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Abstract

In this paper we consider the effects of uncertainty on product differentiation by two oligopolistic firms

within the context of the standard Hotelling model. We examine a subgame perfect equilibrium of a two-stage

non-cooperative game. In the first stage, firms choose their location before market conditions (location) are

known. In the second stage, once uncertainty is resolved, they compete in prices. We show that for levels of

uncertainty which are not “too high”, a unique pure-strategy Nash equilibrium of the two stage game exists.

We show that the degree of product differentiation will be higher under uncertainty, and will increase

with uncertainty. Furthermore, for low level of uncertainty, product differentiation is “extreme”, whereas for

higher levels of uncertainty, differentiation is less than extreme (but still higher than under certainty and

increasing with uncertainty).
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1 Introduction

Starting with the seminal paper by Hotelling (1927), product differentiation has been the subject of numerous

articles in which its role in determining price competition, entry deterrence, product selection, etc. is examined1.

One of the questions addressed in the literature is the degree to which product differentiation will be exercised

and consequently, the degree to which it will tend to increase price competition. In their important paper,

d’Aspremont, et. al. (1979), show that in a market in which firms compete in prices and locations (product

choices), product differentiation will be maximal, hence reducing price competition. De Palma et. al. (1985) and

Economides (1986), on the other hand, show that under certain cost and preferences conditions, it is possible

to get less than maximal, or even minimal product differentiation. Clearly, the optimal degree of product

differentiation will be determined by the trade-off between the desire to reduce price competition (by greater

differentiation) and the need to be “near” the market.

In general, however, information on market conditions is imperfect. For example, demand conditions are

usually unknown, (at least initially) due to imperfect information on the distribution of consumers (or uncertainty

regarding any of the other variables/parameters that determine demand functions). How does this affect the

trade-off between the desire to reduce price competition and the need to be “near” the market? Specifically, will

product differentiation be smaller under uncertainty? Will an increase in uncertainty increase or decrease price

competition? Intuitively, it would seem that uncertainty about the “location” of the market, would tend to make

firms more conservative, in the sense that they will move closer together, in order not to “miss” the market.

The purpose of this paper is to examine product differentiation under uncertain market conditions. Specifi-

cally, we consider a model in which two firms choose both prices and locations, given an uncertainty distribution

of consumers, characterized by unknown “end points”. The firms engage in a two-stage non-cooperative game

with imperfect information. We assume that the firms have to choose their locations, in the first stage, before

the location of the market (the location of its “end points”) is known. In the second stage, once uncertainty is

resolved and given the choice of locations, the firms play a Bertrand-Nash game in which prices are determined.

We examine a subgame perfect Nash equilibrium of this two-stage game.

We show that for levels of uncertainty which are not “too high”, a unique pure-strategy Nash equilibrium

of the two stage game exists. We also show that the degree of product differentiation will be higher under

uncertainty (compared with the certainty case) and moreover, an increase in uncertainty will increase the degree

of product differentiation. Depending on the level of uncertainty, there will be two types of equilibria. For

low level of uncertainty, product differentiation is “extreme”, in the sense that it equals the distance between

1See for example d’Aspremont, et. al. (1979), de Palma, et.al., (1985), Bonano, G., (1987), Dasgupta, P. and E. Maskin, (1986),

Donnenfeld and Weber, (1992). See also Tirole (1988), for a general discussion.
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the two most extreme points of the distance distribution. For higher levels of uncertainty, differentiation is

less than extreme, but still higher than under certainty (and increasing with uncertainty). Thus, the risk of

“missing the market” does not lead the firms to move away from the corners. Intuitively, this is, due to the fact

that, although the firms are risk neutral, the-two stage decision process (game) introduces convexity (in random

variables), hence risk affinity, into the firms’ (second period) profits. Consequently, (increased) uncertainty does

not lead the firms to reduce risk taking by moving toward the centre. The reduction in price competition, due to

increased differentiation, still has a dominant effect in the trade-off, thus leading the firms to move even further

apart.

2 The Model

We consider the Hotelling model, as developed in d’Aspermont, et., al, (1979). There are two duopolists

who produce an identical product at constant marginal cost, . The firms face a continuum of consumers that are

distributed (either physically, or in terms of their taste “location”) uniformly along the interval [ ]We assume

that initially the firms do not know the location of this interval. Specifically,  and  are random variables which

are assumed to be distributed according to the uniform distribution,  :

( ) =

(
[( − 

−
)( − 

−
)]−1   ≤  ≤   ≤  ≤ 

0 
(1)

where   
−
  .

−
For simplicity, we assume that the intervals, [ ] [ ] do not overlap and have the same

length2, Thus,    and  −  =  −  ≡  ≡ 2 We normalize the distance between the means to be unity
and the mean of  to be 12 so that () − () = 32 − 12 = 1. Given this normalization, require that

0    1 Following d’Aspremont, et. al. (1979), we assume that consumers face a quadratic “transportation”

cost function, so that a consumer travelling a distance of  incurs costs of T = 2   0.

The firms engage in a two-stage non-cooperative game with imperfect information3. We assume that they

have to choose their locations, in the first stage, before demand conditions are known. This choice is assumed

to be irreversible (hence credible). In the second stage, once uncertainty is resolved and given their choice of

locations, the firms play a Bertrand-Nash game in which prices are determined. The outcome of the second stage

game (including its dependence on first period decisions) is taken into account by the firms when they make

their location decisions. Thus, we examine a subgame perfect Nash equilibrium of this two-stage game.

2The case of unequal lengths will be discussed below. The fact the there is no overlap, simplifies the integrals in the first stage

of the problem.
3Similar two stage games under uncertainty are examined in Appelbaum and Lim (1985) and Appelbaum and Weber (1993),

(1994), within a different context.
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2.1 The Second Stage Bertrand-Nash Game:

Consider the second stage of the game. Let the firms’ locations be given by  and  where, without loss of

generality, we assume that:  ≤  We will refer to the firm on the left as firm 1. Given the choice of locations,

 and  and given the information on the location of consumers, i.e., given the values of  and , the demand

curves for the two firms are given by

1(1 2    ) =
0 − 

 − 
(2)

2(1 2    ) =
 − 0

 − 
(3)

where the “marginal consumer”, 0 is implicitly given by the equation4,

1 + (0 − )2 = 2 + (− 0)2 (4)

assuming that  ≤ 0 ≤ 5 ( and assuming that the net surplus that consumers derive from the product is

sufficiently high, so that the whole market is covered). The two firms’ profit are, therefore, given by

Π1(1 2    ) = (1 − )

∙
0 − 

 − 

¸
(5)

Π2(1 2    ) = (2 − )

∙
 − 0

 − 

¸
(6)

The second stage Nash equilibrium prices, 1(   ) 2(   )  are given by the solution to the problems:

max
1

Π1(1 2    ) ≡ 1(   ) (7)

max
2

Π2(1 2    ) ≡ 1(   ) (8)

PROPOSITION 1: For all  ≤  ≤   ≤  ≤  and locations  and , such that () − 2 ≤  ≤
() + 2 () − 2 ≤  ≤ () + 2 there is a value, ∗  0 such that for all   ∗ there exists a

unique Nash equilibrium in prices with: 1(   )   2(   )  

Proof : Given the profit functions in (5) and (6), the two reaction functions are given by the linear functions:

1 =
+ 2 + (− )(+ − 2)

2
(9)

2 =
+ 1 + (− )(2 − − )

2
(10)

Subtracting the (horizontal and vertical, respectively) intercepts of the reaction functions in (9) and (10), we

get 1(0) − −12 (0) = 5[3 + ( − )(4 − 2 − − )] and 2(0) − −11 (0) = 5[3+ ( − )(2 − 4 +  + )]

4Thus the marginal consumer is given by: 0 =
(+)

2
+

(2−1)
2(−) 

5The condition that guarantees that  ≤ 0 ≤  is that markups are positive. A sufficient condition for this is provided in

proposition 1 below.

3



Furthermore,
2(·)
1

= 5 

−1
1 (·)
1

= 2 i.e., 1 (·) is steeper than 2(·) (with respect to the horizontal axis).
Since the reaction functions are linear, if it can be shown that 1(0) − −12 (0)  0 (or that 2(0) − −11 (0)  0)

then, there must be a unique solution. Solving the two equations in (9) and (10) we obtain the Nash equilibrium

prices as:

1 = +
(− )(2 − 4 + + )

3
(11)

2 = +
(− )(4 − 2 − − )

3
(12)

A necessary and sufficient condition for the markups, 1 −  and 2 −  to be positive (since  ≥ ) is that

2 − 4 + +   0 and 4 − 2 − −   0 Note that this will also ensure that the intercept conditions above

are satisfied. Now, defining the sum of  and  as +  ≡  the condition for positive markups can be written

as:

  4 − 2   4 − 2 (13)

But:  − (4 − 2)   −  (4 − 2) = 2(5− 2) − (4 − 2
−
) = (1 − ) − (3 − 1) = 4(12 − )

and  − (4 − 2)    − (4 − 2) = 2(15 + 2)− (4
−
− 2) = (3 + )− ((5− 3) = 4(− 12)

Hence a sufficient condition for the existence of a unique solution with 1 −   0 and 2 −   0, is that

  ∗ = 12 We can weaken this condition by recognizing that the problem is symmetric (in the sense that

the two firms are identical and the distributions of  and  are symmetric around () = 5 and () = 15), so

that it must be the case the solution will be symmetric. In other words, whatever the location choices are, they

must be such that they are equally distant from the midpoint between the means of  and  Since we took this

midpoint to be one, it must be the case that − 1 = 1− , so that, +  = 2 Given this symmetry, conditions

( 13), are satisfied for all, ( ), if   1 Hence a sufficient condition for the existence of a unique symmetric

Nash equilibrium in prices is that   16  ¤

2.2 The First Stage Cournot-Nash Game:

The two firms play a Cournot-Nash game in the first stage. We assume that the firms are risk neutral, so that

each firm chooses its location to maximize the expected value of  , given the other firm’s of location. Given

the distribution of  and  and using the second stage equilibrium prices in (11) and (12), the firms’ expected

profits can be written as:

1(  ) ≡ [1(   )] =


182

Z 



Z 



(− )(+ + 2 − 4)2
 − 

  (14)

2(  ) ≡ [2(   )] =


182

Z 



Z 



(− )(4 − 2 − − )2

 − 
  (15)

6Note that this also guarantees that  ≤ 0 ≤  as was pointed out in footnote 5 above.
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PROPOSITION 2: For all 0    1 and for all 0 ≤  ≤ 1 1 ≤  ≤ 2 the expected values of the second stage
maximum profits functions, 1(  ) and 2(  ) are continuous and strictly concave in  , respectively.

Proof : Differentiating (14) and (15) we get: 21
2 = − 

182
[122 +2(3+ − 4)[(1 + ) ln(1+ ) + (1−

) ln(1−)]] and 22
2 = − 

182
[122+2(4−− 3)[(1+) ln(1+)+ (1−) ln(1−)]] which are strictly

negative for all, 0 ≤  ≤ 1 1 ≤  ≤ 2 0    17 ¤

For example, the expected profit function, 1(  ) is shown in Figure 1, for the case when  = 88  As

the Figure 1 shows (best seen from the contours of 1(  )) 1(  ) is indeed concave with respect to 

(2(  ) looks the same with respect to the  axis).

The two firms solve the following problems

max

[ 1(  ) :  ≥ ()− 2 given ] (16)

max

[ 2(  ) :  ≤ () + 2 given ] (17)

which yield the two Kuhn-Tucker conditions:

1(  )


− 1 ≤ 0

µ
1(  )


−  1

¶
 = 0  ≥ 0 (18)

−() + 2 ≥ 0 (−() + 2 )1 = 0 1 ≥ 0 (19)

2(  )


− 2 ≤ 0

µ
2(  )


− 2

¶
 = 0  ≥ 0 (20)

() + 2−  ≥ 0 (() + 2− )2 = 0 2 ≥ 0 (21)

where 1 and 2 are the Lagrangean multipliers corresponding to the two constraints, and

1(  )


=



182

Z 



Z 



(+ + 2 − 4)(− 3− 2 + 4)
 − 

  (22)

2(  )


=



182

Z 



Z 



(4 − 2 − − )(− 3+ 4 − 2)
 − 

  (23)

The Kuhn-Tucker condition (19) implies that if   () − 2 then we must have 1 = 0 so that in (18)

we must have
1()


= 0, i.e., we have an interior solution for  Similarly The Kuhn-tucker conditions (21)

implies that if   () + 2 then we must have 2 = 0 so that in (20) we must have
2()


= 0, that

is, we have an interior solution for  On the other hand, if 1  0 then  = () − 2  0 so that in (18)

we must have
1()


− 1 = 0, i.e.,

1()


 0 and we have a corner solution for  Similarly, if 2  0

then  = () + 2 so that in (20) we must have
2()


− 2 = 0, i.e.,

2()


 0 and we have a corner

solution for 

7Furthermore, the determinants of the Hessian matrices are strictly positive.
8All the figures in this paper were drawn using the programme Maple V for Windows.
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Given the strict concavity of 1 and 2, we can define the two reaction functions:  = 1( ) and

 = 2( ) from the conditions
1()


= 0 and

2()


= 0 respectively. Hence, for different values of ,

we will have different reaction functions. For example, Figure 2 shows the reaction functions for the two cases

when  = 8 (thin lines), and  = 2 (thick lines). The steeper curves in Figure 1 are the reaction functions for

Firm 1 (for the two cases;  = 8 and  = 2) and the downward sloping line,  +  = 2, is the symmetry line.

What can be said about the nature of the solution?

PROPOSITION 3: For 0    2 0    2 there exists a symmetric and unique intersection of the two

reaction functions, ( ) where,  = 1(
 ) and  = 2(

 ).

Proof : Given the concavity of the 1 and 2 the reaction functions are continuous. To make sure that they

intersect we check their intercepts. From (22) and (23) we get 2(0 )  −11 (0 ) and 1(2 )  −12 (2 ) for

all 0    19  Thus, the two reaction functions must have an intersection for 0    2 0    2 To show that

the this intersection is unique we have to compare the slopes −11 ( ) and 2( ) Calculating these

slopes we get that −11 ( )  2( ) for all 0    1 Thus, over the range, 0    2 0    2

the intersection of the two reaction functions is unique10. Since the two firms are identical and the distributions

of  and  are symmetric around () = 5 and () = 15, it must be the case the solution for   will be

symmetric. In other words, they will be equally distant from the [() +()]2 = 1 Thus, 1−  =  − 1 so
that,  +  = 2 as can be seen in Figure 2 Using (22) and (23) we can solve the equations

1()


= 0 and

2()


= 0 explicitly to obtain the intersection of the two reaction functions as:

 =
5

6

½
14

3
− [ln(1 + ) + ln(1− )](1 +

1

32
)+ (24)

[ln(1 + )− ln(1− )](
1

3
− 1


)

¾
 = 2− ¤ (25)

Figure 3 shows the solution (unconstrained)  as a function of  ≡ 2 As Figure 3 indicates (and as can be

verified from (24),  is a decreasing function of  for all 0    1. Since  = 2 − , this implies that  is

an increasing function of 

Now, the question is whether we have interior, or corner solutions.

PROPOSITION 4: There exists a value + 0  +  1 such that for all  ≤ + (and all 0   

2 0    2) we have
1(

)


 0 and

2(
)


 0 and for all  ≥ +, we have

1(
)


= 0 and

2(
)


= 0

Proof : Proposition 4, says that for all  ≤ + we have a corner solution, with  = () − 2  0 and

 = () + 2  2 and for all  ≥ + we have an interior solution, with  =  and  =  Using the optimal

9See, for example Figures 4 and 4.
10 See Figures 4 and 4 It should be pointed out that the two reaction functions have other intersections, but these are for values

of   which do not satisfy: 0    2 0    2 At these other intersections the second order conditions for a maximum are not

satisfied.
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value for  in (24), we solve the equation

5

6

½
14

3
− [ln(1 + ) + ln(1− )](1 +

1

32
)+ (26)

[ln(1 + )− ln(1− )](
1

3
− 1


)

¾
= 12− 2

and obtain the value of + = 5072 Thus, for all for all  ≤ + we have a corner solution, with  = ()−2 
0 and  = () + 2  2 and for all  ≥ + we have an interior solution, with  =  and  = 11  ¤

If we now define the solution to the Kuhn-Tucker conditions (18)-(21) by (0 0 01 
0
2), then we have that

0 =  0 =  01 = 0 02 = 0 for all  ≥ +

0 = ()− 2  = () + 2 01  0 
0
2  0 for all  ≤ +¤ (27)

The vector {1(0 0  ) 2(0 0  ) 0 0}, constitutes a subgame perfect equilibrium. This is shown in
Figure 4, where 0 0 are given by the thick lines (where the shallow curves in the in Figure 4 are the  

curves and the steeper lines are the constraints, () − 2 and () + 2) As we can see in the diagram,

for all  = 2  2536, we have a corner solution and for all  = 2  2536, we have an interior solution.

As for the effects of increased uncertainty on the degree of product differentiation, we have the following

result:

PROPOSITION 5: (i) For any 0    1 the degree of product differentiation will be higher under

uncertainty (compared with the case when  = () and  = () with certainty), (ii) an increase in uncertainty

will increase the degree of product differentiation.

Proof : Since ∗ and () − 2 are decreasing functions of whereas, ∗ and () − 2 are increasing

function of  it follows that (0−0)  0 The solution in the certainty case when  = () and  = ()

is given by the limiting case when  → 0 In this case we get  = () = 5  = () = 15 which in the

standard result12 . For any 0    1 we will, therefore, have greater differentiation under uncertainty. Hence,

both the impact effect and the marginal effect of uncertainty are to increase differentiation. Proposition 5 is

demonstrated in Figure 4.¤

Proposition 5, implies that product differentiation increases with uncertainty. However, whereas for low level

of uncertainty (when  ≤ +), product differentiation is “extremely” maximal, in the sense that it equals −
 = 1 +  for higher levels of uncertainty, it is less than the extreme possible value, with  −   1 + .

Although it may seem that the greater risk that is associated with higher uncertainty, would lead the firms to

move away from the corners in order not to “miss the market”, our result, shows that the reduction in price

competition, due to increased differentiation, will have a dominant effect, leading the firms to move even further

apart.

11For the special case when  = + = 5072 we have ∗ = 2464 = ()− 2 = 5− 2536
12 See for example, d’Aspremont et. al., (1979), Tirole (1989).
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The reason we obtain this result is that the two stage nature of the game (decision), introduces a convexity

into the firms’ second period maximum profits. Thus we have:

PROPOSITION 6: The second period maximum profits; 1(   ) and 2(   ) are convex in  

for all, 0    1 1    2 0    1 1    2

Proof : If we define the Hessian matrix for  as, [A], then using (14) and (15) we can write it as:

[A] =

Ã
2
(+−2)2
(−)3  2

{(+)[2(+)−(+)]−4}
(−)3

2
{(+)[2(+)−(+)]−4}

(−)3  2
(+−2)2
(−)3

!
(28)

which is positive semi-definite with strictly positive diagonal terms for all 0    1 1    2 0    1 1 

  2¤

It should be noted that this is a common result in problems of choice under uncertainty13 and is similar to

the standard result in duality theory, that profit functions are convex in prices14. For example, a competitive

firm that chooses its capital before it knows the price of output and than chooses output, after observing the

price, will have second period profits which are convex in price. Depending on the shape of its cost function,

such a firm may actually increase its investment if uncertainty increases. Essentially, we have a similar result

here. Although the firms are risk neutral, the resolution of uncertainty in this two-stage game introduces risk

affinity into their profit functions. Consequently, (increased) uncertainty does not lead the firms to behave more

conservatively (by decreasing product differentiation). In fact, due to the risk affinity, the effect of uncertainty

is the opposite; the firms increase product differentiation.

It is, of course possible to introduce risk aversion into the model. Presumably, risk aversion will have the

opposite effect and will mitigate the benefits from increased differentiation. With risk aversion it is, therefore,

possible that the net effect will be reduced price competition.

2.3 Asymmetric Spreads:

Before we conclude, it is useful to note that model we considered was perfectly symmetric. The two firms were

identical and the uncertainty on both sides of the market was symmetric, in the sense that:  − 
−
=  − 

−
≡ .

Consequently, the solution was symmetric. Without examining an asymmetric model in detail, let us briefly

consider the effects of an asymmetry in the distribution of the random variables. Specifically, suppose that one

of the corners becomes more uncertain, in the sense that its spread increases. The two expected profit functions

(14) and (15) can now be written as:

1(  1 2) =


1821
2
2

Z 5+
1

5−
1

Z 15+2

15−2

(− )(+ + 2 − 4)2
 − 

  (29)

2(  1 2) =


1821
2
2

Z 5+
1

5−
1

Z 15+2

15−2

(− )(4 − 2 − − )2

 − 
 

13 See for example, Hartman (1976), Epstein (1978) and Appelbaum and Katz (1986).
14 See for example Diewert (1982), Varian (1978).
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where 1 ≡ −
−
 2 ≡ −

−
The two corresponding reaction functions are given by the equations:

1(12)


=

0 and
2(12)


= 0 Let us denote them by :  = 1( 1 2) and  = 2( 1 2) respectively. It can be

shown that
1(12)

1
 0 ,

1(12)

2
 0

2(12)

1
 0 and

2(12)

2
 0 An example is demonstrated

in Figure 5, where we set the spreads initially to be 1 = 2 = 6 (which ensures an initial interior solution for

both firms) and then we let 2 increase to 2 = 8 with 1 remaining constant at 1 = 6 The thick curves in

Figure 5, correspond to the higher 2, and the thin ones, are the original curves. For convenience we also added

the line +  = 2, representing symmetric solutions (note that the original solution is on this line). As we can

see in the diagram, as a result of the increase in 2 the reaction function of firm 1 (the steeper one) has rotated

to the right, whereas the reaction function of firm 2 rotated upward to the left. Consequently, both  and  must

increase. But this implies that firm 1 moves closer to the centre, whereas firm 2 moves further away, which means

that both firms tend to move toward “the more uncertain corner”. Although this seem a surprising result, it

may be understood in view of the convexity of the second period profit functions in the random variables. Given

this convexity, the dominant motive is to reduce price competition by increasing the distance. We can see this

by noting that since firm 2 is assumed to be on the right, the effect of an increase in 2 on its reaction function

is greater than the effect on firm 1’s reaction function. Therefore, while both  and  increase,  increases more

than  so that distance between the two firms increases and we get greater product differentiation.

We can calculate the solutions, before and after the increase in 2 and find that when 1 = 2 = 6, we get

 = 2448  = 17551 and with 1 = 6 2 = 8, the solution is:  = 25848  = 17735 Note that since

 = 25848  5 − 12 = 2   15 + 22 = 19 we have an interior solution, 
0 =  0 =  for both

firms. Calculating the distance between the two firms, we get: 0−0 = 17735− 25848 = 1515 which is greater
than the initial distance. An asymmetric increase in the spread will, therefore, increase product differentiation.

The following is example of the effects of an asymmetric change in spreads, when there is a corner solution:

1. 1 = 02 2 = 98  = 293  5− 12 = 49  = 1814  15 + 22 = 199 thus we have a corner

solution with 0 = 5− 01 = 49 for firm 1 and  = 186 = 49, for firm 2. The distance between the two firms

is: 0 − 0 = 1324

2. The solution is simply reversed if 2 = 02 1 = 98 We now have:  = 186  5 − 12 = 01  =

1707  15+22 = 151 thus we have a corner solution with 
0 = 15+01 = 151 for firm 2 and 0 =  = 186,

for firm 1. Again the distance between the two firms is: 0 − 0 = 1324

Thus, we conclude that an asymmetric change in the spread of the distribution of the unknown corners, will

tend to increase product differentiation. Moreover, both firms move toward the more uncertain corner.
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3 Conclusion:

In this paper we examined product differentiation under uncertain market conditions. We consider a two-stage

non-cooperative game with imperfect information, where firms choose locations in the first stage and then, once

uncertainty is resolved, they compete in prices. We examine a subgame perfect Nash equilibrium of this two-stage

game and show that for levels of uncertainty which are not “too high”, a unique pure-strategy Nash equilibrium

of the two stage game exists. We also show that the degree of product differentiation will be higher under

uncertainty, and furthermore, it will increase with uncertainty. Depending on the level of uncertainty, there are

two types of equilibria. For low level of uncertainty, product differentiation is “extreme” (equals the distance

between the two most extreme points of the distance distribution), whereas for higher levels of uncertainty,

differentiation is less than extreme, but still higher than under certainty (and still increasing with it). The

risk of “missing the market” does not, therefore, lead the firms to move away from the corners. This is due to

the convexity (in random variables) which is introduced by the two stage nature of the game. Consequently,

(increased) uncertainty does not lead the firms to reduce risk-taking (by moving toward the centre). In the

trade-off between the desire to reduce price competition and the need to be “near” the market, the reduction

in price competition dominates, thus leading the firms to move even further apart. Finally, we also show that

an asymmetric change in the spreads of the distributions of the unknown corners, will tend to increase product

differentiation and will lead both firms to move toward “the more uncertain” corner.
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