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Abstract
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1 Introduction

In recent years, there has been growing skepticism in the macroeconomics and finance

literature about the empirical relevance of the expected utility model (EUM). These in-

creasing doubts emanated from the model’s poor performance in experimental tests,1 the

realization that the EUM cannot resolve basic theoretical issues and its inability to explain

various aspects of observed behavior. For example, the EUM was not able to explain the

equity premium puzzle (Mehra and Prescott (1985), Weil (1989)), or the limited stock

market participation of households (Poterba and Samwick (1995)). Similarly, it could not

address the difficulties in measuring intertemporal substitution and risk aversion, in the

macro literature.2

Various non-expected utility models (NEUM) have been proposed in order to deal

with the above difficulties. While the use of NEUM addresses some of these difficulties, it

may, however, introduce new ones. For example, unlike the EUM, there is no “standard”

non-expected utility model. Numerous competing NEUM have been proposed, but it

is not always easy to discriminate among them theoretically, or empirically. A further

difficulty is that NEUM are difficult to solve explicitly and are, therefore, not easy to

apply empirically.

The purpose of this paper is to provide a simple framework for the analysis of gen-

eral non-expected utility behavior. This framework, based on Appelbaum (1998), is very

general in the sense that it is not restricted to any specific model of non-expected util-

ity, namely, it does not assume a specific functional form for the utility function. We

demonstrate the framework within the context of household’s consumption/saving deci-

sions under uncertainty.3 Specifically, we show that NEUM household saving functions

can be easily obtained by using Roy’ identity. Second, we show that standard estimation

techniques can then be used to estimate the saving function. Third, we use our framework

to derive necessary conditions for the EUM, thus providing a simple direct econometric

test for expected utility behavior. Finally, to demonstrate the empirical usefulness of

our approach, we provide an example of an empirical application. We estimate a cross

country aggregate savings function and use it to: (i) test for the validity of the EUM, (ii)

estimate elasticities of saving with respect to the first three moments of the distribution

of returns and future income and (iii) compare the comparative statics effects of increase

in risk of income and interest rates on savings for poor and rich countries. We reject the

necessary condition for the EUM (convexity in moments). The EUM must, therefore, be

rejected. The estimated elasticities show variation across rich and poor countries, which

1See Kahneman and Tversky (1979), Tversky and Kahneman (1986), Machina (1987), Camerer (1989).
2Epstein and Zin (1991) examine the possible separation of time/risk preference. Hall (1988) finds

elasticity of substitution close to zero using aggregate consumption data. On the other hand, real business
cycle and growth literature, calibrates a value of this elasticty close to unity. Gueven (2001) presents a
model of limited stock market participation involving a non-expected utlity preference to reconcile these
conflcting measures of substitution elasticity.

3It can, however, also be applied in a similar fashion in any other context.
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is consistent with the existing literature on savings under uncertainty.

The paper is organized as follows. In the following section, we lay out the theoretical

framework. We characterize the relationship between moments of the underlying stochas-

tic processes and the indirect utility function. A few illustrative examples, drawn from the

existing two period life cycle model, are used to verify the properties of the indirect utility

function. In section 3, we discuss the methodology for empirical implementation and in

section 4 we discuss the empirical results of the estimation of a cross country aggregate

savings function.

2 Theoretical Framework

Consider a standard two-period consumption/saving problem under uncertainty. The

individual’s current income is y0 and he expects an uncertain income of p in the next

period. The individual faces a risky total return of R. We assume that both R and p are

continuous bounded random variable. Let the joint (cumulative) distribution of R and p

be given by G(R, p), with the finite support (R, p) ∈ A. Future consumption is given by:

c1 = p+ (y0 − c0)R (1)

= p+ sR

where c0, c1 are present and future consumption choices, respectively and s = y0 − c0 is
saving.

It is useful to write

R = R+ er (2)

p = p+ ep (3)

where (er, ep) ∼ Ge with: E(er) = E(ep) = 0, V ar(er) = σ2r , V ar(ep) = σ2p, Cov(er, ep) =

σrp and the distributions Ge can be derived from G. Given the uncertainty with respect

to R and p, consumption bundles: c ≡ (c0, c1) constitute lotteries. Using the joint distri-
bution of R and p (or using Ge) we can obtain the (cumulative) distribution of c as Gc.

4

It is well known that if the individual’s preferences over these consumption lotteries are

rational and continuous, the individual’s preferences can be represented by a continuous

utility function U : Gc → R such that: Gc1 % Gc2 ⇐⇒ U(Gc1) ≥ U(Gc2).5
We can, therefore, write the individual’s problem as:

Maxc0 {U [Gc] : c1 = p+ (y0 − c0)R, (4)

(R, p) ∼ G} ≡ J(G; y0)
4Note that although we have a joint distribution, Gc(c0, c1), c0 is a degenerate random variable.
5See Mas-Collel et. al. (1995).
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where J is the indirect utility functional.

Since c0 ∈ C, is a non-empty and compact subset inR1
+, and given that U is continuous

in Gc (where Gc is continuous in c0) with a compact range, it follows from the Theorem

of the Maximum (Berg (1963)), that J is continuous and the optimal solution for c0 is

upper semi-continuous. This, of course, is the standard result from consumer theory.

If we assume that the individual’s underlying preferences also satisfy the independence

axiom, which is required for the von Neumann-Morgenstern Theorem,6 then U takes

the form of expected utility; U [Gc] = E{U [c]}, where U is a continuous von Neumann-

Morgenstern utility function. Problem (4) can then be written as:

Maxc0 {
Z
R,p∈A

U [c]dG(R, p) : c1 = p+ (y0 − c0)R} (5)

The additional assumption of independence introduces “linearity in probabilities”

which enables us to obtain a standard result from duality theory:

Proposition 1: If U [Gc] = E{U [c]} (with expected utility maximization) then J is con-
vex in G.7

Proof: See Appendix.

Proposition 2: If U [Gc] 6= E{U [c]} (without expected utility maximization) then J is
not necessarily convex in G.

Proof: See Appendix.

2.1 Moments and the Indirect Utility Function

While the indirect functional J(G; y0) is useful theoretically, it is often analytically

intractable and, therefore, not very useful from an empirical viewpoint. Thus, instead

of looking at J(G; y0), it is desirable to consider characterizations of indirect preferences

which may be easier to apply empirically.

For example, define the moments of the distribution G as m. Since the random vari-

ables p,R are concentrated on a compact support, the moments exist and uniquely de-

termine the distribution.8 For any m there is, therefore, a unique distribution whose

6For a discussion of the required conditions see, for example, Kreps (1990), Mas-Collel, et.al. (1995).
7Machina (1984) (p. 208, Theorems 2 and 3.) also shows that convexity and continuity completely

characterize the functional J , so that any functional with these properties is the indirect utility functional
for some preferences.

8Bounded support is a sufficient condition for the distribution function to be uniquely determined by
the moments. This is the so called “moments problem”. See, for example, Wilks (1964), theorem 5.5.1.
p. 126, Kendall (1969) Corollary 4.22, p. 110.
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moments are given by m. Let this distribution be denoted by Gm. The indirect utility

above can then be written as J(Gm, y0) ≡ H(m, y0).
Since with expected utility J is convex in G, it follows that:

Theorem 1: If U [Gc] = E{U [c]} (with expected utility maximization) then H is convex

in the moments.

Proof: See Appendix.

Theorem 2: If U [Gc] 6= E{U [c]} (without expected utility maximization), H may be

either convex, or concave in the moments.

Proof: See Appendix.

Theorem 1 implies that convexity of H is a necessary (but not sufficient) condition for

expected utility maximization. Thus, a rejection of the convexity of H implies that we

must reject expected utility maximization. On the other hand, Theorem 2 implies that,

without expected utility maximization, H may, or may not, be convex in moments. In

other words, it is possible to have convexity in some types of non-expected utility models,

but concavity in others.

2.2 Special Cases

2.2.1 The Selden Model

For Selden’s (1978) OCE preferences, we have

J(G; y0) = max
c0
{U(c0) + U(z) : (6)

Z = V −1
·Z

V (p+ (y0 − c0)R)dG(R, p)
¸
} (7)

where U 0(.) > 0, U 00(.) < 0, V 0(.) > 0, V 00(.) < 0.

Consider the distributions G1, G2, Gλ (for R and p) where Gλ = λ G1 + (1 − λ)G2.

Let the corresponding solutions for c0 be given by: c
1
0 , c

2
0 and c

λ
0 respectively. The

corresponding solutions for z are z1, z2 and zλ respectively.

For Selden’s OCE form we have;

J(Gλ; y0) = U(c
λ
0) + U(z

λ) (8)

J(G1; y0) = U(c
1
0) + U(z

1) (9)

J(G2; y0) = U(c
2
0) + U(z

2) (10)
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Note that J(G; y0) is convex in G iff

J(Gλ, y0) ≤ λJ(G1; y0) + (1− λ)J(G2; y0) (11)

Can we say anything about the convexity of J(G; y0)? Since E[V (c1)] is linear in proba-

bilities and V (z) is concave, it follows that z = V −1{E[V (c1)} is convex in probabilities.
Hence, since U(z) is concave, we do not know if the (indirect utility functional) is convex,

or concave in probabilities. Condition (11) may, therefore, not hold: in general, J(G)

may be either convex or concave in G.

Two special cases are of interest:

(i) CES-CRRA Case (Selden,1978):

Assume that p = 0. Consider the following familiar functional forms for U(.) and V (.).

U(c0) =
c1−α0

1− α
(12)

and

V (z) =
z1−ε

1− ε
(13)

Note that the reciprocal of α is the elasticity of intertemporal substitution and ² is the

measure of proportional risk aversion. In this case, the indirect utility function reduces

to9:

J(G, y0) =
y1−α0

1− α

h
1 + bR 1−α

α

i 1
α

(14)

where

bR = ·Z R1−εdG(R)
¸ 1
1−ε

(15)

Note that bR is the certainty equivalent rate of return.
Now J(G, y0) may be convex or concave in G depending on the values of α and ε. It is

straightforward to verify that for α = ε, it becomes convex in G. This is the special case

of expected utility, when the relative risk aversion parameter ε exactly equals the inverse

of the elasticity of substitution.

Proposition 3: If logR is distributed normally: N(µ,σ2) then

J(G) is convex.

Proof: See Appendix.

9See Basu and Ghosh (1994) for details of the derivation.
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(ii) CES-CARA case (Weil,1993):

Assume that R has a degenerate distribution and p is random. Also, assume that U(.)

has the same CES form as (11) but V (.) has the following CARA form:

V (c1) = −λe−λc1 (16)

In this case, the indirect utility function reduces to:

J(G, y0) =

·
R
(α−1)
α y0+QR

− 1
α

1+R
α−1
α

¸1−α
+

"
R.y0+Q

·
1−Rα−1

α

¸
1+R

α−1
α

#1−α
1− α

(17)

where

Q = −1
λ
ln

Z
[e−λpdG(p)] (18)

Q is the certainty equivalent income and it is linear in probability .

Proposition 4: If p ∼ N(µp,σ2p), then J is concave in G.
Proof. See Appendix.

These two examples amply illustrate that in a NEUM framework, the indirect utility

function can be either concave, or convex in moments. Thus, convexity in moments is a

necessary condition for EUM but not sufficient.

2.3 Application Methodology

Since one of the purposes of this paper is to provide a framework for empirical applica-

tions, it is both convenient and natural to work with an indirect utility function defined

over moments. Thus, given that the moments uniquely characterize the distribution G,

the solution to problem (1) can be described by the corresponding indirect utility function,

H, defined as:

Maxc0 {U [Gc] : c1 = (p+ ep) + (y0 − c0)(R+ er)} ≡ H(y0, p, R,m−1) (19)

where m−1 is the vector of moments, other than the first and p = E(p), R = E(R).
It is convenient to write the problem, alternatively, as:

Maxs {U [Gs] : c1 = (p+ ep) + s(R+ er)} ≡ π(p,R,m−1) (20)

where s = y0−c0 andGs10 is the (cumulative) distribution of (s, c1), which can be obtained
from the distribution Gc (of (c0, c1)) and m−1 is the vector of higher order moments of p
and R.

10Note that although we have a joint distribution, Gs(s, c1), s is a degenerate random variable.
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The savings function can now be derived directly from π. Applying the envelope the-

orem and taking the utility function to be once differentiable,11 we get:

∂π

∂p̄
= U 0(Gs)∂Gs

∂c1

∂c1
∂p̄

= U 0(Gs)∂Gs
∂c1

(21)

∂π

∂R
= U 0

(Gs)
∂Gs
∂c1

∂c1

∂R
= U 0(Gs)∂Gs

∂c1
s (22)

where c1 = E(c1) = p+ (y0 − c0)R.
The savings function is, therefore, given by (Roy’s identity):

s =
∂π

∂R
/
∂π

∂p̄
(23)

To implement the model empirically, we first have to specify a functional form for

the indirect utility function, π. Given this functional form, if the moments of G are

known, we could simply estimate the system of equations (23). Since the moments of the

distribution G are, however, not known, they first have to be estimated. Using estimates

of the moments, the savings function can, then, be estimated and used to examine the

effects of changes in the moments of the distribution on savings. Furthermore, by testing

for convexity in moments, we can see whether behavior is consistent with expected utility

maximization.

It is important to notice that the above framework is very general in several ways.

First, it is not restricted to a particular type of non-expected utility model. Second,

it does not require time separability/additivity of consumption. Finally, its application

provides an explicit savings function for any underlying preferences.

3 Empirical Application:

3.1 Econometric Specification

Having discussed the theoretical framework, we now provide an empirical example.

The example applies our two period model to estimate a cross-country savings function

using a sample of 69 countries. We chose a sample of countries for which the longest time

series are available for per capita real gross domestic savings, per capita real GDP and real

interest rates.12 The real interest rate series is calculated by subtracting the CPI rate of

inflation from the deposit rates for each country. The savings and GDP data were already

11To be able to apply the model empirically, we have to assume differentiability. For example, we can
assume that the optimal solution for c0 is, in addition to being upper semi-continuous, also unique. The
indirect utility functions are then differentiable.

12Since the empirical model aims to estimate a houshold savings function, deposit rates seem to be the
apppriate measure of interest rates. Since for the United States, no deposit rates series were available,
we used prime rate instead.
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adjusted for real exchange rates and are, therefore, internationally comparable. All the

data came from the World Development Indicators over a sample period of 1980-99.

In order to estimate a cross country savings function which is consistent with our

application methodology, we first computed the mean per capita savings for each country

over the relevant sample period. In the next step, we computed the first three central

moments of per capita GDP and the real interest rates, as well as the covariance between

these two series over the same sample period.13 Since it seems rather unlikely that fourth,

or higher order moments will play a role in the decision,14 we restrict ourselves to moments

of an order r ≤ 3.
Assuming that the savings, income and interest rate series for all countries are drawn

from the same stationary distribution,15 we proceed with the estimation of the cross

country savings function as follows. We assume that the function π(p,R,m−1) can be
represented (approximated) by a quadratic functional form. Let the first three central

moments and the covariance of p and R be given by: mij, i = p,R, j = 1...3, and

σ respectively. Let the third cross moments16 be given by mp2R, mpR2 . The quadratic

indirect utility function is then given by:

π = a0 +
3X
j=1

ajmpj +
3X
j=1

bjmRj + bσσ + a21mp2R + a12mpR2 (24)

+
1

2

3X
j=1

3X
k=1

ajkmpjmpk +
1

2

3X
j=1

3X
k=1

bjkmRjmRk +
3X
j=1

3X
k=1

gjkmpjmRk

+
3X
j=1

X
i=p,R

cijmijσ +
3X
j=1

X
i=p,R

n2ijmp2Rmij +
3X
j=1

X
i=p,R

n1ijmpR2mij

where mi
kj, i = p,R, k, j = 1...3, and σ respectively.

Applying Roy’s identity we get the savings function as:

s =
b1 +

P3
j=1 b1jmRj +

P3
j=1 g1jmpj + cr1σ + h21mp2R + h12mpR2

a1 +
P3

j=1 a1jmpj +
P3

j=1 g1jmRj + cp1σ + k21mp2R + k12mpR2
(25)

Since the savings equation is homogeneous of degree zero in the parameters we use

the normalization a1 = 1.
13A possible alternative would be to use a GARCH type model to estimate the moments of the distri-

bution for each country (given the country’s time series data). It is also possible to follow Appelbaum
and Ullah (1997) and obtain non-parametric estimates of these moments. However, because of the two
period nature of the problem, a time varying moment is not found appropriate in the present context.
14In fact, no fourth order of the utility function plays a role in the theory of choice under uncertainty.

For examples of models with skewness, see Roll and Ross (1983), and Singleton and Wingender (1986).
For an empirical model with the first four moments see Appelbaum and Ullah (1997).
15This is equivalent to assuming that all countries in the sample share a long run relationship between

savings, income and interest rates. This long run relationship may not be necessarily linear as commonly
assume in the cointegration literature. The flexible functional form allows the savings coefficients to vary
across countries.
16Covariance between p2 and R and between R2 and p.
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It should be noted that continuity completely characterizes the functional J(G).17

Thus, any functional with this property is the indirect utility functional for some prefer-

ences. But, since (given boundedness of p,R) the moments completely characterizes G, it

follows that continuity also completely characterize π(m), that is: any function with this

property is the indirect utility function for some preferences.

For empirical implementation the model has to be imbedded within a stochastic frame-

work. To do this, we assume that equation (25) is stochastic due to “errors in optimiza-

tion”. We define the “optimization errors”, at observation i, as v(i). We assume that v(i)

is identically and independently distributed with mean zero and non-singular covariance

matrix.

3.2 Empirical Results

Given the wide range of countries in our sample (some very rich, others very poor), we

introduce a dummy variable (whose corresponding parameter is d) to capture the country’s

degree of “development”. We divide the sample into four quartiles, based on GDP per

capita. Each country is then assigned its quartile’s dummy variable.

Using the estimates of the first three moments (including the covariances), we estimate

equation (25) with the additional dummy variables, using maximum likelihood18. The

parameter estimates are given in Table 1.

Convexity in moments is a necessary (but not a sufficient) condition for expected

utility maximization. To check for convexity in moments we need to obtain the parameters

corresponding to the first three moments. Unfortunately, due to the differentiation, all

the parameters in (24) which do not involve, mR1, or mp1, do not appear in the estimated

saving equation (25). Consequently, we cannot check for convexity in all moments. It

is, however, very easy to check for convexity in the first moments of the distribution.

The requirement that b11 and a11 are positive is a necessary condition for convexity in all

moments. As can be seen in Table 1, both b11 and a11 are significantly negative. Thus, for

this example, we must reject expected utility: the model is not consistent with expected

utility maximization.

3.3 Elasticities:

To examine the effects of the exogenous variables on savings, we use the parameter esti-

mates to calculate the corresponding elasticities, θh ≡ ∂ log(s)
∂ log(h)

, where h = mpj,mRj,σ, j =

1, 2, 3. The calculated elasticities, evaluated at the quartile average are given in Table 2.

First, we check to see whether savings are affected by the higher moments,mpj,mRj, j =

2, 3, covariance and the third cross moments. Savings are unaffected by the higher mo-

17See Machina (1984) p. 208, Theorems 2 and 3 for the expected utility case.
.
18Taking into account hetroskedasticity.

9



ments if and only if the corresponding elasticities satisfy: θh = 0 at all data points, that

is, for all h = mpj,mRj,σ, mpR2 , mp2R, j = 2, 3. The conditions for this to be satisfied

globally (at all sample points) are:

b1j = a1j = g1j = cr1 = cp1 (26)

= h21 = h12 = k21 = k12 = 0

j = 2, 3

The conditions for this to be satisfied locally (at a given sample point, i.e., for a given

country), for the effects of the moments of R are given by:

θrj ≡ ∂ log(s)

∂ log(mrj)
=

∂s

∂mrj

mrj

s
= 0 (27)

which implies (28)

∂s

∂mrj
= 0 , j = 2, 3 at a given data point

This can be written as:

[−11 +
3X
i=1

a1impi +
3X
j=1

g1imri + cp1σ + k21mp2R + k12mpR2]b1j = (29)

[b1 +
3X
i=1

b1imri +
3X
i=1

g1impi + cr1σ + h21mp2R + h12mpR2 ]g1j, j = 2, 3

We test and reject the hypothesis that savings are unaffected by the higher moments of R

for at the sample average (χ2 = 19.02, χ2(2,.001) =13.81). Given that the local restrictions

are rejected, it is clear that the global restrictions will be rejected as well.

The conditions that savings in a given country are (locally) unaffected by the higher

moments of p are given by:

θpj ≡ ∂ log(s)

∂ log(mpj)
=

∂s

∂mpj

mpj

s
= 0 (30)

which implies (31)

∂s

∂mpj
= 0, j = 2, 3 at a given data point

This can be written as:

[−11 +
3X
i=1

a1impi +
3X
i=1

g1imri + cp1σ + k21mp2R + k12mpR2]g1i = (32)

[b1 +
3X
i=1

b1imri +
3X
i=1

g1impi + cr1σ + h21mp2R + h12mpR2 ]a1i, j = 2, 3

10



Again, we test and reject the hypothesis that savings are unaffected by the higher moments

of p, at the sample average (χ2 = 15.1, χ2(2,.001) =13.81). Given that the local restrictions

are rejected, it is clear that the global restrictions will be rejected as well.

Finally (and similarly), the conditions that savings in a given country are (locally)

unaffected by the covariance are given by:

[−1 +
3X
j=1

a1jmpj +
3X
j=1

g1jmrj + cp1σ + k21mp2R + k12mpR2]cr1 (33)

= [b1 +
3X
j=1

b1jmrj +
3X
j=1

g1jmpj + cr1σ + h21mp2R + h12mpR2 ]cp1

We test and reject the hypothesis that savings are unaffected by the covariance at the

sample average (χ2 = 12.8, χ2(1,.001) =10.81). Given that the local restrictions are

rejected, it is clear that the global restrictions will be rejected as well.

Table 2 reports some estimate elasticities, which are of theoretical interest. We com-

pare the response of saving to interest and income risk for rich and poor countries. Poor

countries are defined as the countries in bottom quartile of the world distribution of in-

come while the rich countries are those in the top quartile range of income. We focus

here on two measures of risk: (i) a symmetric risk which is captured by a mean preserv-

ing spread; (ii) non-symmetric or downside risk, which is reflected by the skewness or

the third moment. Increase in riskiness of interest rate measured in either of these ways

lowers savings for poor countries, while the effect is the opposite for rich countries. This

heterogeneity in the response of savings to interest risk among rich and poor countries

cannot be rationalized by a standard constant elasticity type of utility functions as used

by Selden (1978) and others. The reason is that the measures of elasticity of substitu-

tion and risk aversion are assumed to be independent of the level of income. However,

it may be possible to explain this phenomenon with a more general and flexible class of

preferences, which allows the elasticity of substitution to depend on income and wealth

and interact with risk aversion.19

The effect of income risk on saving shows an opposite pattern in the data. Poor coun-

tries save more than rich countries in response to a higher income risk (measured either

by a mean preserving spread of income or a lower skewness). This kind of behavior is

consistent with a decreasing absolute risk aversion (DARA) class of utility function.20 It

is important to observe that all these comparative statics results cannot be necessarily

19Response of savings to interest rate risk seems to contradict the existing finding that poor countries
may have a lower elasticity of substitution than rich countries as found by Atkeson and Ogaki (2001).
However, it may be possible to exlain our emoirical resukts n terrms of more general NEUM which allows
for nonlinear interaction between risk aversion and intertemporal substitution.
20Alm (1988), and Kim et al. (1996) derive the effects of income risk on savings when households have

DARA type utility function. Menezes et al. (1980) show a DARA preference means aversion to downside
risk of income, which means aversion to lower skewness of income in our context.
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understood in terms of a unified utility function because of our approach involving a flex-

ible functional form, which is indeed a strength (but, ironically, possibly also a weakness)

of our methodology.

4 Conclusion

In this paper, we provide an empirical framework for the analysis of general non-expected

utility behavior in the context of savings under uncertainty. We extend the application of

existing models of savings behavior under non-expected utility to be applicable to general

underlying preferences. Despite this generalization, our approach maintains tractability of

the savings function by applying principles of duality. Using a flexible functional form, we

test a key necessary condition for the validity of expected utility hypothesis, using cross-

country savings data. The expected utility hypothesis is rejected by our data. By using

a flexible functional form for the indirect utility function, we allow for heterogeneity of

savings response to changes in income and interest rates across countries. The estimated

savings elasticities show significant variation across rich and poor countries, a finding that

raises new theoretical questions. A useful extension of this paper would be to apply our

approach within a multiperiod framework21.

5 Appendix:

Proof of Proposition 1:

Consider two distributions G1 and G2 and let Gλ ≡ λG1 + (1 − λ)G2 where and

0 ≤ λ ≤ 1. Let the corresponding solutions to problem (5) be given by: c1, c2, and

cλ respectively. The ”linearity in probabilities” implies that: J(λG1 + (1 − λ)G2) ≡R
R,p∈A U(c

λ)d(λG1 + (1− λ)G2)

= λ
R
R,p∈A U(c

λ)dG1 + (1− λ)
R
R,p∈A U(c

λ)dG2
≤ λ

R
R,p∈A U(c

1)dG1 + (1− λ)
R
R,p∈A U(c

2)dG2
= λ J(G1, y0) + (1 − λ) J(G2, y0), i.e., J(G) is convex (consequently, it also follows

from the result in Rockafellar (1970), p. 82, that it is continuous in G). See Kreps and

Porteus (1979).

Proof of Proposition 2: Given the distributions G1, G2 and Gλ, let the corre-

sponding distributions of c be given by G1c , G
2
c , and G

λ
c . Let the corresponding solu-

tions to problem 5 be given by: c1, c2and cλ respectively. In other words, J(Gλ, y0) ≡
U [Gλ

c (c
λ)], J(G1, y0) ≡ U [G1c(c1)] and J(G2, y0) ≡ U [G2c(c2)]. From the definitions of

the maximizers it follows that: U [G1c(cλ)] ≤ U [G1c(c1))] ≡ J [G1, y0] and U [G2c(cλ)] ≤
U [G2c(c2))] ≡ J [G2, y0] . But now, since we do not have ”linearity in probabilities”, we
cannot ”break up” the indirect utility into two terms, as was done above: J [Gλ, y0] 6=
λ J(G1, y0) + (1− λ) J(G2, y0). In general, it is possible to have J [Gλ, y0] smaller, greater

21This is currently studied by the authors.
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or equal toλJ(G1, y0)+ (1−λ) J(G2, y0), which means that the functional J may, or may

not be convex in G.

Whether J is convex depends on the specific non-expected utility model that is being

used. Consider, for example, the following non-expected utility models:

1. Weighted Utility (Karmarkar (1978) and Chew (1983))22

2. Rank Dependent Expected Utility (Quiggin (1982))23

3. Quadratic (Machina 1982)24

4. Regret/Rejoice (no transitivity), e.g., Fishburn (1983)25.

In all of the cases above we no longer have linearity in probabilities. Consequently,

the functional J(G) is not necessarily convex. Whether it is convex or concave depends

on the specific non-expected utility model that is chosen, on its parameters and on the

properties of the ”probability transformation” function.

Proof of Theorem 1: Consider two distributions, G1 and G2, whose characteristic

functions are Ψ1 and Ψ1. For any 0 ≤ λ ≤ 1, define Gλ ≡ λG1+(1−λ)G2 and let Ψλ be the

characteristic function corresponding to Gλ. It is known (see Feller (1966), Lemma on p.

477) that for any 0 ≤ λ ≤ 1,Ψλ = λΨ1+(1−λ)Ψ2. Now, as is well known (see, for example,

Uniqueness and Inversion Theorems in Wilks (1964) pp. 116-118 and Feller (1966), pp.

480-482), distribution and characteristic functions uniquely determine each other. It,

therefore, follows that the distribution functions corresponding to Ψλ and λΨ1+(1−λ)Ψ2

are the same. Let us define the distribution that corresponds to λΨ1 + (1 − λ)Ψ2 as

GλΨ1+(1−λ)Ψ2 . Hence, since the distribution corresponding to Ψλ is λG1 + (1− λ)G2 and

the distribution corresponding to λΨ1+(1−λ)Ψ2 is, by definition, GλΨ1+(1−λ)Ψ2, it follows
that λG1+(1−λ)G2 = GλΨ1+(1−λ)Ψ2. Or alternatively, since G1 ≡ GΨ1 and G2 ≡ GΨ2 (the

distribution function that corresponds to the characteristic function whose distribution

function is Gi, is Gi itself) we have λGΨ1 + (1 − λ)GΨ2 = GλΨ1+(1−λ)Ψ2 . In other words,
the distribution function is linear in Ψ.

Now, since R, p ∈ A is concentrated in a finite interval, the characteristic function

Ψ is analytic (see Laha and Rohatgi (1979) Theorems 4.2.2. and 4.2.3. pp. 253-254,

Wilks (1964) p. 126) and can be written as a sum (which converges) whose coefficients

are the moments: ΨG(t) =
P

r(it)
rmr/r!. Since this series is linear in the coefficients (the

moments mr), it follows that the characteristic function is linear in moments. Thus, since

(i) J is convex in G, (ii) the distribution function is linear in Ψ, and (iii) the character-

istic function, is linear in the moments, it follows that H is convex in the moments.26

22For example, the discreet version (assuming that c can obtain the values c1, ...cn ≡ c0 with
probabilities q1...q1) of Karmarkar (1978) and Chew (1983) are given by U [c0, q] =

P
i v(ci) f(qi)P

i f(qi)
and

U [c0, q] =
P

i v(ci)qi f(ci)P
i qi f(ci)

respectively.
23For example, the discreet version of Quiggin (1982) is given by: U [c0, q] = P

i v(ci){f(
Pi
j=1 qj) −

f(
Pi−1
j=1 qj)], where f : [0, 1]→ [0, 1] is increasing and continuous probability weighting function.

24For example, the discreet version of Machina (1982) is given by: U [c0, q] =Pi qiv(ci)+{
P
i qiv

0
(ci)}2.

25For example, the discreet version of Fishburn (1982) is given by: U [c0, q] =Pi v(ci; q) f(qi).
26In addition, it also follows from the Continuity Theorem (see Feller (1966), pp 481, Theorem 2) that
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Q.E .D.
Proof of Theorem 2: The first part of the proof is the same as above: the distri-

bution function is linear in Ψ and the characteristic function is linear in the moments.

But now, since J is not necessarily convex in G, H may be either convex or concave in

the moments. For example, consider the Rank Dependent Expected Utility case. Since

the mean and probabilities (q) are linearly related, we know that when J0 is concave in

q, then H will be concave in the mean, whereas when J0 is convex q, then H will be

convex in the mean. A similar example can be provided for the other non-expected utility

cases. Q.E .D.
Proof of Proposition 3: Using the lognormality property 15 can be written as:

bR = exp ¡µr + 0.5(1− ε)σ2
¢

(34)

Plugging 34 into 14, one obtains:

H(m, y0) =
y1−α0

1− α

·
1 + exp

µ
µr
1− α

α
+ 0.5

(1− ε)(1− α)σ2r
α

¶¸ 1
α

(35)

It is now straightforward to verify that H(m, y0) is convex in µr and σ2r . Next, note that

the kth moment of R is given by:

mk = exp(kµr + 0.5k
2σ2r) (36)

which means all the moments are convex in µr and σ2r . Following the same steps as in the

proof of Theorem it therefore, follows that H(m, y0) is convex in m. Q.E .D..
Proof of Proposition 4:

Note that( 18 )reduces to:

Q = µp − 0.5λσ2p (37)

Substituting 18 in 17 one obtains

H(m, y0) =

"
R
(α−1)
α .y0+(µp−0.5λσ2p).R−

1
α

1+R
α−1
α

#1−α
+

"
R.y0+(µp−0.5λσ2p)

·
1−Rα−1

α

¸
1+R

α−1
α

#1−α
1− α

(38)

Note that H is concave in in mean and variances of p. Since the normal distribution

belongs to a two-parameter family, mean and variance characterize all the moments.

Thus H is concave in m. Since there is a one-to-one correspondence between the moments

and the distribution function via the characteristic function, J is concave in G when G is

normal. Q.E .D..
H is continuous in m.
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Table 1: Parameter Estimates

Parameter Estimate t-statistic
b1 -.354281 -3.47462
b11 -.036477 -2.57270
b12 .107101 2.58383
b13 .649288E-02 .629253
g11 .080940 4.40647
g12 -.189609 -1.24735
g13 -.029734 -.356578
h11 .184220E-03 .163832E-02
h21 .180815E-02 1.28945
h12 -.142277E-02 -1.58785
a11 -.144772 -4.74842
a12 -.323142 -.864344
a13 -.121042 -.509222
g21 -.326236 -7.08066
g31 -.023795 -1.17974
k11 -.821454E-02 -2.13453
k21 .446119E-02 1.71475
k12 .489602E-02 4.10647
d 1.15278 6.36491
Adjusted R-squared .989090
Durbin-Watson 1.27089

Table 2: Estimated Elasticities
Countries Low Income (Bottom 25%) High Income (Top 25%)
E(R) -0.204 2.234
V ar(R) -0.035 1.96263
Skew(R) 0.018 -0.078
E(p) 0.654 3.064
V ar(p) 0.037 -0.031
SKEW (p) -0.028 0.0002
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