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Abstract

The purpose of this paper is to provide an empirical application of duality under

uncertainty. Using the indirect utility function we develop a simple, empirically imple-

mentable framework, that can be used to estimate the effects of price uncertainty on

firms’ behaviour. The model is used to test implications of the theory and to identify

the effects of uncertainty on input demand.

In an empirical example we estimate the effects of (energy and output) price uncer-

tainty on input demand by the U.S. manufacturing industry. We find that production

responses indicate the existence of risk aversion and are consistent with behaviour under

decreasing absolute risk aversion. The actual effects of uncertain prices on input demand

were, however, rather small.

∗I would like to thank L. Epstein and A. Ullah for their helpful comments. Financial support from SSHRC
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1 Introduction

The effects of uncertainty on firm behaviour have been the subjects of numerous theoretical

studies in the literature. Recently, applications of duality in production theory have been

extended choice under uncertainty1. It is surprising, however, that thus far, with very few

exceptions, there are very few empirical applications which examine the effects of uncertainty

on firms’ decisions2.

The purpose of this paper is apply these theoretical models and provide an example of an

empirical application of duality under uncertainty. Applying duality under uncertainty, we

provide a simple, empirically implementable framework for the analysis of firms’ behaviour

under uncertainty. Using the induced (indirect) utility function, we develop a model which

can be used to capture the effects of (input and output) price uncertainty on firms’ behaviour.

The model is used to test implications of the theory and to identify the effects of uncertainty

on input demand. In an empirical example we estimate the effect of (energy and output) price

uncertainty on input demand by the U.S. manufacturing industry. We find that production

responses indicate the existence of risk aversion and are consistent with behaviour under

decreasing absolute risk aversion.

2 Theoretical Framework

2.1 The Indirect Utility Functional

Consider a firm that uses a vector of  inputs,  ∈ B, a compact subset in R
+, to produce

an output,  ∈ C, a compact subset in R1
+, given its technology, which is summarized by the

production possibilities set T . We make the standard assumptions regarding the production
possibilities set, namely, T is taken to be non-empty, monotonic, convex and closed. The

firm makes its decisions facing uncertain output and inputs prices. We assume that input

and output prices are given by the positive and bounded random variables  ∈ [0 ] and
 ∈ [0 ]  = 1. The random variables  are distributed according to the distribution

function 0( ), with the support A0 ≡ {() :  ∈ [0 ],  ∈ [0 ]}.
We assume that the firm is competitive in input markets, but we do not make specific

1See for example Pope (1980), Machina (1984), Chavas (1985), Chavas and Pope (1985), Dalal (1990).
2For examples of theoretical studies see: Sandmo (1971), Batra and Ullah (1974), Hartman (1976), Epstein

(1978), (1980), Pope (1980), Chavas (1985), Chavas and Pope (1985), Appelbaum and Katz (1986), Dalal

(1990). Epstein (1980) examines possible functional forms for restricted profit functions, to be used in a

two stage problem, where some choices are made after uncertainty has been resolved. His analysis focuses,

however, on the properties of the restricted profit function as a function of known prices. For references of

empirical studies under certaity see Fuss and McFadden (1978), Jorgenson (1986). For examples of empirical

studies that consider the effects of uncertainty on firm behaviour see Parkin (1970), Just (1974), Antonovitz

and Roe (1986), Appelbaum (1991), Appelbaum and Kohli (1995).
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assumptions regarding its output market structure. The firm’s revenues are given by  = ,

where the random variables (), are distributed according to the distribution function

(), with the support A ≡ {() :  ∈ [0 ],  ∈ [0 ]}, where  = . It is

useful to define  = ̄ + ,  = ̄ + , with () = ̄ and () = ̄. Thus, we also have

 =  = ̄ +  ≡ ̄+ , with () = ̄.

We assume that the firm maximizes expected utility of profits, () = (−), where

 is a continuous and increasing Von Neumann-Morgenstern utility function. The firm’s

problem is given by:

 {
Z
()∈A

 [− ] : ( ) ∈ T } (1)

This problem can be solved in two steps. First, we define the restricted indirect utility

functional,  , as the solution to the problem:

 {
Z
()∈A

 [− ] : ( ) ∈ T } ≡ ( ) (2)

Second, we solve for the optimal level of output,

 ( ) (3)

The solution to the two step problem is the same as the solution to problem (1).

In order to avoid having to make specific assumptions regarding output market structure

in the empirical analysis3, we will focus on the first step of the problem, as in (2). This

corresponds to the standard cost minimization problem in the theory of the firm without

uncertainty and will facilitate comparison between the two models. To simplify the notation,

we write (), instead of ( ), whenever  is not discussed explicitly.

Given that () can be written as () ≡ {() : ( ) ∈ T }, where (the
conditional preference functional) () ≡ [ [ − ]], it has similar properties to the

usual support (dual) functions4 and can be used to obtain duality results. Specifically, since

(i) the constraint set, T , is non-empty and compact, (ii)  is continuous and increasing in

profits5 and (iii) the conditional functional ( ) has a compact range and is continuous

in , it follows from the Theorem of the Maximum (Berg (1963))6, that  is continuous and

the optimal solution for  is upper semi-continuous. Given the “linearity in probabilities” of

expected utility,  is also convex in.7 Machina (1984) (p. 208, Theorems 2 and 3.) also shows

that convexity and continuity completely characterize the functional  , so that any functional

3For empirical applications of models with non-competitive markets see Appelbaum (1979), (1982).
4This is pointed out in Machina (1984). For a discussion of support functions, see Rockafellar (1970).
5Hence continuous and increasing /decreasiong in () respectively.
6This is also given in Theorem 1 in Machina (1984) , p. 206.
7Proof can be supplied upon request.
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with these properties is the indirect utility functional for some preferences. Underlying utility

functions are, therefore, “recoverable” and moreover, the “recovered preferences” are the same

as the actual ones.

2.2 Moments and the Indirect Utility Function

While the indirect functional () is useful in obtaining duality relationships, it is not the

only possible characterization of indirect utility, nor is it the most convenient one to use empir-

ically. Instead of looking at (), it is possible to consider other characterizations of indirect

preferences. For example, since the random variables () are bounded, the moments of 

exist and uniquely determine the distribution 8. Thus, if we denote the moments by , the

indirect utility can be written in terms of the moments as:

() = (̂()) ≡  () (4)

Given that  is continuous and convex in  it follows that  is continuous and convex in the

moments.9

Since the purpose of this paper is to provide a framework for empirical applications, it is

both convenient and natural to work with an indirect utility function defined over moments.

First of all, it is very simple to obtain the firm’s input demand functions directly, by applying

the envelop theorem to a function of the moments. Second, moments are much easier to

calculate empirically. Thus, given that the moments uniquely characterize the distribution ,

the solution to problem (2) can be described by an indirect utility function,  , that is defined

over these moments:

{
Z
()∈A

 [− ] : ( ) ∈ T } ≡ ( ) =  (̄ ̄ Σ ) (5)

where Σ is the covariance matrix of the random variables ( ) and the vector  represents

moments of higher order.

The firm’s input demand functions can be easily derived from the indirect utility function,

 . First, since  = ̄ + , and  = ̄+ we get from (5):



̄

= −[ 0()] (6)



̄
= [ 0()]10 (7)

8Bounded support is a sufficient condition for the distribution function to be uniquely determined the

moments (this is the so called “moments problem”). See, for example, Wilks (1964), theorem 5.5.1. p. 126.
9Proof can be supplied upon request.
10Note that the derivative in (7) is to be understood as the effect of an exogenous change in the mean of 

(of some shift parameter), which is not due to a change in output.
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The input demand functions are, therefore, given by (the equivalent of) Roy’s identity as

 = − 

̄




̄
 (8)

Given a functional form for  these functions can be easily derived.

Without uncertainty, additional properties of dual functions can be easily obtained,

since either the objective function (in the theory of the firm), or the constraint (in the theory

of the consumer) are linear. Specifically, dual functions usually also satisfy homogeneity and

monotonicity restrictions11. These restrictions are used to obtain qualitative results, to test

the underlying theory and to reduce the number of parameters that need to be estimated in

empirical applications.

Since here profits are transformed nonlinearly by the utility function, similar properties

do not necessarily hold for the indirect preference function  . In general, the properties

of  depend on the properties of the utility, production and the density functions. It is still

possible, however, to derive additional properties that  and the corresponding input demand

functions must satisfy.

1. The Slutsky Equation:

Following Chavas and Pope (1985) and Dalal (1990) (where output price uncertainty is

examined), define the compensated substitution effect (holding maximum expected utility,  ,

constant) of input  with respect to expected input price , 

 , as



 ≡



̄

|=0= 

̄

+


̄

̄

̄

|=0 (9)

By substituting ̄
̄

|=0= , into (9), we get the equivalent of the Slutsky equation in

consumer theory as:


̄

=


̄

|=0 − 
̄

(10)

Since 

 = −[ + ̄ + ̄ +̄̄]̄, the [


 ] matrix is symmetric. In addition,

it can be shown to be negative semi-definite12. The convexity of  in moments and the fact

that the matrix [

 ] is (symmetric) negative semi-definite provide us with a set of curvature

restrictions that must be satisfied by  .

It is worth noting, however, that the matrix 
̄

itself is not necessarily negative semi-

definite. Thus, input demand functions are not necessarily downward sloping.13 This corre-

11See Diewert (1982), Epstein (1981), for a discussion of these properties.
12The proof is similar to the one given in Chavas (1985) and will be supplied upon request.
13For this to be the case it is necessary to impose additional restrictions on the underlying production

and utility functions. For example, with known input prices, but an uncertain output price, it was shown

(See Sandmo (1971), Batra and Ullah (1974), Hartman (1976)), that with decreasing absolute risk aversion,

  0, so that the “income effect” has the same sign as  .
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sponds to the standard result in consumer theory, where Marshallian demand functions are

not necessarily downward sloping, but compensated demands always are.

2. Monotonicity:

(i) Since [ 0()]  0, we get from (6) and (7) that  is non-increasing in expected input

prices, but non-decreasing in expected revenue.

(ii) From (5) we get



= −[ 0()] = −[ 0() ] (11)




= [ 0()] = [ 0() ] (12)

where  ≡
q
(),  ≡

q
() and ,  are the normalized random variables, defined

by:  ≡ ,  ≡ . Since the random variables   may be either positively, or

negatively correlated, the sign of  00 is not enough to determine the signs of the covariance

terms in (11) and (12) 14.

(ii). It is well known that with risk neutrality (or without uncertainty), changes in ̄  and

, do not affect demand. Conversely, if such changes do affect demand, the firm cannot be

risk neutral15. These properties provide a simple econometric test for risk neutrality.

3. Homogeneity:

Since () 6= () unless  is linear (and since  = ̄ +  − ̄ −  is linear

in ̄ ̄  )  cannot be homogeneous of degree one in (̄ ̄  ), or in (̄ ̄). A

necessary and sufficient condition for linear homogeneity of  in (̄ ̄) is that we have risk

neutrality16.

What can be said about the homogeneity properties of input demand functions? If  is

linear homogeneous (with risk neutrality), the demand functions are homogeneous of degree

zero (in expected prices). On the other hand, when  is not linear homogeneous (without risk

neutrality), input demand functions are not homogeneous of degree zero in expected prices17.

14To see this, assume that there are only two random variables, say 1 and , which are distributed

according to a bivariate normal distribution. Then, applying Stein’s Lemma we can write the two covariance

terms in (11) and (12) as: ( 0() 1) = 1{ 00()} and ( 0() ) = { 00()}, where, 1 ≡
[(1 )− 11] and  ≡ [ − 11(1 )]. Since we do not know the signs of 1 and , we do

not know if  is increasing, or decreasing in 1 and , even if we have risk aversion. This problem does not

arise with one random variable, or when (1 )
15It should be noted that with constant absolute risk aversion (CARA) we also have 

̄
= 0. Thus, 

̄
6= 0

also implies the rejection of CARA.
16With risk neutrality, () = ̄− ̄, which is linear in (̄ ̄), thus leading to linear homogeneity of  .
17To see this, note that the first order conditions for problem (5) yield that +̄

+̄
= 


, for the required

level of output, where  =
( 0)

( 0)   =  . For a general utility function, the input mix and hence (with

a given level of output) also input levels will be unaffected by proportionate changes in expected prices if and

only if  =  = 0, for all  , which is the case under risk neutrality. Thus, in general, input demands are

not zero homogeneous in expected prices. Note that this means that (since  = ) the slopes of the

level surfaces of  along a ray through the origin are not constant, in other words,  , cannot be homothetic

either.
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4. symmetry:

From (8) we get



̄

= −{̄ − ̄} 2
̄



̄

= −{̄ − ̄} 2
̄ (13)

Thus, input demand functions are symmetric ( 
̄

=

̄
) if and only if

̄ = ̄ (14)

This condition can be written as ln()̄ = 0, or ()̄ = 0, which is the condition

that   are weakly separable from ̄ 18. Equivalently, since  = , this condition

is the requirement that input proportions are unaffected by expected revenues.

3 Empirical Implementation

3.1 Econometric Specification

Having discussed the theoretical framework, we now provide an example of an empirical

application of our model. To implement the model empirically, we first have to specify a

functional form for the indirect utility function  (). Given this functional form, if the

moments of () (or 0()) are known, then we could simply estimate the system of

equations (8). Unfortunately, the moments of the distribution are generally not known and

will, therefore, have to be estimated. For example, assuming rational expectations, the firm

forms its expectations of the moments of 0 by estimating them from market information.

Given estimates of ̄, ̄, and Σ (and possibly higher moments), we can estimate the firm’s

input demand functions. The model can then be used to test hypotheses regarding attitudes

toward risk and to estimate the effects of uncertainty.

The example we provide applies the model to the U.S. manufacturing industry, using the

Berndt and Wood (1986) data, for the period 1947-198119. We choose this data set for two

reasons. First, it is a well known data set that has been extensively used in the literature.

Second, it provides a possible framework for the analysis of the effects of energy price shocks20.

18See Blackorby, Primont and Russel, (1979), pages 52 and 67.
19See Berndt and Wood (1975), (1986) for a discussion of the data construction.
20A drawback with this application is that, like many applications in applied production theory, it applies

a theoretical model which has been developed at the firm level, to aggregate data, thus assuming away the

problems of aggregation. Hopefully, with better data, an application at the micro level will be possible in the

future.
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This application, however, should only be viewed as an example of the method proposed in

the paper.

To reduce the dimensions of the model we aggregate energy and materials into a single

input. Thus, we assume that there are three competitively priced inputs in the production

process: capital, , labour,  and intermediate inputs (energy and materials) , whose

prices are   and  respectively. We use a Divisia index to construct the aggregate

price and quantity of the intermediate input. We assume that the prices of the output and

intermediate inputs are uncertain when decisions are made, whereas other prices are known.

We assume that the inverse indirect utility function,  = 1 , is given by the translog

function21

ln  = − ln = 0 +
X


 ln +
1

2

X


X


 ln  ln 

  =   ̄ ̄  
2
 

2
  (15)

, with the symmetry restrictions:  = . Applying Roy’s identity, we get the input “revenue

share” equations as:22

− =
 +

P
  ln 

 +
P

  ln 
(16)

 =   ̄ ̄  
2
 

2
 

 =   ̄

where  ≡ ̄ for  =   and  ≡ ̄̄. Since the input demand equations (16)

are homogeneous of degree zero in the parameters we use the normalization

 = −1 (17)

For empirical implementation the model has to be imbedded within a stochastic framework.

To do this we assume that equations (16) are stochastic due to “errors in optimization”. We

define the “optimization errors” in the demand equations at time  as () () and (). We

denote the column vector of disturbances at time  as () ≡ {() () ()} and assume
that the vector of disturbances is identically and independently, joint normally distributed

21Since the empirical application assumes normality, we do not include higher order moments in (18). For

other distributions it is possible to calculate higher moments and include them in the function  . For examples

of models with skewness, see Roll and Ross (1983) and Singleton and Wingender (1986).
22Since ln  = − ln , we have  = −̄ = −̄. Thus,  ln 

 ln ̄
  ln 
 ln ̄

= ̄
̄̄

= −̄
̄

= −. Also
note that for the four inputs, we use interchangeably:  =  , =  , =  .
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with mean zero and non-singular covariance matrix Ω

[()()] =

⎧⎪⎨⎪⎩
Ω ∀     = 

0   6=  (18)

where Ω is a 3× 3 positive definite matrix.

3.2 Empirical Results

First, we estimate the means, variances and correlation of  and . We specify the

prices  and  as given by the equations

() =  + (− 1) + (− 1) + + () (19)

() =  + (− 1) + (− 1) + + () (20)

where   are distributed according to a bivariate normal distribution23 with () =

() = 0 and a covariance matrix  with:  () = 2  () = 2 and ( ) =

. To obtain time varying values for the covariance matrix, the errors are assumed to follow

the multivariate ARCH(1) process given by:

2() =  + 1
2
(− 1)

2() =  + 1
2
(− 1) (21)

() =  + 1(− 1)(− 1)

A multivariate ARCH (MARCH) specification similar to the one in (21) has been introduced

by Engle, Granger and Kraft (1984) and has been applied in several studies of financial

markets24. In addition to the variances following an ARCH process, the specification in

(21) also allows the covariance between the prices of  and  to be autoregressive. The

MARCH process has been useful in finance applications, where portfolio diversification and

the correlation between the returns on assets play an important role. It is equally useful in

modelling firm behaviour, when there is more than one source of uncertainty.

We use the maximum likelihood technique to estimate the two price equation (19) and (20),

subject to the MARCH(1) specification in (21). Using the parameter estimates for equations

(19) and (20), we obtain the estimates of the means and covariance matrix of the expected

prices of intermediate inputs and output. We use these to calculate the estimated mean of 

and the covariance matrix of  and ; Σ The parameter estimates for equations (19), (20)

23Note that the normal distribution is uniquely determine by the means and covariance matrix. Hence, in

this case, a finite number of moments completely characterizes the distribution function .
24See Bollerslev, Engle and Wooldridge (1988), Baillie and Myers (1991). See also Bera and Higgins (1993)

for a survey of multivariate ARCH.
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and the corresponding estimates of the first two moments of intermediate inputs and output

prices and their correlation are given in Table 1 and Table 2 respectively25.

Given the estimates of ̄, ̄, 
2
, 

2
 and , we estimate equations (16), using the iterative

Zellner technique, with symmetry (= ) and the normalization ( = −1) restrictions
imposed26. The parameter estimates are given in Table 3. Using the parameter estimates, we

first verify that the regularity conditions are satisfied at the point of approximation. We find

that the conditions for monotonicity and convexity of  (or  ) and the semi-definiteness of

the compensated substitution matrix () are satisfied at the point of approximation
27. We

also found that the fitted values of the revenue shares of all inputs are between zero and one

and their sum is less then 1.

We test for linear homogeneity in of  in ̄ ̄ and reject it. thus, risk neutrality must

be rejected. Next, we test for the necessary and sufficient conditions for symmetry (the weak

separability restrictions). From (15) we get that local (at the point of approximation) weak

separability of input prices   from ̄ (condition (14) is satisfied if and only if28

 =  (22)

We test for these three local weak separability restrictions, using the likelihood ratio test. We

get that 2 = 1067, thus, since 2(301) = 113, we cannot reject the hypothesis that all inputs

are locally symmetric (at the 1%, significance level)29.

To examine the effects of output price (or revenue) on input demand we consider the

output price elasticities, which are given by

̄ ≡  =  −  + 1   =   (23)

where

 ≡ − ln 
 ln 

≡  ln 

 ln 
=  +

X


 ln   =   ̄ ̄

 =   ̄ ̄  
2
 

2
  (24)

25As Table 1 indicates, the MARCH(1) hypothesis could not be rejected.
26To further reduce the number of parameters, we also assume in the estimation that the restrictions:

̄ = ̄ = ̄̄ = 0, hold. These restrictions were tested for and could not be rejected.
27we also estimated the model using the instrumental variables procedure suggested by Pagan (1984) and

Pagan and Ullah (1988). Using the estimates of ̄, ̄, 
2
, 

2
 and 

2
, we estimated equations (16), by the

instrumental variables three stage least squares procedure, using the instrumental variables from Kohli (1991).

As is shown in Pagan and Ullah (1988), this instrumental variable method leads to consistent estimates and

reliable standard errors for inference purposes. The results of this model were similar as far as the regularity

conditions are concerned.
28Weak separability requires that ( − ) +

P
[ − ] ln = 0, for all  =

  ̄ ̄ 
2
 

2
   and   =   ̄. Global weak separability (at all data points), there-

fore, requires that  =  =  for all  =   ̄ ̄ 
2
 

2
  , whereas locally,

the requirement is that:  −  = 0. See Blackorby, Primont and Russel, (1979), pp. 297-300, for a

discussion of these conditions.
29But, we reject global symmetry of all input demand functions.
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Input demands are unaffected by ̄ (or ̄), if and only if ̄ = ̄ = 0 for all  =   ̄.

Thus, for local neutrality of input demand with respect to ̄, we require that

 +  +  = 0  =   ̄ (25)

We tested for these restrictions and rejected the hypothesis that, locally, revenue does not

affect all input demands (2 = 1194 2(301) = 113)
30. Thus, again, we conclude that risk

neutrality must be rejected31.

Having rejected risk neutrality, can we go further and determine that we actually have risk

aversion? One way to check if there is risk aversion is to see whether the indirect utility func-

tion is decreasing in variances. Unfortunately, all parameters which do not involve   ̄

or ̄ are lost in the differentiation of the indirect utility function Consequently, some of the

parameters involving the variances do not appear in our estimated system, which means that

we cannot check for monotonicity in the second moments. It is, however, possible to check for

risk aversion indirectly. To see this, note that since only  and  are random, we can write

the firms problem as

[(−  − (   )] (26)

where (   ) ≡ ( +  : (   ) ∈ T ) is a standard restricted
cost function. The solution to problem (26) can be written as:

̄ +∆ =  (27)

where ∆ ≡ ( 0() )( 0) = [( ) − ][
00()][ 0()] (as in foot-

note (13)). Since under certainty (or risk neutrality), ∆ = 0  will be lower under uncer-

tainty compared with the certainty (or risk neutrality) case if and only if∆  0. It is, therefore,

possible to sign ∆, by comparing the levels of  with and without uncertainty (or with risk

neutrality). To obtain the values for  under certainty we note that without uncertainty,

the indirect utility function becomes the usual profit function, which is linear homogeneous

in  ̄ This is obtained by imposing linear homogeneity (in  ̄) and the requirement that

̄ = −1  = 0 for all  =    In comparing the cases under certainty and

uncertainty we follow the standard practice and take the certainty prices as their expected

values. Thus, we estimate the model with these restrictions imposed and use the parameter

estimates to calculate the predicted values of . Comparing the estimated values of  with

and without uncertainty, we find that  in the restricted case (no uncertainty) is higher than

under the unrestricted case (with uncertainty) for all observations. Thus, we conclude that we

30Since global restrictions are stronger, this implies that global neutrality will also be rejected.
31Note, however, that the converse is not necessarily true. In other words, if these restrictions cannot be

rejected, it does not follow that we have risk neutrality. For example, we may have CARA.
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must have ∆  0What does this implies as far as risk aversion is concerned? To see this, we

use the estimated covariance matrix to calculate term,  ≡ [( )−] and find

it to be negative at all sample points. Thus, since ∆  0 we must have [ 00()]  0 Hence

(If  00 does not change sign) we must have risk aversion. The fact that ∆  0 implies that the

indirect utility function is decreasing in  We also calculate  ≡ [− ( )]

and find it to be negative at all sample points. The indirect utility function is, therefore,

increasing in .

Can we go even further and say something about the type of risk aversion present? From

(7) we can get:

2


2 = ( 00) +




[ 00)− 

( 00)
( 0)

(28)

We found above that  is locally convex in  Calculating the output price elasticity of 

we find that it (and hence also 

) is globally (significantly) positive. Thus, since,  

0 ( 00)  0 


 0 ( 0)  0, we must have [ 00)  0, which is consistent with

decreasing absolute risk aversion.

The input price elasticities are given by:

 =  −    6=  (29)

 =  −  − 1 (30)

Given the parameter estimates we calculate the local input demand elasticities and report

them in Table 4. As Table 4 shows, the own price elasticities are, locally, negative for all

inputs. All input demand functions are, therefore, locally negatively sloped.

Cross price elasticities of demand are usually not symmetric. Under uncertainty, however,

the cross price elasticities of demand,  and , do not even have to have the same sign
32.

Indeed, as Table 4 shows, not all the demand elasticities are “sign symmetric”. Specifically,

capital and intermediate inputs are mutually complements (as was found by Berndt and

Wood (1975) for capital and energy), and the same is true for intermediate inputs and labour.

Capital and labour, however, are not “sign symmetric”.

To examine the effects of price variances on input demand, we get the “uncertainty elas-

ticities” as

 =  −    =    =  (31)

32To see this, assume that   0. Then, we must have  



= [



][



]. But, given this, it is

still possible to have  



, which implies that   0.
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Input demands are locally unaffected by 2  =  if and only if  = 0 for all  =  

and  = . . These (local) restrictions can be written as

 = −  =    =   (32)

First, we test and reject the hypothesis that the (six) restrictions in (32), hold for all inputs

(i.e., for all  =   and  = ). We get 2 = 173 and since 2(601) = 168, we reject

the hypothesis that all inputs are locally unaffected by uncertainty33. Given that we reject

that uncertainty does not affect input demands, again, risk neutrality must be rejected.

The estimated uncertainty elasticities, calculated at the point of approximation, and their

standard errors are reported in Table 4. As we can see, the effects of price uncertainty on

input demand is quite small.

Finally, we calculate the covariance elasticities and report them also in Table 4. As these

figures indicate an increase in the covariance between output and intermediate inputs prices

will have a significant positive effect on the demand for labour and capital, but an insignificant

effect on the demand for intermediate inputs.

4 Conclusion

This paper provides an empirically implementable framework for the analysis of firms’

behaviour under uncertainty. Applying the indirect (expected ) utility function, we develop

a model which can be used to capture the effects of (input and output) price uncertainty on

firms’ behaviour. The model is used to test implications of the theory, to calculate the effects

uncertainty on input demand and to calculate price elasticities.

We provide an example in which we estimate the effects of output and intermediate inputs

(energy) price uncertainty on input demand by the U.S. manufacturing industry. We test

for and reject risk neutrality. Specifically, we find that production responses indicate the

existence of risk aversion and are consistent with behaviour under decreasing absolute risk

aversion. The actual effects of uncertain prices on input demand were, however, rather small.

33Given that the local restrictions are rejected it is clear that the global restrictions will be rejected as well.
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Table 1: Parameter Estimates of Price Equations

Parameter Estimate t-Statistics

 .159424 1.35073

 -.894922 -1.40833

 .73270 3.53694

 -.024098 -.555652

 .244183 3.38376

 -.532625 -1.26564

 1.25144 3.86655

 .246517E-02 .070244

 .882522 7.04975

1 .113125 2.665867

 .00021 2.56893

1 .959959 3.95019

 .00029 1.79243

1 1.182808 3.97396
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Table 2 Moments of Intermediate Input and Output Prices

year ̄  ̄   ≡ 


49 0.60758 0.025736 0.64329 0.032919 0.95372

50 0.61575 0.023360 0.64893 0.017125 0.92093

51 0.67379 0.027251 0.69343 0.014546 0.88851

52 0.72109 0.030644 0.73586 0.026446 0.95617

53 0.70945 0.040971 0.72731 0.030913 0.96771

54 0.70169 0.035008 0.72213 0.026234 0.95969

55 0.70879 0.019695 0.72950 0.015061 0.89664

56 0.73565 0.018369 0.75103 0.014516 0.88383

57 0.76906 0.025342 0.77990 0.019949 0.93628

58 0.76424 0.018768 0.77969 0.016089 0.86364

59 0.79261 0.020876 0.80014 0.014511 0.88380

60 0.76211 0.037118 0.77979 0.018762 0.94226

61 0.79526 0.028445 0.80472 0.017620 0.93066

62 0.79611 0.020378 0.80633 0.019128 0.92012

63 0.79848 0.019243 0.80904 0.018881 0.91364

64 0.77882 0.028785 0.79560 0.020677 0.94336

65 0.80050 0.022536 0.81248 0.014697 0.89358

66 0.81048 0.017891 0.82193 0.014580 0.87943

67 0.83722 0.030481 0.84473 0.019351 0.94067

68 0.82284 0.017670 0.83670 0.015098 0.87516

69 0.83656 0.036960 0.84988 0.036601 0.96892

70 0.87306 0.060648 0.88042 0.052145 0.98035

71 0.89163 0.053742 0.89869 0.057303 0.97988

72 0.91685 0.066257 0.92108 0.068482 0.98276

73 0.97218 0.092037 0.96556 0.078673 0.98505

74 1.11855 0.16182 1.07977 0.10141 0.98700

75 1.40859 0.29831 1.31299 0.18695 0.98819

76 1.52625 0.14099 1.41557 0.10390 0.98687

77 1.58924 0.089707 1.46911 0.066688 0.98424

78 1.68798 0.13153 1.55097 0.097972 0.98662

79 1.80907 0.15784 1.65079 0.11752 0.98725

80 2.12302 0.33058 1.90002 0.20647 0.98828

81 2.50199 0.35059 2.19941 0.17693 0.98820
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Table 3: Parameter Estimates of the (Inverse) Indirect Utility Function

Parameter Estimate t-Statistic

 .083986 19.0152

 .084275 9.82739

 .026041 2.35158

 -.222327E-02 -.136395

 -.035355 -1.10671

 -.022927 -.834667

 .222818E-02 1.38918

 -.145590E-02 -.948150

 .010210 3.88024

 -.382418 -2.34022

 -1.40768 -3.33357

 -.367786 -.483285

 .990246 1.47005

 -.970220E-02 -4.00083

 .344169 20.0940

 .246785 4.14650

 .264223 2.68091

 .258439 1.45899

 .701642E-02 1.73657

 -.570200E-02 -1.43794

 .021931 3.81539

 .729908 19.9491

 1.66873 5.88237

 1.04358 2.23935

 -.441275E-02 -.884382

 .830805E-02 1.58899

 -.921800E-03 -.125081

Equation 2 D.W.-Statistic

Capital .855 1.725

Labour .827 1.994

Materials .971 1.927
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Table 4: Elasticities Evaluated at the Point of Approximation

Elasticity Estimate t-Statistic

 -0.019 -0.299

 -0.665 -6.059

̄ -0.121 -0.934

 -0.072 -0.398

 0.052 1.948

̄ -0.434 -3.996

 -0.260 -1.875

̄ -0.634 -2.824

 -0.020 -0.367

 0.122 3.949

 0.064 3.802

 -0.001 -0.125

 0.026 1.383

 0.020 1.729

 -0.006 -0.891

 -0.017 -0.943

 -0.016 -1.434

 0.113 1.623
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