat has been
specified desc.refcatName is optional. Default = desc.catnames[1] .

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional. Default = ;

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional. Default = 0;

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with respect to
independent variables, 0 - partial probability with respect to mean x.
Default = 0.

65

dcMultinomialLogit 6. PROCEDURE REFERENCE

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values, if
not provided, Adjacent Categories computes start values.

b0 1 1× L matrix, constants in regression

b 2 K × L matrix, regression coefficients (if any). Coefficients
associated with reference category are fixed to zeros.

For example:

struct dcControl cont;

cont = dcControlCreate;

b0 = { 0 1 1 };

b = { 0 .1 .1

0 .1 .1 };

mask = { 0 1 1,

0 1 1,

0 1 1 };

cont.startValues =

pvPackmi(cont.startValues,b0,"b0",mask[1,.],1);

cont.startValues =

pvPackmi(cont.startValues,b,"b",mask,2);

cont.A M ×K matrix, linear equality constraint coefficients: cont.A *

p = cont.B where p is a vector of the parameters. For more details
see section4.0.7.

cont.B M × 1 vector, linear equality constraint constants: cont.A * p

= cont.B where p is a vector of the parameters. For more details see
section4.0.7.

cont.C M ×K matrix, linear inequality constraint coefficients: cont.C

* p >= cont.D where p is a vector of the parameters. For more
details see section4.0.7.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p

>= cont.D where p is a vector of the parameters. For more details
see section4.0.7.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed equality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no equality procedure. For more details see section4.0.7.

66

Procedure Reference

6. PROCEDURE REFERENCE dcMultinomialLogit

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed inequality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no inequality procedure.For more details see section4.0.7.

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all
parameters have same bounds. Default = { -1e256 1e256 }. For
more details see section4.0.7.

cont.GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one output
argument, a vector of computed inequality constraints. For more
details see section4.0.7. Default = {.}, i.e., no gradient procedure
has been provided.

cont.HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has been
provided, it has two input arguments, a PV parameter structure and
a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see section4.0.7.
Default = ., i.e., no Hessian procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e + 5.

cont.MaxTries scalar, maximum number of attemps in random search.
Default = 100.

cont.DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e− 5. When this criterion has been satisifed
sqpSolvemt exits the iterations.

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned off.
Default = 1;

cont.randRadius scaar, If zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = .001.

cont.output scalar, if nonzero, optimization results are printed. Default
= 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default
= 0.

67

dcMultinomialLogit 6. PROCEDURE REFERENCE

Output

out An instance of a dcOut structure.

out.par instance of PV structure containing estimates

b0 1 L× 1 matrix, constants in regression

b 2 L×K matrix, regression coefficients (if any). Coefficients
associated with reference category are fixed to zeros.

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvgetParNames(out.par);

if model doesn’t contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM × NPARM variance-covariance matrix of coefficient
estimates

out.ydist L× 1 vector, percentages of dependent variable by category

out.xdata K × 4 matrix, the means, standard deviations, minimums, and
maximums of independent variables

out.margineffects L× 1×K array, marginal effects of independent
variables by category of dependent variable

out.marginvc L×K ×K array, covariance matrices of marginal effects
of independent variables by category of dependent variable

out.fittedvals N × 1 matrix of predicted (fitted) counts

out.resids N × 1 matrix of residuals

out.gf 12× 1 matrix of goodness-of-fit measures

1 Log-Likelihood, full model

2 Log-Likelihood, restricted model (all slope coefficients equal zero)

3 Chi-square statistic

4 Agresti’s G-Squared statistic

5 Likelihood Ratio statistics (from the full and restricted models
above)

6 Probability values for the likelihood ratio statistics

68

Procedure Reference

6. PROCEDURE REFERENCE dcMultinomialLogit

7 McFadden’s Pseudo R-Squared

8 McKelvey and Zovcina’s Pseudo R-Squared

9 Cragg and Uhler’s normed likelihood ratios

10 Count R-Squared

11 Adjusted Count R-Squared

12 Akaike information criterion (AIC)

13 Bayesian information criterion (BIC)

Example

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.yname = "occatt";

d1.xnames = "exper" $| "educ" $| "white";

d1.catnames = "Menial" $| "BC" $| "Craft" $| "WC" $| "Pro";

struct dcout dcout1;

dcout1 = dcMultinomialLogit("gssocc",d1,dccontrolCreate);

call dcprt(dcout1);

Source

dcmnlogit.src

69

dcNegativeBinomial 6. PROCEDURE REFERENCE

Purpose

Estimates a negative binomial regression model

Library

dc

Format

{ out } = dcNegativeBinomial(data, desc, cont)

Input

data string or N ×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc1 an instance of a dcDesc structure

desc.yname name of dependent variable

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified. If data is
matrix of data desc.yvar must be specified.

desc.xnames K × 1 string vector, names of the independent variable(s).

desc.xvars K × 1 vector, indices of the independent variable(s). If data
is name of GAUSS dataset, either desc.xnames or desc.xvars may be
specified. If data is matrix of data desc.xvars must be specified.

desc.znames L × 1 string vector, names of the exogenous variable(s), if
any, for zero-inflated model

desc.zvars K × 1 vector, indices of the exogenous variable(s), if any, for
zero-inflated model. If data is name of GAUSS dataset, either
desc.znames or desc.zvars may be specified. If data is matrix of data
desc.zvars must be specified.

desc.timeName string, name of variable for inclusion as a fixed
exogenous log-variable. if desc.timeVar is is specified,
desc.timeName is optional.

desc.timeVar string, index of variable for inclusion as a fixed exogenous
log-variable. if desc.timeName is is specified, desc.timeVar is
optional.

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional. Default = ;

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional. Default = 0;

70

Procedure Reference

6. PROCEDURE REFERENCE dcNegativeBinomial

desc.limited scalar, 0 - no censoring or truncation, 1 - truncated model,
2 - censored model

desc.lh scalar, value of left side truncation or censoring

if the data are truncated on the left, all values must be greater than
or equal to desc.lh (i.e. specify desc.lh = 1 if there are no zeros in
the dependent variable).

if the data are censored on the left, all values must be greater than
or equal to desc.lh

desc.rh scalar value of right side truncation or censoring

if the data are truncated on the right, all values must be less than or
equal to desc.rh

if the data are censored on the left, all values must be less than or
equal to desc.rh

desc.zeroInflated scalar, if nonzero a zero-inflated model is is estimated.
Mixture probability can be a function of exogenous variables as
specifed in desc.zvars.

desc.marginType scalar, 1 - average partial probability with respect to
independent variables, 0 - partial probability with respect to mean x.
Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values, if
not provided, dcNegativeBinomial computes start values.

b0 1 constant in regression

b 2 regression coefficients (if any)

alpha 3 dispersion parameter

p0 4 constant in zero-inflated model

p 5 coefficients in zero-inflated model (if any)

For example:

struct dcControl cont;

cont = dcControlCreate;

b0 = .5;

b = { .1, .1, .1 };

a = .01;

cont.startValues = pvPacki(cont.startValues,b0,"b0",1);

cont.startValues = pvPacki(cont.startValues,b,"b",2);

cont.startValues = pvPacki(cont.startValues,a,"alpha",3);

cont.A M ×K matrix, linear equality constraint coefficients: cont.A *

p = cont.B where p is a vector of the parameters. For more details
see section4.0.7.

71

dcNegativeBinomial 6. PROCEDURE REFERENCE

cont.B M × 1 vector, linear equality constraint constants: cont.A * p

= cont.B where p is a vector of the parameters. For more details see
section4.0.7.

cont.C M ×K matrix, linear inequality constraint coefficients: cont.C

* p >= cont.D where p is a vector of the parameters. For more
details see section4.0.7.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p

>= cont.D where p is a vector of the parameters. For more details
see section4.0.7.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed equality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no equality procedure. For more details see section4.0.7.

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed inequality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no inequality procedure.For more details see section4.0.7.

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all
parameters have same bounds. Default = { -1e256 1e256 }. For
more details see section4.0.7.

cont.GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one output
argument, a vector of computed inequality constraints. For more
details see section4.0.7. Default = {.}, i.e., no gradient procedure
has been provided.

cont.HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has been
provided, it has two input arguments, a PV parameter structure and
a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see section4.0.7.
Default = ., i.e., no Hessian procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e+ 5.

cont.MaxTries scalar, maximum number of attemps in random search.
Default = 100.

cont.DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e− 5. When this criterion has been satisifed
sqpSolvemt exits the iterations.

72

Procedure Reference

6. PROCEDURE REFERENCE dcNegativeBinomial

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned off.
Default = 1;

cont.randRadius scaar, If zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = .001.

cont.output scalar, if nonzero, optimization results are printed. Default
= 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out An instance of a dcOut structure.

out.par instance of PV structure containing estimates

b0 1 constant in regression

b 2 regression coefficients (if any)

alpha 3 dispersion parameter

p0 4 constant in zero-inflated model

p 5 coefficients in zero-inflated model (if any)

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvgetParNames(out.par);

if model doesn’t contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM ×NPARM variance-covariance matrix of coefficient
estimates

out.ydist L × 1 vector, percentages of dependent variable by category

73

dcNegativeBinomial 6. PROCEDURE REFERENCE

out.xdata K × 4 matrix, the means, standard deviations, minimums, and
maximums of independent variables

out.margineffects L× 1×K array, marginal effects of independent
variables by category of dependent variable

out.marginvc L×K ×K array, covariance matrices of marginal effects
of independent variables by category of dependent variable

out.fittedvals N × 1 matrix of predicted (fitted) counts

out.resids N × 1 matrix of residuals

out.gf 12× 1 matrix of goodness-of-fit measures

1 Log-Likelihood, full model

2 Log-Likelihood, restricted model (all slope coefficients equal zero)

3 Chi-square statistic

4 Agresti’s G-Squared statistic

5 Likelihood Ratio statistics (from the full and restricted models
above)

6 Probability values for the likelihood ratio statistics

7 McFadden’s Pseudo R-Squared

8 McKelvey and Zovcina’s Pseudo R-Squared

9 Cragg and Uhler’s normed likelihood ratios

10 Count R-Squared

11 Adjusted Count R-Squared

12 Akaike information criterion (AIC)

13 Bayesian information criterion (BIC)

Example

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.yname = "ACC";

d1.xnames = "TB" $| "TC" $| "TD" $| "TE" $| "T6569" $|

"T7074" $| "T7579" $| "O7579";

d1.timeName = "months";

struct dcOut dcOut1;

dcout1 = dcNegativeBinomial("greenedata",d1,dccontrolCreate);

call dcprt(dcout1);

Source

dcbin.src

74

Procedure Reference

6. PROCEDURE REFERENCE dcNestedLogit

Purpose

Estimates the Conditional Logit model.

Library

dc

Format

{ out } = dcNestedLogit(data, desc, cont)

Input

data string or N ×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc1 an instance of a dcDesc structure

desc.dataType scalar, if 1, the dataset contains a single row for each
observation and attribute variables are stored in separate columns in
that row. If 0, category data are stored by row within observation
and attribute data are stored in single columns

desc.yname name of dependent variable

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified. If data is
matrix of data desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable, otherwise 1 if
numeric. Default = 1.

desc.xnames K × 1 string vector, names of the independent variable(s).

desc.xvars K × 1 vector, indices of the independent variable(s). If data
is name of GAUSS dataset, either desc.xnames or desc.xvars may be
specified. If data is matrix of data desc.xvars must be specified.

desc.catnames L× 1 string vector, names of categories

desc.refcat reference category. If desc.refcatName is specified desc.refcat
is optional. Default = 1.

desc.refcatName string, reference category name. If desc.refcat has been
specified desc.refcatName is optional. Default = desc.catnames[1] .

desc.level M × 1 vector of instances of a dcLevel structure, one for each
level of the model

desc.level[m .catnames] Lm × 1 string array, names of categories

desc.level[m .atNames] if desc.datatype = 0 , Pm × 1 string vector,
names of the attribute variable(s). If desc.level[m].atVars is
specified the specification of desc.level[m].atNames is optional.

75

dcNestedLogit 6. PROCEDURE REFERENCE

desc.level[m .atVars] if desc.datatype = 0 , Pm × 1 numeric vector,
indices of the attribute variable(s). If desc.level[m].atNames is
specified the specification of desc.level[m].atVars is optional.

desc.level[m .nests] Lm × 1 vector, category number in the next
higher level of each category at this level. The highest category
doesn’t contain one.

desc.level[m .atCatnames] Rm × Lm string array, Lm names of
categories in GAUSS dataset of Rm attribute variables in level
m. Required only if desc.dataType = 1 . If
desc.level[m].atCatvars is specified the specification of
desc.level[m].atCatnames is optional.

desc.level[m .atCatvars] Rm × Lm matrix, Lm indices of categories
in data matrix or GAUSS dataset of Rm attribute variables in
level m. Required only if desc.dataType = 1 . If
desc.level[m].atCatnames is specified the specification of
desc.level[m].atCatvars is optional.

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional. Default = ;

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional. Default = 0;

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with respect to
independent variables, 0 - partial probability with respect to mean x.
Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values, if
not provided, Adjacent Categories computes start values.

b0 1 1× L vector, constants in regression

b 2 K × L Matrix, regression coefficients of independent variables
if any. Coefficients associated with reference category are fixed to
zeros.

g1 3 R1 × 1 vector, coefficients of attribute variables for first level

g2 4 R2× 1 vector, coefficients of attribute variables for second level
. . .

gM 2+M RM × 1 vector, coefficients of attribute variables for M-th
level

t2 3+M L2 × 1 vector, proportionality coefficients for second level
(first level doesn’t have these coefficients)

t3 4+M L3 × 1 vector, proportionality coefficients for third level
(first level doesn’t have these coefficients)
. . .

76

Procedure Reference

6. PROCEDURE REFERENCE dcNestedLogit

tM 2M+1 LM × 1 vector, proportionality coefficients for M-th level
(first level doesn’t have these coefficients)

For example:

struct dcControl cont;

cont = dcControlCreate;

b0 = { 0 1 1 }; /* three categories at first level */

b = { 0 .1 .1 /* two independent variables */

0 .1 .1 };

mask = { 0 1 1,

0 1 1,

0 1 1 };

g1 = { .1, .1 }; /* two attribute variables at first level */

g2 = { .1 }; /* one attribute variable at second level */

t2 = { .1, .1 }; /* two categories at second level */

cont.startValues =

pvPackmi(cont.startValues,b0,"b0",mask[1,.],1);

cont.startValues =

pvPackmi(cont.startValues,b,"b",mask,2);

cont.startValues =

pvPackmi(cont.startValues,g1,"g1",3);

cont.startValues =

pvPacki(cont.startValues,g2,"g2",4);

cont.startValues =

pvPacki(cont.startValues,t2,"t2",5);

cont.A M ×K matrix, linear equality constraint coefficients: cont.A *

p = cont.B where p is a vector of the parameters. For more details
see section4.0.7.

cont.B M × 1 vector, linear equality constraint constants: cont.A * p

= cont.B where p is a vector of the parameters. For more details see
section4.0.7.

cont.C M ×K matrix, linear inequality constraint coefficients: cont.C

* p >= cont.D where p is a vector of the parameters. For more
details see section4.0.7.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p

>= cont.D where p is a vector of the parameters. For more details
see section4.0.7.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided, it

77

dcNestedLogit 6. PROCEDURE REFERENCE

has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed equality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no equality procedure. For more details see section4.0.7.

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed inequality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no inequality procedure.For more details see section4.0.7.

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all
parameters have same bounds. Default = { -1e256 1e256 }. For
more details see section4.0.7.

cont.GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one output
argument, a vector of computed inequality constraints. For more
details see section4.0.7. Default = {.}, i.e., no gradient procedure
has been provided.

cont.HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has been
provided, it has two input arguments, a PV parameter structure and
a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see section4.0.7.
Default = ., i.e., no Hessian procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e+ 5.

cont.MaxTries scalar, maximum number of attemps in random search.
Default = 100.

cont.DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e− 5. When this criterion has been satisifed
sqpSolvemt exits the iterations.

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned off.
Default = 1;

cont.randRadius scaar, If zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = .001.

78

Procedure Reference

6. PROCEDURE REFERENCE dcNestedLogit

cont.output scalar, if nonzero, optimization results are printed. Default
= 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out An instance of a dcOut structure.

out.par instance of PV structure containing estimates

b0 1 1× L vector, constants in regression

b 2 K × L Matrix, regression coefficients of independent variables
if any. Coefficients associated with reference category are fixed to
zeros.

g1 3 R1 × 1 vector, coefficients of attribute variables for first level

g2 4 R2× 1 vector, coefficients of attribute variables for second level
. . .

gM 2+M RM × 1 vector, coefficients of attribute variables for M-th
level

t2 3+M L2 × 1 vector, proportionality coefficients for second level
(first level doesn’t have these coefficients)

t3 4+M L3 × 1 vector, proportionality coefficients for third level
(first level doesn’t have these coefficients)
. . .

tM 2M+1 LM × 1 vector, proportionality coefficients for M-th level
(first level doesn’t have these coefficients)

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvgetParNames(out.par);

if model doesn’t contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM ×NPARM variance-covariance matrix of coefficient
estimates

79

dcNestedLogit 6. PROCEDURE REFERENCE

out.ydist L× 1 vector, percentages of dependent variable by category

out.xdata K × 4 matrix, the means, standard deviations, minimums, and
maximums of independent variables

out.margineffects L× 1×K array, marginal effects of independent
variables by category of dependent variable

out.marginvc L×K ×K array, covariance matrices of marginal effects
of independent variables by category of dependent variable

out.atmargineffects M × 1 DS structure containing M
Lm × Lm × 1×Rm arrays, marginal effects by category of attribute
variables by categories at the m-th level

out.atmarginvc M × 1 DS structure containing M Lm × Lm × Rm ×Rm
arrays, covariance matrices of marginal effects by category of
attribute variables by categories at the m-th level

out.fittedvals N × 1 matrix of predicted (fitted) counts

out.resids N × 1 matrix of residuals

out.gf 12× 1 matrix of goodness-of-fit measures

1 Log-Likelihood, full model

2 Log-Likelihood, restricted model (all slope coefficients equal zero)

3 Chi-square statistic

4 Agresti’s G-Squared statistic

5 Likelihood Ratio statistics (from the full and restricted models
above)

6 Probability values for the likelihood ratio statistics

7 McFadden’s Pseudo R-Squared

8 McKelvey and Zovcina’s Pseudo R-Squared

9 Cragg and Uhler’s normed likelihood ratios

10 Count R-Squared

11 Adjusted Count R-Squared

12 Akaike information criterion (AIC)

13 Bayesian information criterion (BIC)

Example

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.level = reshape(d1.level,2,1);

80

Procedure Reference

6. PROCEDURE REFERENCE dcNestedLogit

d1.yname = "Mode";

d1.catnames = "Air"$|"Train"$|"Bus"$|"Car";

d1.refcatName = "Car";

d1.level[1].atNames = "TTME"$|"GC";

d1.level[1].nests = { 1, 2, 2, 2 };

d1.level[2].catnames = "Fly"$|"Ground";

d1.level[2].atNames = "airhinc";

struct dcout dcout1;

dcout1 = dcNestedLogit("hensher",d1,dccontrolCreate);

call dcprt(dcout1);

Source

dcnlogit.src

81

dcOrderedLogit 6. PROCEDURE REFERENCE

Purpose

Estimates an ordered logit regression model

Library

dc

Format

{ out } = dcOrderedLogit(data, desc, cont)

Input

data string or N ×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc1 an instance of a dcDesc structure

desc.yname name of dependent variable

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified. If data is
matrix of data desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable, otherwise 1 if
numeric. Default = 1.

desc.xnames K × 1 string vector, names of the independent variable(s).

desc.xvars K × 1 vector, indices of the independent variable(s). If data
is name of GAUSS dataset, either desc.xnames or desc.xvars may be
specified. If data is matrix of data desc.xvars must be specified.

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional. Default = ;

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional. Default = 0;

desc.catnames L × 1 string vector, names of categories

desc.marginType scalar, 1 - average partial probability with respect to
independent variables, 0 - partial probability with respect to mean x.
Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values, if
not provided, dcOrderedLogit computes start values.

tau 1 thresholds

82

Procedure Reference

6. PROCEDURE REFERENCE dcOrderedLogit

b 2 regression coefficients (if any)

For example:

struct dcControl cont;

cont = dcControlCreate;

tau = { -5, -2 };

b = { .1, .1, .1 };

cont.startValues = pvPacki(cont.startValues,tau,"tau",1);

cont.startValues = pvPacki(cont.startValues,b,"b",2);

cont.A M ×K matrix, linear equality constraint coefficients: cont.A *

p = cont.B where p is a vector of the parameters. For more details
see section4.0.7.

cont.B M × 1 vector, linear equality constraint constants: cont.A * p

= cont.B where p is a vector of the parameters. For more details see
section4.0.7.

cont.C M ×K matrix, linear inequality constraint coefficients: cont.C

* p >= cont.D where p is a vector of the parameters. For more
details see section4.0.7.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p

>= cont.D where p is a vector of the parameters. For more details
see section4.0.7.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed equality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no equality procedure. For more details see section4.0.7.

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed inequality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no inequality procedure.For more details see section4.0.7.

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all
parameters have same bounds. Default = { -1e256 1e256 }. For
more details see section4.0.7.

cont.GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one output
argument, a vector of computed inequality constraints. For more
details see section4.0.7. Default = {.}, i.e., no gradient procedure
has been provided.

83

dcOrderedLogit 6. PROCEDURE REFERENCE

cont.HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has been
provided, it has two input arguments, a PV parameter structure and
a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see section4.0.7.
Default = ., i.e., no Hessian procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e+ 5.

cont.MaxTries scalar, maximum number of attemps in random search.
Default = 100.

cont.DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e− 5. When this criterion has been satisifed
sqpSolvemt exits the iterations.

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned off.
Default = 1;

cont.randRadius scaar, If zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = .001.

cont.output scalar, if nonzero, optimization results are printed. Default
= 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out An instance of a dcOut structure.

out.par instance of PV structure containing estimates

tau 1 thresholds

b 2 regression coefficients (if any)

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

84

Procedure Reference

6. PROCEDURE REFERENCE dcOrderedLogit

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvgetParNames(out.par);

if model doesn’t contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM ×NPARM variance-covariance matrix of coefficient
estimates

out.ydist L × 1 vector, percentages of dependent variable by category

out.xdata K × 4 matrix, the means, standard deviations, minimums, and
maximums of independent variables

out.margineffects L × 1×K array, marginal effects of independent
variables by category of dependent variable

out.marginvc L ×K ×K array, covariance matrices of marginal effects
of independent variables by category of dependent variable

out.fittedvals N × 1 matrix of predicted (fitted) counts

out.resids N × 1 matrix of residuals

out.gf 12× 1 matrix of goodness-of-fit measures

1 Log-Likelihood, full model

2 Log-Likelihood, restricted model (all slope coefficients equal zero)

3 Chi-square statistic

4 Agresti’s G-Squared statistic

5 Likelihood Ratio statistics (from the full and restricted models
above)

6 Probability values for the likelihood ratio statistics

7 McFadden’s Pseudo R-Squared

8 McKelvey and Zovcina’s Pseudo R-Squared

9 Cragg and Uhler’s normed likelihood ratios

10 Count R-Squared

11 Adjusted Count R-Squared

12 Akaike information criterion (AIC)

13 Bayesian information criterion (BIC)

Example

library dc;

#include dc.sdf

struct dcDesc d1;

85

dcOrderedLogit 6. PROCEDURE REFERENCE

d1 = dcDescCreate;

d1.yname = "ABC";

d1.xnames = "GPA" $| "TUCE" $| "PSI";

struct dcout dcout1;

dcout1 = dcOrderedLogit("aldnel",d1,dccontrolCreate);

call dcprt(dcout1);

Source

dcord.src

86

Procedure Reference

6. PROCEDURE REFERENCE dcOrderedProbit

Purpose

Estimates an ordered probit regression model.

Library

dc

Format

{ out } = dcOrderedProbit(data, desc, cont)

Input

data string or N ×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc1 an instance of a dcDesc structure

desc.yname name of dependent variable

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified. If data is
matrix of data desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable, otherwise 1 if
numeric. Default = 1.

desc.xnames K × 1 string vector, names of the independent variable(s).

desc.xvars K × 1 vector, indices of the independent variable(s). If data
is name of GAUSS dataset, either desc.xnames or desc.xvars may be
specified. If data is matrix of data desc.xvars must be specified.

desc.catnames L× 1 string vector, names of categories

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional. Default = ;

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional. Default = 0;

desc.marginType scalar, 1 - average partial probability with respect to
independent variables, 0 - partial probability with respect to mean x.
Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values, if
not provided, dcOrderedProbit computes start values.

tau 1 thresholds

87

dcOrderedProbit 6. PROCEDURE REFERENCE

b 2 regression coefficients (if any)

For example:

struct dcControl cont;

cont = dcControlCreate;

tau = { -5, -2 };

b = { .1, .1, .1 };

cont.startValues = pvPacki(cont.startValues,tau,"tau",1);

cont.startValues = pvPacki(cont.startValues,b,"b",2);

cont.A M ×K matrix, linear equality constraint coefficients: cont.A *

p = cont.B where p is a vector of the parameters. For more details
see section4.0.7.

cont.B M × 1 vector, linear equality constraint constants: cont.A * p

= cont.B where p is a vector of the parameters. For more details see
section4.0.7.

cont.C M ×K matrix, linear inequality constraint coefficients: cont.C

* p >= cont.D where p is a vector of the parameters. For more
details see section4.0.7.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p

>= cont.D where p is a vector of the parameters. For more details
see section4.0.7.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed equality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no equality procedure. For more details see section4.0.7.

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed inequality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no inequality procedure.For more details see section4.0.7.

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all
parameters have same bounds. Default = { -1e256 1e256 }. For
more details see section4.0.7.

cont.GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one output
argument, a vector of computed inequality constraints. For more
details see section4.0.7. Default = {.}, i.e., no gradient procedure
has been provided.

88

Procedure Reference

6. PROCEDURE REFERENCE dcOrderedProbit

cont.HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has been
provided, it has two input arguments, a PV parameter structure and
a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see section4.0.7.
Default = ., i.e., no Hessian procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e + 5.

cont.MaxTries scalar, maximum number of attemps in random search.
Default = 100.

cont.DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e− 5. When this criterion has been satisifed
sqpSolvemt exits the iterations.

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned off.
Default = 1;

cont.randRadius scaar, If zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = .001.

cont.output scalar, if nonzero, optimization results are printed. Default
= 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out An instance of a dcOut structure.

out.par instance of PV structure containing estimates

tau 1 thresholds

b 2 regression coefficients (if any)

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

89

dcOrderedProbit 6. PROCEDURE REFERENCE

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvgetParNames(out.par);

if model doesn’t contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM × NPARM variance-covariance matrix of coefficient
estimates

out.ydist L× 1 vector, percentages of dependent variable by category

out.xdata K × 4 matrix, the means, standard deviations, minimums, and
maximums of independent variables

out.margineffects L× 1×K array, marginal effects of independent
variables by category of dependent variable

out.marginvc L×K ×K array, covariance matrices of marginal effects
of independent variables by category of dependent variable

out.fittedvals N × 1 matrix of predicted (fitted) counts

out.resids N × 1 matrix of residuals

out.gf 12× 1 matrix of goodness-of-fit measures

1 Log-Likelihood, full model

2 Log-Likelihood, restricted model (all slope coefficients equal zero)

3 Chi-square statistic

4 Agresti’s G-Squared statistic

5 Likelihood Ratio statistics (from the full and restricted models
above)

6 Probability values for the likelihood ratio statistics

7 McFadden’s Pseudo R-Squared

8 McKelvey and Zovcina’s Pseudo R-Squared

9 Cragg and Uhler’s normed likelihood ratios

10 Count R-Squared

11 Adjusted Count R-Squared

12 Akaike information criterion (AIC)

13 Bayesian information criterion (BIC)

Example

library dc;

#include dc.sdf

struct dcDesc d1;

90

Procedure Reference

6. PROCEDURE REFERENCE dcOrderedProbit

d1 = dcDescCreate;

d1.yname = "A";

d1.xnames = "GPA" $| "TUCE" $| "PSI";

struct dcout dcout1;

dcout1 = dcOrderedProbit("aldnel",d1,dccontrolCreate);

call dcprt(dcout1);

Source

dcord.src

91

dcPoisson 6. PROCEDURE REFERENCE

Purpose

Estimates a Poisson regression model

Library

dc

Format

{ out } = dcPoisson(data, desc, cont)

Input

data string or N ×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc1 an instance of a dcDesc structure

desc.yname name of dependent variable

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified. If data is
matrix of data desc.yvar must be specified.

desc.xnames K × 1 string vector, names of the independent variable(s).

desc.xvars K × 1 vector, indices of the independent variable(s). If data
is name of GAUSS dataset, either desc.xnames or desc.xvars may be
specified. If data is matrix of data desc.xvars must be specified.

desc.znames L × 1 string vector, names of the exogenous variable(s), if
any, for zero-inflated model

desc.zvars K × 1 vector, indices of the exogenous variable(s), if any, for
zero-inflated model. If data is name of GAUSS dataset, either
desc.znames or desc.zvars may be specified. If data is matrix of data
desc.zvars must be specified.

desc.timeName string, name of variable for inclusion as a fixed
exogenous log-variable. if desc.timeVar is is specified,
desc.timeName is optional.

desc.timeVar string, index of variable for inclusion as a fixed exogenous
log-variable. if desc.timeName is is specified, desc.timeVar is
optional.

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional. Default = ;

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional. Default = 0;

92

Procedure Reference

6. PROCEDURE REFERENCE dcPoisson

desc.limited scalar, 0 - no censoring or truncation, 1 - truncated model,
2 - censored model

desc.lh scalar, value of left side truncation or censoring

if the data are truncated on the left, all values must be greater than
or equal to desc.lh (i.e. specify desc.lh = 1 if there are no zeros in
the dependent variable).

if the data are censored on the left, all values must be greater than
or equal to desc.lh

desc.rh scalar value of right side truncation or censoring

if the data are truncated on the right, all values must be less than or
equal to desc.rh

if the data are censored on the left, all values must be less than or
equal to desc.rh

desc.zeroInflated scalar, if nonzero a zero-inflated model is is estimated.
Mixture probability can be a function of exogenous variables as
specifed in desc.zvars.

desc.marginType scalar, 1 - average partial probability with respect to
independent variables, 0 - partial probability with respect to mean x.
Default = 0.

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values, if
not provided, dcPoisson computes start values.

b0 1 constant in regression

b 2 regression coefficients (if any)

p0 3 constant in zero-inflated model

p 4 coefficients in zero-inflated model (if any)

For example:

struct dcControl cont;

cont = dcControlCreate;

b0 = { .5 };

b = { .1, .1, .1 };

cont.startValues = pvPacki(cont.startValues,b0,"b0",1);

cont.startValues = pvPacki(cont.startValues,b,"b",2);

cont.A M ×K matrix, linear equality constraint coefficients: cont.A *

p = cont.B where p is a vector of the parameters. For more details
see section4.0.7.

cont.B M × 1 vector, linear equality constraint constants: cont.A * p

= cont.B where p is a vector of the parameters. For more details see
section4.0.7.

93

dcPoisson 6. PROCEDURE REFERENCE

cont.C M ×K matrix, linear inequality constraint coefficients: cont.C

* p >= cont.D where p is a vector of the parameters. For more
details see section4.0.7.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p

>= cont.D where p is a vector of the parameters. For more details
see section4.0.7.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed equality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no equality procedure. For more details see section4.0.7.

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed inequality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no inequality procedure.For more details see section4.0.7.

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all
parameters have same bounds. Default = { -1e256 1e256 }. For
more details see section4.0.7.

cont.GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one output
argument, a vector of computed inequality constraints. For more
details see section4.0.7. Default = {.}, i.e., no gradient procedure
has been provided.

cont.HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has been
provided, it has two input arguments, a PV parameter structure and
a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see section4.0.7.
Default = ., i.e., no Hessian procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e+ 5.

cont.MaxTries scalar, maximum number of attemps in random search.
Default = 100.

cont.DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e− 5. When this criterion has been satisifed
sqpSolvemt exits the iterations.

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is defined

94

Procedure Reference

6. PROCEDURE REFERENCE dcPoisson

outside inequality boundaries, then this test can be turned off.
Default = 1;

cont.randRadius scaar, If zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = .001.

cont.output scalar, if nonzero, optimization results are printed. Default
= 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out An instance of a dcOut structure.

out.par instance of PV structure containing estimates

b0 1 constant in regression

b 2 regression coefficients (if any)

p0 3 constant in zero-inflated model

p 4 coefficients in zero-inflated model (if any)

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvgetParNames(out.par);

if model doesn’t contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM ×NPARM variance-covariance matrix of coefficient
estimates

out.ydist L × 1 vector, percentages of dependent variable by category

out.xdata K × 4 matrix, the means, standard deviations, minimums, and
maximums of independent variables

out.margineffects L × 1×K array, marginal effects of independent
variables by category of dependent variable

95

dcPoisson 6. PROCEDURE REFERENCE

out.marginvc L×K ×K array, covariance matrices of marginal effects
of independent variables by category of dependent variable

out.fittedvals N × 1 matrix of predicted (fitted) counts

out.resids N × 1 matrix of residuals

out.gf 12× 1 matrix of goodness-of-fit measures

1 Log-Likelihood, full model

2 Log-Likelihood, restricted model (all slope coefficients equal zero)

3 Chi-square statistic

4 Agresti’s G-Squared statistic

5 Likelihood Ratio statistics (from the full and restricted models
above)

6 Probability values for the likelihood ratio statistics

7 McFadden’s Pseudo R-Squared

8 McKelvey and Zovcina’s Pseudo R-Squared

9 Cragg and Uhler’s normed likelihood ratios

10 Count R-Squared

11 Adjusted Count R-Squared

12 Akaike information criterion (AIC)

13 Bayesian information criterion (BIC)

Example

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.yname = "ACC";

d1.xnames = "TB" $| "TC" $| "TD" $| "TE" $| "T6569" $|

"T7074" $| "T7579" $| "O7579";

d1.timeName = "months";

struct dcOut dcOut1;

dcout1 = dcPoisson("greenedata",d1,dccontrolCreate);

call psnprt(dcout1);

Source

dcpsn.src

96

Procedure Reference

6. PROCEDURE REFERENCE dcprt

Purpose

Prints output from Discrete Choice procedures

Library

dc

Format

{ out } = dcprt(out)

Input

out an instance of a dcOut structure

Output

out an instance of a dcOut structure

Remarks

The input argument is returned unchanged

Source

dc.src

97

dcStereo 6. PROCEDURE REFERENCE

Purpose

Estimates the Stereotype Multinomial Logit model.

Library

dc

Format

{ out } = dcStereo(data, desc, cont)

Input

data string or N ×K matrix, if string, the name of a GAUSS data set or if
matrix, matrix of data

desc1 an instance of a dcDesc structure

desc.yname name of dependent variable

desc.yvar scalar, index of dependent variable. If data is name of GAUSS
dataset, either desc.yname or desc.yvar may be specified. If data is
matrix of data desc.yvar must be specified.

desc.ytype scalar, 0 if desc.yvar character variable, otherwise 1 if
numeric. Default = 1.

desc.xnames K × 1 string vector, names of the independent variable(s).

desc.xvars K × 1 vector, indices of the independent variable(s). If data
is name of GAUSS dataset, either desc.xnames or desc.xvars may be
specified. If data is matrix of data desc.xvars must be specified.

desc.catnames L × 1 string vector, names of categories

desc.refcat reference category. If desc.refcatName is specified desc.refcat
is optional. Default = 1.

desc.refcatName string, reference category name. If desc.refcat has been
specified desc.refcatName is optional. Default = desc.catnames[1] .

desc.wgtname string, name of weight variable. If desc.wgtvar is
specified, the specification of desc.wgtname is optional. Default = ;

desc.wgtvar scalar, index of weight variable. If desc.wgtname is
specified, the specification of desc.wgtvar is optional. Default = 0;

desc.noconstant scalar, 1 if no constants in model. Default = 0.

desc.marginType scalar, 1 - average partial probability with respect to
independent variables, 0 - partial probability with respect to mean x.
Default = 0.

98

Procedure Reference

6. PROCEDURE REFERENCE dcStereo

cont an instance of a dcControl structure.

cont.startValues instance of PV structure containing starting values, if
not provided, stereo computes start values.

b0 1 1× L vector, constants in regression

b 2 K × 1 vector, regression coefficients

distance 3 (L − 1)× 1 vector, distance coefficients

For example:

struct dcControl cont;

cont = dcControlCreate;

b0 = 1;

b = { .1, .2 };

d = .01;

cont.startValues = pvPacki(cont.startValues,b0,"b0",1);

cont.startValues = pvPacki(cont.startValues,b,"b",2);

cont.startValues = pvPacki(cont.startValues,d,"distance",2);

cont.A M ×K matrix, linear equality constraint coefficients: cont.A *

p = cont.B where p is a vector of the parameters. For more details
see section4.0.7.

cont.B M × 1 vector, linear equality constraint constants: cont.A * p

= cont.B where p is a vector of the parameters. For more details see
section4.0.7.

cont.C M ×K matrix, linear inequality constraint coefficients: cont.C

* p >= cont.D where p is a vector of the parameters. For more
details see section4.0.7.

cont.D M × 1 vector, linear inequality constraint constants: cont.C * p

>= cont.D where p is a vector of the parameters. For more details
see section4.0.7.

cont.eqProc scalar, pointer to a procedure that computes the nonlinear
equality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed equality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no equality procedure. For more details see section4.0.7.

cont.IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. When such a procedure has been provided, it
has two input arguments, a PV parameter structure and a DS data
structure, and one output argument, a vector of computed inequality
constraints. For more details see Remarks below. Default = {.}, i.e.,
no inequality procedure.For more details see section4.0.7.

99

dcStereo 6. PROCEDURE REFERENCE

cont.Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1× 2 all
parameters have same bounds. Default = { -1e256 1e256 }. For
more details see section4.0.7.

cont.GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the parameters. When such a
procedure has been provided, it has two input arguments, a PV
parameter structure and a DS data structure, and one output
argument, a vector of computed inequality constraints. For more
details see section4.0.7. Default = {.}, i.e., no gradient procedure
has been provided.

cont.HessProc scalar, pointer to a procedure that computes the Hessian,
i.e., the matrix of second order partial derivatives of the function
with respect to the parameters. When such a procedure has been
provided, it has two input arguments, a PV parameter structure and
a DS data structure, and one output argument, a vector of
computed inequality constraints. For more details see section4.0.7.
Default = ., i.e., no Hessian procedure has been provided.

cont.MaxIters scalar, maximum number of iterations. Default = 1e+ 5.

cont.MaxTries scalar, maximum number of attemps in random search.
Default = 100.

cont.DirTol scalar, convergence tolerance for gradient of estimated
coefficients. Default = 1e− 5. When this criterion has been satisifed
sqpSolvemt exits the iterations.

cont.FeasibleTest scalar, if nonzero, parameters are tested for feasibility
before computing function in line search. If function is defined
outside inequality boundaries, then this test can be turned off.
Default = 1;

cont.randRadius scaar, If zero, no random search is attempted. If
nonzero, it is the radius of the random search. Default = .001.

cont.trustRadius scalar, radius of the trust region. If scalar missing,
trust region not applied. The trust sets a maximum amount of the
direction at each iteration. Default = .001.

cont.output scalar, if nonzero, optimization results are printed. Default
= 0.

cont.PrintIters scalar, if nonzero, prints iteration information. Default
= 0.

Output

out An instance of a dcOut structure.

out.par instance of PV structure containing estimates

100

Procedure Reference

6. PROCEDURE REFERENCE dcStereo

b0 1 constant in regression

b 2 regression coefficients

distance 3 distance coefficients

To retrieve, e.g., regression coefficients:

b = pvUnpack(out.par,"b");

or

b = pvUnpack(out.par,2);

The coefficients may also be retrieved as a single parameter vector:

b = pvGetParVector(out.par);

The location of the coefficients in out.par can be described by

b = pvgetParNames(out.par);

if model doesn’t contain a parameter, pvUnpack returns a scalar
missing value with error code = 99.

out.vc NPARM ×NPARM variance-covariance matrix of coefficient
estimates

out.ydist L × 1 vector, percentages of dependent variable by category

out.xdata K × 4 matrix, the means, standard deviations, minimums, and
maximums of independent variables

out.margineffects L × 1×K array, marginal effects of independent
variables by category of dependent variable

out.marginvc L ×K ×K array, covariance matrices of marginal effects
of independent variables by category of dependent variable

out.fittedvals N × 1 matrix of predicted (fitted) counts

out.resids N × 1 matrix of residuals

out.gf 12× 1 matrix of goodness-of-fit measures

1 Log-Likelihood, full model

2 Log-Likelihood, restricted model (all slope coefficients equal zero)

3 Chi-square statistic

4 Agresti’s G-Squared statistic

5 Likelihood Ratio statistics (from the full and restricted models
above)

6 Probability values for the likelihood ratio statistics

7 McFadden’s Pseudo R-Squared

8 McKelvey and Zovcina’s Pseudo R-Squared

9 Cragg and Uhler’s normed likelihood ratios

10 Count R-Squared

101

dcStereo 6. PROCEDURE REFERENCE

11 Adjusted Count R-Squared

12 Akaike information criterion (AIC)

13 Bayesian information criterion (BIC)

Example

library dc;

#include dc.sdf

struct dcDesc d1;

d1 = dcDescCreate;

d1.yvar = 1;

let d1.xvars = { 2,3,4 };

struct dcout dcout1;

dcout1 = dcStereo("aldnel",d1,dcControlCreate);

call dcprt(dcout1);

Remarks

The stereotype model is a special case of the multinomial logit model where the
coefficients of succeeding categories are a linear function of a single vector of coefficients.

Source

dcstereo.src

102

Index

Index

Adjacent Categories, 12

B

bounds, 33

C

censoring, 9
condition of Hessian, 38
conditional logit model, 13
constraints, 31

D

dc1.A, 32
dc1.B, 32
dc1.Bounds, 33
dc1.C, 32
dc1.D, 32
dc1.IneqProc, 33
dcAdjacentCategories, 44
dcBinaryLogit, 49
dcBinaryProbit, 54
dcConditionalLogit, 59
dcMultinomialLogit, 65
dcNegativeBinomial, 70
dcNestedLogit, 75
dcOrderedLogit, 82
dcOrderedProbit, 87
dcPoisson, 92
dcprt, 97
dcStereo, 98

E

EqProc, 32

equality constraints, 32

H

Hessian, 38

I

inequality constraints, 32, 33
Installation, 1

L

likelihood function, 29
line search, 37
linear constraints, 32
log-likelihood function, 29

M

multinomial logit model, 11

N

negative binomial model, 8
nested logit model, 19
nonlinear constraints, 32, 33

O

ordered logit model, 12
ordered probit model, 12

P

Poisson model, 7

R

INDEX

RandRadius, 37

S

scaling, 38
starting point, 39
step length, 37
stereotype logit model, 12
summary statistics, 27

T

truncation, 9

U

UNIX, 1, 3

W

Windows/NT/2000, 3

Z

Zero-Inflated model, 10

104

