
FANPAC

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software described in
this document is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.
The purchaser may make one copy of the software for backup purposes. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose other than the
purchaser’s personal use without the written permission of Aptech Systems, Inc.
c©Copyright 1998, 1999, 2000 by Aptech Systems, Inc., Maple Valley, WA.
All Rights Reserved.

GAUSS, GAUSS Engine, GAUSSi, GAUSS Light, GAUSS-386 and GAUSS-386i are
trademarks of Aptech Systems, Inc. All other trademarks are the properties of their
respective owners.

Documentation Version: December 1, 2000

Contents

1 Installation 1

1.1 UNIX . 1

1.1.1 Solaris 2.x Volume Management 2

1.2 DOS . 2

1.3 Differences Between the UNIX and DOS Versions 3

2 Financial Analysis Package 5

2.1 Getting Started . 5

2.1.1 README Files . 5

2.1.2 Setup . 5

2.2 Modelling with FANPAC . 6

2.3 Univariate Time Series Models . 11

2.3.1 ARCH . 11

2.3.2 GARCH . 13

2.3.3 IGARCH . 16

2.3.4 FIGARCH . 16

2.3.5 EGARCH . 19

2.3.6 ARIMA . 20

2.3.7 OLS . 20

2.4 Multivariate Time Series Models . 21

2.4.1 DVEC ARCH . 21

2.4.2 Constant Correlation DVEC ARCH Model 23

2.4.3 BEKK ARCH . 25

2.4.4 DVEC GARCH . 26

2.4.5 Constant Correlation DVEC GARCH Model 27

2.4.6 BEKK GARCH . 29

2.5 Inference . 30

2.5.1 Confidence Limits . 32

2.5.2 Covariance Matrix of Parameters 32

2.5.3 Quasi-Maximum Likelihood Covariance Matrix of Parameters . . . 34

2.5.4 Ill-Conditioning and Singularity . 34

2.6 FANPAC Keyword Commands . 36

2.6.1 Initializing the Session . 37

2.6.2 Entering Data . 37

2.6.3 The Date Variable . 38

2.6.4 Scaling Data . 38

2.6.5 Independent Variables . 39

2.6.6 Selecting Observations . 39

2.6.7 Simulation . 40

2.6.8 Setting Type of Constraints . 41

2.6.9 The Analysis . 42

ii

2.6.10 Results . 44

2.6.11 Standardized and Unstandardized Residuals 45

2.6.12 Conditional Variances and Standard Deviations 46

2.6.13 Example . 47

2.6.14 Altering NLP global variables . 51

2.6.15 Multivariate Models . 53

2.6.16 Example . 53

2.7 FANPAC Procedures . 58

2.7.1 Bibliography . 62

2.8 NLP . 63

2.8.1 Derivatives . 65

2.8.2 The Secant Algorithms . 65

2.8.3 Line Search Methods . 66

2.8.4 Active and Inactive Parameters . 67

2.9 Managing Optimization . 67

2.9.1 Scaling . 68

2.9.2 Condition . 68

2.9.3 Singular Hessian . 68

2.9.4 Starting Point . 69

2.9.5 Diagnosis . 69

2.10 Constraints . 70

2.10.1 Linear Equality Constraints . 70

2.10.2 Linear Inequality Constraints . 70

2.10.3 Nonlinear Equality . 71

iii

2.10.4 Nonlinear Inequality . 71

2.10.5 Bounds . 72

2.10.6 Example . 72

2.11 Gradients . 76

2.11.1 Analytical Gradient . 76

2.11.2 Analytical Hessian . 76

2.11.3 Analytical Nonlinear Constraint Jacobians 78

2.11.4 Example . 78

2.11.5 Run-Time Switches . 81

2.12 Error Handling . 82

2.12.1 Bibliography . 83

3 FANPAC Keyword Reference 85

clearSession . 88

constrainPDCovPar . 89

computeLogReturns . 90

computePercentReturns . 91

estimate . 92

forecast . 96

getCV . 97

getCOR . 98

getEstimates . 99

getRD . 100

getSeriesACF . 101

getSeriesPACF . 102

iv

getSession . 103

getSR . 104

plotCOR . 105

plotCSD . 106

plotCV . 108

plotQQ . 109

plotSeries . 110

plotSeriesACF . 111

plotSeriesPACF . 112

plotSR . 113

session . 114

setAlpha . 115

SetConstraintType . 116

setCovParType . 117

setCVIndEqs . 118

setDataset . 119

setIndEqs . 121

setInferenceType . 122

setIndVars . 123

setLagTruncation . 124

setLagInitialization . 125

setLjungBoxOrder . 126

setOutputFile . 127

setRange . 128

setSeries . 129

setVarNames . 130

showEstimates . 131

showResults . 132

showRuns . 133

simulate . 134

testSR . 136

v

4 FANPAC Procedure Reference 137

arch forecast . 138

arch n . 140

arch n grd . 142

arch t . 143

arch t grd . 145

arch ineq . 146

arch cv . 147

arch sr . 149

arch roots . 151

arima forecast . 153

arima n . 154

arima t . 155

arima ineq . 156

arima n sr . 157

arima t sr . 158

arima roots . 159

bkarch forecast . 160

bkarch n . 161

bkarch t . 162

bkarch cv . 163

bkarch sr . 164

bkgarch forecast . 165

bkgarch n . 167

vi

bkgarch t . 168

bkgarch cv . 169

bkgarch sr . 170

cdvarch forecast . 171

cdvarch n . 173

cdvarch t . 175

cdvarch cv . 177

cdvarch sr . 179

cdvgarch forecast . 181

cdvgarch n . 183

cdvgarch t . 185

cdvgarch cv . 187

cdvgarch sr . 189

dvarch forecast . 191

dvarch n . 193

dvarch t . 195

dvarch cv . 197

dvarch sr . 199

dvgarch forecast . 201

dvgarch n . 203

dvgarch t . 205

dvgarch cv . 207

dvgarch sr . 209

garch e . 211

vii

garch e forecast . 212

garch e grd . 214

garch e cv . 215

garch e sr . 216

garch fi forecast . 217

garch fi n . 219

garch fi t . 221

garch fi cv . 223

garch fi sr . 225

garch forecast . 226

garch n . 228

garch t . 230

garch ineq . 232

garch cv . 233

garch sr . 235

garch roots . 237

ols forecast . 238

ols t . 239

ols t grd . 240

ols n sr . 241

ols t sr . 242

5 NLP Reference 243

NLP . 244

NLPSet . 255

NLPCovPar . 256

NLPClimits . 258

viii

Installation

Chapter 1

Installation

1.1 UNIX

If you are unfamiliar with UNIX, see your system administrator or system
documentation for information on the system commands referred to below. The device
names given are probably correct for your system.

1. Use cd to make the directory containing GAUSS the current working
directory.

2. Use tar to extract the files.

tar xvf device name

If this software came on diskettes, repeat the tar command for each
diskette.

The following device names are suggestions. See your system administrator. If you are
using Solaris 2.x, see Section 1.1.1.

Operating System 3.5-inch diskette 1/4-inch tape DAT tape

Solaris 1.x SPARC /dev/rfd0 /dev/rst8

Solaris 2.x SPARC /dev/rfd0a (vol. mgt. off) /dev/rst12 /dev/rmt/1l

Solaris 2.x SPARC /vol/dev/aliases/floppy0 /dev/rst12 /dev/rmt/1l

Solaris 2.x x86 /dev/rfd0c (vol. mgt. off) /dev/rmt/1l

Solaris 2.x x86 /vol/dev/aliases/floppy0 /dev/rmt/1l

HP-UX /dev/rfloppy/c20Ad1s0 /dev/rmt/0m

IBM AIX /dev/rfd0 /dev/rmt.0

SGI IRIX /dev/rdsk/fds0d2.3.5hi

1

1. INSTALLATION

1.1.1 Solaris 2.x Volume Management

If Solaris 2.x volume management is running, insert the floppy disk and type

volcheck

to signal the system to mount the floppy.

The floppy device names for Solaris 2.x change when the volume manager is turned off
and on. To turn off volume management, become the superuser and type

/etc/init.d/volmgt off

To turn on volume management, become the superuser and type

/etc/init.d/volmgt on

1.2 DOS

1. Place the diskette in a floppy drive.

2. Log onto the root directory of the diskette drive. For example:

A:<enter>

cd\<enter>

3. Type: ginstall source drive target path

source drive Drive containing files to install
with colon included

For example: A:

target path Main drive and subdirectory to install
to without a final \

For example: C:\GAUSS

A directory structure will be created if it does not already exist and the files
will be copied over.

target path\src source code files
target path\lib library files
target path\examples example files

2

Installation

1. INSTALLATION

4. The screen output option used may require that the DOS screen driver
ANSI.SYS be installed on your system. If ANSI.SYS is not already installed
on your system, you can put the command like this one in your
CONFIG.SYS file:

DEVICE=C:\DOS\ANSI.SYS

(This particular statement assumes that the file ANSI.SYS is on the
subdirectory DOS; modify as necessary to indicate the location of your copy
of ANSI.SYS.)

1.3 Differences Between the UNIX and DOS Versions

• In the DOS version, when the global output = 2, information may be written
to the screen using commands requiring the ANSI.SYS screen driver. These are
not available in the current UNIX version, and therefore setting output = 2
may have the same effect as setting output = 1.

• If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press Enter after the keystroke in the
UNIX version.

• On the Intel math coprocessors used by the DOS machines, intermediate
calculations have 80-bit precision, while on the current UNIX machines, all
calculations are in 64-bit precision. For this reason, GAUSS programs executed
under UNIX may produce slightly different results, due to differences in
roundoff, from those executed under DOS.

3

1. INSTALLATION

4

FANPAC

Chapter 2

Financial Analysis Package

written by

Ronald Schoenberg

This package provides procedures for the econometric analysis of financial data.

2.1 Getting Started

GAUSS 3.2.17+ DOS
GAUSS 3.2.28+ OS/2
GAUSS 3.2.32+ Windows NT/95
GAUSS 3.2.34+ UNIX

is required to use these routines.

2.1.1 README Files

The file README.fan contains any last minute information on this module. Please
read it before using the procedures in this module.

2.1.2 Setup

The FANPAC library must be active in order to use the procedures in the Financial
Analysis Package. Please make certain to include fanpac in the LIBRARY statement
at the top of your program or command file. This will enable GAUSS to find the
Financial Analysis Procedures.

5

2. FINANCIAL ANALYSIS PACKAGE

library fanpac,pgraph;

If you plan to make any right hand references to the global variables (described in the
REFERENCE sections), you also need the statement:

#include fanpac.ext;

Finally, to reset global variables in succeeding executions of the command file, the
following instruction can be used:

clearSession;

This could be included with the above statements without harm and would ensure the
proper definition of the global variables for all executions of the command file.

The version number of each module is stored in a global variable:

fan ver 3×1 matrix: the first element contains the major version number of the
Financial Analysis Package, the second element the minor version
number, and the third element the revision number.

If you call for technical support, please have the version number of your copy of this
module on hand.

2.2 Modelling with FANPAC

FANPAC is a set of keyword commands and procedures for the estimation of
parameters of time series models via the maximum likelihood method. The package is
divided into two parts: (1) easy-to-program keyword commands which simplify the
modelling process; and (2) GAUSS procedures, which can be called directly to perform
the computations.

The FANPAC keyword commands considerably simplify the work for the analysis of
time series. For example, the following command file (which may also be entered
interactively)

library fanpac,pgraph;

session test ’Analysis of 1996 Intel Stock Prices’;

setDataset stocks;

setSeries intel;

estimate run1 garch(1,1);

estimate run2 arima(1,2,1);

showResults;

plotSeries;

plotCV;

replaces about a hundred lines of GAUSS code using procedures. See Chapter 4 for a
description of the keyword commands.

6

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

Summary of Keyword Commands

clearSession clears session from memory, resets global
variables

constrainPDCovPar sets NLP global for constraining covariance
matrix of parameters to be positive definite

computeLogReturns computes log returns from price data
computePercentReturns computes percent returns from price data
estimate estimates parameters of a time series model
forecast generates a time series and conditional variance

forecast
getCV puts conditional variances or variance-covariance

matrices into global vector fan CV
getCOR puts conditional correlations into global variable

fan COR
getEstimates puts model estimates into global variable

fan Estimates
getResiduals puts unstandardized residuals into global vector
getSeriesACF puts autocorrelations into global variable fan ACF
getSeriesPACF puts partial autocorrelations into global

variable fan PACF
getSession retrieves a data analysis session
getSR puts standardized residuals into global vector
plotCOR plots conditional correlations
plotCSD plots conditional standard deviations
plotCV plots conditional variances
plotQQ generates quantile-quantile plot
plotSeries plots time series
plotSeriesACF plots autocorrelations

7

2. FINANCIAL ANALYSIS PACKAGE

plotSeriesPACF plots partial autocorrelations
plotSR plots standardized residuals
session initializes a data analysis session
setAlpha sets inference alpha level
setConstraintType sets type of constraints on parameters
setCovParType sets type of covariance matrix of parameters
setCVIndEqs declares list of independent variables

to be included in conditional variance equations
setDataset sets dataset name
setIndEqs declares list of independent variables

to be included in mean equations
setInferenceType sets type of inference
setIndVars declares names of independent variables
setLagTruncation sets lags included for FIGARCH model
setLagInitialization sets lags excluded for FIGARCH model
setLjungBoxOrder sets order for Ljung-Box statistic
setOutputFile sets output file name
setRange sets range of data
setSeries declares names of time series
setVarNames sets variable names for data stored in ASCII file
showEstimates displays estimates in simple format
showResults displays results of estimations
showRuns displays runs
simulate generates simulation
testSR generates skew, kurtosis, Ljung-Box statistics

If the computations performed by the FANPAC keyword commands do not precisely fit
your needs, you may design your own command files using the FANPAC procedures.
For example, you may want to impose alternative sets of constraints on the parameters
of a FIGARCH model. To do this you would design your own FIGARCH estimation
using the FANPAC procedures discussed in Section 2.7 in this chapter, and described in
Chapter 4.

You might also want to write your own procedures for models not included in
FANPAC. To do this you will need to write a procedure for computing the
log-likelihood and call NLP procedures for the estimation. These procedures are
discussed in Section 2.8 in this chapter, and are described in Chapter 5.

When the FANPAC keyword commands are used, analysis results are stored in a file on
disk. This information can be retrieved or modified as necessary. Results are not stored
if there is an error, and thus the original results are not lost when this happens. These
keyword commands can be invoked either in command files or interactively from the
GAUSS command line. They may also be mixed with other GAUSS commands either
in a command file or interactively.

The following models are available in FANPAC:

8

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

ols normal linear regression model
tols t distribution linear regression model
arima(p, d, q) normal ARIMA model
tarima(p, d, q) t distribution ARIMA model
arch(q) normal ARCH model
tarch(q) t distribution ARCH model
archm(q) normal ARCH-in-mean model
tarchm(q) t distribution ARCH-in-mean model
archv(q) normal ARCH-in-cv model
tarchv(q) t distribution ARCH-in-cv model
garch(p, q) normal GARCH model
tgarch(p, q) t distribution GARCH model
garchm(p, q) normal GARCH-in-mean model
tgarchm(p, q) t distribution GARCH-in-mean model
garchv(p, q) normal GARCH-in-cv model
tgarchv(p, q) t distribution GARCH-in-cv model
igarch(p, q) normal integrated GARCH model
itgarch(p, q) t distribution integrated GARCH model
egarch(p, q) exponential GARCH model
figarch(p, q) normal fractionally integrated GARCH model
fitgarch(p, q) t distribution fractionally integrated GARCH

model
figarch(p, q) normal fractionally integrated GARCH model
fitgarch(p, q) t distribution fractionally integrated GARCH

model
dvarch(p, q) normal DVEC multivariate ARCH model
cdvarch(p, q) constant correlation normal DVEC

multivariate ARCH model
bkarch(p, q) normal BEKK multivariate ARCH model
dvtarch(p, q) t distribution DVEC multivariate ARCH model
cdvtarch(p, q) constant correlation t distribution DVEC

multivariate ARCH model
bktarch(p, q) t distribution BEKK multivariate ARCH model
dvarchm(p, q) normal DVEC multivariate ARCH-in-mean model
cdvarchm(p, q) constant correlation normal DVEC

multivariate ARCH-in-mean model

9

2. FINANCIAL ANALYSIS PACKAGE

dvtarchm(p, q) t distribution DVEC multivariate ARCH-in-mean
model

cdvtarchm(p, q) constant correlation t distribution DVEC
multivariate ARCH-in-mean model

bktarchm(p, q) t distribution BEKK multivariate ARCH-in-mean
model

dvarchv(p, q) normal DVEC multivariate ARCH-in-cv model
cdvarchv(p, q) constant correlation normal DVEC

multivariate ARCH-in-cv model
dvtarchv(p, q) t distribution DVEC multivariate ARCH-in-cv

model
cdvtarchv(p, q) constant correlation t distribution DVEC

multivariate ARCH-in-cv model
dvgarch(p, q) normal DVEC multivariate GARCH model
cdvgarch(p, q) constant correlation normal DVEC

multivariate GARCH model
dvtgarch(p, q) t distribution DVEC multivariate GARCH model
cdvtgarch(p, q) constant correlation t distribution DVEC

multivariate GARCH model
bkgarch(p, q) normal BEKK multivariate GARCH model
bktgarch(p, q) t distribution BEKK multivariate GARCH model
dvgarchm(p, q) normal DVEC multivariate GARCH-in-mean model
cdvgarchm(p, q) constant correlation normal DVEC

multivariate GARCH-in-mean model
dvtgarchm(p, q) t distribution DVEC multivariate GARCH-in-mean

model
cdvtgarchm(p, q) constant correlation t distribution DVEC

multivariate GARCH-in-mean model
dvgarchv(p, q) normal DVEC multivariate GARCH-in-cv model
cdvgarchv(p, q) constant correlation normal DVEC

multivariate GARCH-in-cv model
dvtgarchv(p, q) t distribution DVEC multivariate GARCH-in-cv

model
cdvtgarchv(p, q) constant correlation t distribution DVEC

multivariate GARCH-in-cv model

If the models are declared without numbers in parentheses, then p, q, and d are
assumed to be one.

10

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

2.3 Univariate Time Series Models

2.3.1 ARCH

For the autoregressive conditional heteroskedastic (ARCH) model, define the series

εt = yt − xtβ

where t = 1, 2, ...T , and yt an observed time series, xt an observed time series of
exogenous variables including a column of ones, and β a vector of coefficients.
Furthermore,

εt ≡ ηtσt

where E(ηt) = 0, V ar(ηt) = 1, and

σ2
t = ω + α1ε

2
t−1 + · · ·+ αqε

2
t−q

For maximum likelihood estimation of this model we first provide a distribution for ηt.
Two distributions are available for ARCH in FANPAC, the Normal and Student’s t.
The log-likelihood also requires q initial variances. The observed unconditional variance
is used to initialize the process.

ARCH-in-cv

For the ARCH-in-cv model, independent variables may be added to the equation for
the conditional variance

σ2
t = ω + α1ε

2
t−1 + · · ·+ αqε

2
t−q + ZtΓ

where Zt is the t-th vector of observed independent variables and Γ a matrix of
coefficients.

ARCH-in-mean

For the ARCH-in-mean (or ARCHM) model, the time series mean equation is modified
to include the conditional variance

εt = yt − xtβ − δσt

11

2. FINANCIAL ANALYSIS PACKAGE

log-likelihood

The conditional log-likelihood, given the above requirements, of the ARCH model with
ηt ∼ N (0, 1) is

logL = −T − q
2

log(2π) −
T∑

t=q

log(σt)−
1

2

T∑

t=q

ε2t
σ2
t

where

σ2
t+q−1 = σ2

t+q−2 = · · · = σ2
1 =

1

T

t=1∑

T

ε2t

The unit t distribution with ν degrees of freedom and variance σ2 is

f(u) =
Γ((ν + 1)/2)

Γ(ν/2)(ν − 2)1/2π1/2σ

(
1 +

u2

(ν − 2)σ2

)−(ν+1)/2)

The conditional log-likelihood for ηt ∼ t(0, 1, ν) is then

logL = −T−q
2
log
(

Γ((ν+1)/2)
Γ(ν/2)(ν−2)1/2π1/2σ

)
−∑T

t=q log(σt)

−ν+1
2

∑T
t=q log

(
1 +

ε2t
(ν−2)σ2

t

)

constraints

Constraints on the parameters are necessary to enforce the stationarity of the ARCH
model as well as the nonnegativity of the conditional variances. The nonnegativity of
the conditional variances is assured by the following constraints on the parameters
(Nelson and Cao, 1992)

ω ≥ 0

αi > 0, i = 1, · · · , q

and strict stationarity by (Gouriéroux, 1997)

∑

i

αi < 1

Stationarity in the ARCH-in-cv model is conditional on the exogenous variables
included in the conditional variance equation. There is no assurance of unconditional
stationarity without further constraints or assumptions with respect to the exogenous
variables.

12

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

2.3.2 GARCH

The generalized autoregressive conditional heteroskedastic (GARCH) model is an
important variation on the ARCH model. Define the time series

εt = yt − xtβ

where t = 1, 2, ...T , and yt an observed time series, xt an observed time series of
exogenous variables including a column of ones, and β a vector of coefficients.

Also define

εt ≡ ηtσt

where E(ηt) = 0, V ar(ηt) = 1, and

σ2
t = ω + α1ε

2
t−1 + · · ·+ αqε

2
t−q+

β1σ
2
t−1 + · · ·+ βpσ

2
t−p

For maximum likelihood estimation of the GARCH model, we provide two distributions
for ηt, the Normal and Student’s t.

GARCH-in-cv

For the GARCH-in-cv model, independent variables may be added to the conditional
variance equation

σ2
t = ω + α1ε

2
t−1 + · · ·+ αqε

2
t−q+

β1σ
2
t−1 + · · ·+ βpσ

2
t−p + ZtΓ

where Zt is the t-th vector of observed independent variables and Γ a matrix of
coefficients.

GARCH-in-mean

For the GARCH-in-mean (or GARCHM) model, the time series mean equation is
modified to include the conditional variance

εt = yt − xtβ − δσt

13

2. FINANCIAL ANALYSIS PACKAGE

log-likelihood

The log-likelihood conditional on µ = max(p, q) initial estimates of the conditional
variances is, for ηt ∼ N (0, 1)

logL = −T − µ
2

log(2π) −
T∑

t+µ+1

log(σt)−
1

2

T∑

t+µ+1

ε2t
σ2
t

where

σ2
1 = σ2

2 = · · · = σ2
µ =

1

T

T∑

t=1

ε2t

The unit t distribution with ν degrees of freedom and variance σ2 is

f(u) =
Γ((ν + 1)/2)

Γ(ν/2)(ν − 2)1/2π1/2σ

(
1 +

u2

(ν − 2)σ2

)−(ν+1)/2)

The conditional log-likelihood for ηt ∼ t(0, 1, ν) is then

logL = −T−µ2 log
(

Γ((ν+1)/2)
Γ(ν/2)(ν−2)1/2π1/2σ

)
−∑T

t+µ log(σt)

−ν+1
2

∑T
t+µ log

(
1 +

ε2t
(ν−2)σ2

t

)

Nonnegativity of Conditional Variances

Constraints may be placed on the parameters to enforce the stationarity of the GARCH
model as well as the nonnegativity of the conditional variances.

Nelson and Cao (1992) established necessary and sufficient conditions for nonnegativity
of the conditional variances for the GARCH(1,q) and GARCH(2,q) models.

GARCH(1,q).

ω ≥ 0

β1 ≥ 0

k∑

j=0

αj+1β
k−j ≥ 0, k = 0, · · · , q − 1

GARCH(2,q). Define ∆1 and ∆2 as the roots of

1− β1Z
−1 − β2Z

−2

14

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

Then

ω/(1 −∆1 −∆2 + ∆1∆2) ≥ 0

β12 + 4β2 ≥ 0

∆1 > 0

q−1∑

j=0

αj+1∆
−j > 0

and,

φk ≥ 0, k = 0, · · · , q
where

φ0 = α1

φ1 = β1φ0 + α2

φ2 = β1φ1 + β2φ0 + α3

.

.

.
φq = β1φq−1 + β2φq−2

GARCH(p,q). General constraints for p > 2 haven’t been worked out. For such models,
FANPAC directly constrains the conditional variances to be greater than zero. It also
constrains the roots of the polynomial

1− β1Z − β2Z
2 − · · · − βpZp

to be outside the unit circle. This only guarantees that the conditional variances will be
nonnegative in the sample, and does not guarantee that the conditional variances will
be nonnegative for all realizations of the data.

Stationarity

To ensure that the GARCH process is covariance stationary, the roots of

1− (α1 + β1)Z − (α2 + β2)Z
2 − · · ·

may be constrained to be outside the unit circle (Gouriéroux, 1997, page 37).

Most GARCH models reported in the economics literature are estimated using software
that cannot impose nonlinear constraints on parameters and thus either impose a more
highly restrictive set of linear constraints than the ones described here, or impose no
constraints at all. The procedures provided in FANPAC ensure that you have the best
fitting solution that satisfies the conditions of stationarity and nonnegative of
conditional variances.

Stationarity in the GARCH-in-cv model is conditional on the exogenous variables
included in the conditional variance equation. There is no assurance of unconditional
stationarity without further constraints or assumptions with respect to the exogenous
variables.

15

2. FINANCIAL ANALYSIS PACKAGE

Initialization

The calculation of the log-likelihood is recursive and requires initial values for the
conditional variance. Following standard practice, the first q values of the conditional
variances are fixed to the sample unconditional variance of the series.

2.3.3 IGARCH

The IGARCH(p,q) model is a GARCH(p,q) model with a unit root. This is
accomplished in FANPAC by adding the equality constraint

∑

i

α1 +
∑

i

βi = 1

2.3.4 FIGARCH

Define the time series

εt = yt − xtβ
where t = 1, 2, ...T , and yt an observed time series, xt an observed time series of
exogenous variables including a column of ones, and β a vector of coefficients.

Further define

εt ≡ ηtσt
where E(ηt) = 0, V ar(ηt) = 1.

Let

A(L) = α1L + α2L
2 + · · ·+ αqL

q

and

A(L) = β1L + β2L
2 + · · ·+ βpL

p

where L is the lag operator. In this notation, the GARCH(p,q) model can be specified

σ2
t = ω +A(L)ε2t +B(L)σ2

t

The GARCH(p,q) model can be re-specified as an ARMA(max(p,q),p) model (Bailie,
et al., 1996)

[1−A(L) −B(L)]ε2t = ω + [1− B(L)]νt

where νt ≡ ε2t − σ2
t is the “innovation” at time t for the conditional variance process.

Using this notation, the IGARCH(p,q) model is

θ(L)(1 − L)ε2t = ω + [1−B(L)]νt

where θ(L) = [1− A(L) −B(L)](1 − L)−1. The fractionally integrated GARCH or
FIGARCH(p,q) model is

θ(L)(1 − L)dε2t = ω + [1−B(L)]νt

where 0 < d < 1.

16

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

FIGARCH-in-cv

For the FIGARCH-in-cv model, independent variables may be added to the conditional
variance equation

σ2
t = ω + A(L)ε2t + B(L)σ2

t + ZtΓ

where Zt is the t-th vector of observed independent variables and Γ a matrix of
coefficients.

GARCH-in-mean

For the GARCH-in-mean (or GARCHM) model, the time series mean equation is
modified to include the conditional variance

εt = yt − xtβ − δσt

log-likelihood

The conditional variance in the FIGARCH(p,q) model is the sum of an infinite series of
prior conditional variances:

σ2
t = ω + [1−B(L) − θ(L)(1 − L)d]ε2t + B(L)σ2

t

= ω + [1−B(L) − [1−A(L) − B(L)](1− L)d−1]ε2t + B(L)σ2
t

= ω + (φ1L− φ2L
2 − · · ·)ε2t + B(L)σ2

t

φk = αk − πk +
k−1∑

i=1

πi(αk−i + βk−i)

where αj = 0, j > q and βj = 0, j > p, and

πk =
1

k!

k∏

i=1

(i − d)

In practice, the log-likelihood will be computed from available data and this means that
the calculation of the conditional variance will be truncated. To minimize this error,
the log-probabilities for initial observations can be excluded from the log-likelihood.
The default is one half of the observations.

This can be modified by calling the keyword command setLagTruncation with an
argument specifying the number of observations to be included in the log-likelihood, or

17

2. FINANCIAL ANALYSIS PACKAGE

by directly setting the FANPAC global, fan init to the number of initial observations
to be excluded from the log-likelihood.

The log-likelihood for ηt ∼ N (0, 1) is

logL = −T − ρ
2

log(2π) −
T∑

t+µ

log(σt) −
1

2

T∑

t+µ

ε2t
σ2
t

and for ηt ∼ t(0, 1, ν) is

logL = −T−q2 log
(

Γ((ν+1)/2)
Γ(ν/2)(ν−2)1/2π1/2σ

)
−∑T

t=q log(σt)

−ν+1
2

∑T
t=q log

(
1 +

ε2t
(ν−2)σ2

t

)

where µ = fan init, the number of lags used to initialize the process.

Stationarity

The unconditional variance of FIGARCH models is infinite, and thus is not covariance
stationary. However, Baillie, et al. (1996) point out that FIGARCH models are ergodic
and strictly stationary for 0 ≤ d ≤ 1 using a direct extension of proofs for the IGARCH
case (Nelson, 1990).

In addition to the constraint on d, it is also necessary to constrain the roots of

1− β1Z − β2Z
2 − · · · − βpZp

to be outside the unit circle.

Nonnegative conditional variances

General methods to ensure the nonnegativity of the conditional variances haven’t been
established. However, in FANPAC the conditional variances are directly constrained to
be nonnegative. This guarantees nonnegative conditional variances in the sample, but
does not do so for all realizations of the time series.

Stationarity in the FIGARCH-in-cv model is conditional on the exogenous variables
included in the conditional variance equation. There is no assurance of unconditional
stationarity without further constraints or assumptions with respect to the exogenous
variables.

18

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

2.3.5 EGARCH

Define the time series

εt = yt − xtβ

where t = 1, 2, ...T , and yt an observed time series, xt an observed time series of
exogenous variables including a column of ones, and β a vector of coefficients.

Also define

εt ≡ ηtσt

where E(ηt) = 0, V ar(ηt) = 1. For the EGARCH (or Exponential GARCH) model, the
conditional variance is modelled

log σ2
t = ω + β1log σ

2
t−1 + · · ·+ βplog σ

2
t−p

α1(|εt−1|+E|εt−1|+ δεt−1)
α2(|εt−2|+ E|εt−2|+ δεt−2) + · · ·+

αq(|εt−q|+E|εt−q|+ δεt−q)

In this model, εt has the generalized error distribution

f(εt) =
ρΓ(3/ρ)

1
2

2σ2
tΓ(1/ρ)

3
2

e−
1
2 | εtλσt |

ρ

where ρ > 0 is a parameter measuring the thickness of the tails, δ is a leverage
parameter,

λ = 2−1/ρΓ(1/ρ)
1
2 Γ(3/ρ)−

1
2

and

E|εt| = Γ(2/ρ)
1
2 Γ(1/ρ)−

1
2 Γ(3/ρ)−

1
2

log-likelihood

The log-likelihood for the EGARCH model is

logL = log(
ρ

2
) +

1

2
logΓ(3/ρ) − 3

2
logΓ(1/ρ) − 1

2

T∑

t+µ

∣∣∣∣
ε2

λσt

∣∣∣∣
ρ

−
T∑

t+µ

σ2
t

where µ = max(p, q) + 1.

19

2. FINANCIAL ANALYSIS PACKAGE

2.3.6 ARIMA

Let

Φ(L) = φ1L + φ2L
2 + · · ·+ φpL

p

and

Θ(L) = θ1L + θ2L
2 + · · ·+ θpL

q

then the ARIMA model can be described in lag operator form

Φ(L)[(1− L)dyt − xtβ] = Θ(L)εt

where t = 1, 2, ...T , and yt an observed time series, xt an observed time series of
exogenous variables including a column of ones, and β a vector of coefficients.

2.3.7 OLS

Define the series

εt = yt − xtβ

where t = 1, 2, ...T , and yt an observed time series, xt an observed time series of
exogenous variables including a column of ones, and β a vector of coefficients.

For εt ∼ N (0, 1), the ordinary least squares estimator

β̂ = (X ′X)−1X ′Y

where x′t and yt are the i-th rows of X and Y , respectively, is maximum likelihood.

For εt with a t distribution with ν degrees of freedom and variance σ2, the
log-likelihood is

logL = −T
2
log

(
Γ((ν + 1)/2)

Γ(ν/2)(ν − 2)1/2π1/2σ

)
−

T∑

t=q

log(σ) − ν + 1

2

T∑

t=q

log

(
1 +

ε2t
(ν − 2)σ2

)

It is also necessary to constrain ν to be greater than 2.

20

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

2.4 Multivariate Time Series Models

2.4.1 DVEC ARCH

Define a vector of ` residuals

εt = yt − xtβ

where t = 1, 2, ...T , and yt an observed multiple time series, xt an observed time series
of exogenous variables including a column of ones, and β a matrix of coefficients.

Let Σt be the conditional variance-covariance matrix of εt. Each nonredundant element
of Σt is a separate GARCH model:

Σt,ij = Ωij +A1,ijεi,t−1εj,t−1 + · · ·+ Aq,ijεi,t−qεj,t−q

where Ωij = Ωji and Ak,ij = Ak,ji.

DVEC ARCH-in-cv

For the DVEC ARCH-in-cv (or DVARCHV) model, independent variables are added to
the equation for the conditional variance

Σt,ij = Ωij +A1,ijεi,t−1εj,t−1 + · · ·+ Aq,ijεi,t−qεj,t−q + ZtΓij

where Zt is the t-th vector of observed independent variables and Γij a matrix of
coefficients.

DVEC ARCH-in-mean

For the DVEC ARCH-in-mean (or DVARCHM model), the time series equation is
modified to include the conditional variance

εi,t = yi,t − xtβ′i − δiΣt,ii)

where βi is the i-th row of B, an ` × k coefficient matrix.

21

2. FINANCIAL ANALYSIS PACKAGE

log-likelihood

The log-likelihood conditional on µ = max(p, q) initial estimates of the conditional
variance-covariances matrices is

logL = −k(T − µ)

2
log(2π) − 1

2

T∑

t+µ+1

log | Σt | −
1

2

T∑

t+µ+1

(ε′tΣ
−1
t εt)

where

Σ1 = Σ2 = · · · = Σµ =
1

T

T∑

t=1

ε′tεt

The conditional log-likelihood for a t-distributed ε is

logL = −T−µ
2

(logΓ((ν + k)/2)− logΓ(ν/2)− 1
2
log((ν − 2)π))

−1
2

∑T
t+µ+1 log | Σt | −ν+k

2

∑T
t+µ+1 log(1 + ε′tΣ

−1
t εt/(ν − 2))

Positive Definiteness of Conditional Variances

Constraints on the parameters are necessary to enforce the positive definiteness of the
conditional variance-covariances matrices. This requirement is assured by directly
constraining the eigenvalues of the conditional variance-covariance matrices to be
greater than zero.

Stationarity

Stationarity is assured if the roots of the determinantal equation

| I −A1z − A2z
2 − ... |

lie outside the unit circle (Gourieroux, 1997).

Stationarity in the DVEC ARCH-in-cv model is conditional on the exogenous variables
included in the conditional variance equation. There is no assurance of unconditional
stationarity without further constraints or assumptions with respect to the exogenous
variables.

22

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

2.4.2 Constant Correlation DVEC ARCH Model

Define a vector of ` residuals

εt = yt − xtβ

where t = 1, 2, ...T , and yt an observed multiple time series, xt an observed time series
of exogenous variables including a column of ones, and β a matrix of coefficients.

Let Σt be the conditional variance-covariance matrix of εt with constant correlation
matrix R. Then each diagonal element of Σt is modelled as a separate GARCH model

Σt,ii = Ωi +Ai,1ε
2
i,t−1 + · · ·+Ai,qε

2
i,t−q

The elements of the conditional variance-covariance matrix, then, are

Σt,ij = Rij
√

Σt,iiΣt,jj

constant correlation DVEC ARCH-in-cv

For the constant correlation DVEC ARCH-in-cv (or CDVARCHV) model, independent
variables are added to the equation for the conditional variance

Σt,ii = Ωi +Ai,1ε
2
i,t−1 + · · ·+Ai,qε

2
i,t−q + ZtΓi

where Zt is the t-th vector of observed independent variables and Γi a matrix of
coefficients.

constant correlation DVEC ARCH-in-mean

For the constant correlation DVEC ARCH-in-mean (or CDVARCHM) model, the time
series equation is modified to include the conditional variance

εi,t = yi,t − xi,tβ′i − δiΣt,ii

where βi is the i-th row of B, an ` × k coefficient matrix.

log-likelihood

The log-likelihood conditional on µ = max(p, q) initial estimates of the conditional
variance-covariances matrices is

logL = −k(T − µ)

2
log(2π) − 1

2

T∑

t+µ+1

log | Σt | −
1

2

T∑

t+µ+1

(ε′tΣ
−1
t εt)

23

2. FINANCIAL ANALYSIS PACKAGE

where

Σ1 = Σ2 = · · · = Σµ =
1

T

T∑

t=1

ε′tεt

and where

σt,ii)
−1σt,ijΣt,jj)

−1 = rij

where the rij are constants.

The conditional log-likelihood for a t-distributed ε is

logL = −T−µ
2

(logΓ((ν + k)/2)− logΓ(ν/2)− 1
2
log((ν − 2)π))

−1
2

∑T
t+µ+1 log | Σt | −ν+k

2

∑T
t+µ+1 log(1 + ε′tΣ

−1
t εt/(ν − 2))

Positive Definiteness of Conditional Variances

Constraints on the parameters are necessary to enforce the positive definiteness of the
conditional variance-covariances matrices. This requirement is assured by directly
constraining the eigenvalues of the conditional variance-covariance matrices to be
greater than zero.

Stationarity

Stationarity is assured if the roots of the determinantal equation (Gourieroux, 1997)

| I −A1z − A2z
2 − · · · |

lie outside the unit circle. Since the Ai and Bi are diagonal matrices, this amounts to
determining the roots of k polynomials

1− A111z − A211z
2 − · · · (2.1)

1− A122z − A222z
2 − · · · (2.2)

... (2.3)

1− A1kkz − A2kkz
2 − · · · (2.4)

Stationarity in the constant correlation DVEC ARCH-in-cv model is conditional on the
exogenous variables included in the conditional variance equation. There is no
assurance of unconditional stationarity without further constraints or assumptions with
respect to the exogenous variables.

24

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

2.4.3 BEKK ARCH

Define a vector of ` residuals

εt = yt − xtβ

where t = 1, 2, ...T , and yt an observed multiple time series, xt an observed time series
of exogenous variables including a column of ones, and β a matrix of coefficients.

Further define the conditional variance Σt of εt

Σt = Ω +A1ε
′
t−1εt−1A

′
1 + · · ·+Aqε

′
t−qεt−qA

′
q

where Ω is a symmetric matrix and the Ai are square matrices.

log-likelihood

The log-likelihood conditional on µ = max(p, q) initial estimates of the conditional
variance-covariances matrices is

logL = −k(T − µ)

2
log(2π) − 1

2

T∑

t+µ+1

log | Σt | −
1

2

T∑

t+µ+1

(ε′tΣ
−1
t εt)

where

Σ1 = Σ2 = · · · = Σµ =
1

T

T∑

t=1

ε′tεt

The conditional log-likelihood for a t-distributed ε is

logL = −T−µ2 (logΓ((ν + k)/2)− logΓ(ν/2)− 1
2 log((ν − 2)π))

−1
2

∑T
t+µ+1 log | Σt | −ν+k

2

∑T
t+µ+1 log(1 + ε′tΣ

−1
t εt/(ν − 2))

Positive Definiteness of Conditional Variances

Constraints on the parameters are necessary to enforce the positive definiteness of the
conditional variance-covariances matrices. This requirement is assured by directly
constraining the eigenvalues of the conditional variance-covariance matrices to be
greater than zero.

25

2. FINANCIAL ANALYSIS PACKAGE

2.4.4 DVEC GARCH

Define a vector of ` residuals

εt = yt − xtβ
where t = 1, 2, ...T , and yt an observed multiple time series, xt an observed time series
of exogenous variables including a column of ones, and β a matrix of coefficients.

Let Σt be the conditional variance-covariance matrix of εt. Each nonredundant element
of Σt is a separate GARCH model

Σt,ij = Ωij + A1,ijεi,t−1εj,t−1 + · · ·+Aq,ijεi,t−qεj,t−q
B1,ijΣt,ij−1 + · · ·+ Bp,ijΣt,ij−p

where Ωij = Ωji and Ak,ij = Ak,ji.

DVEC GARCH-in-cv

For the DVEC GARCH-in-cv (or DVGARCHV) model, independent variables are
added to the equation for the conditional variance

Σt,ij = Ωij + A1,ijεi,t−1εj,t−1 + · · ·+Aq,ijεi,t−qεj,t−q
+B1,ijΣt,ij−1 + · · ·+Bp,ijΣt,ij−p + ZtΓij

where Zt is the t-th vector of observed independent variables and Γij a matrix of
coefficients.

DVEC GARCH-in-mean

For the DVEC GARCH-in-mean (or DVGARCHM) model, the time series equation is
modified to include the conditional variance

εi,t = yi,t − xtβ′i − δiΣt,ii
where βi is the i-th row of B, an `× k coefficient matrix.

log-likelihood

The log-likelihood conditional on µ = max(p, q) initial estimates of the conditional
variance-covariances matrices is

logL = −k(T − µ)

2
log(2π) − 1

2

T∑

t+µ+1

log | Σt | −
1

2

T∑

t+µ+1

(ε′tΣ
−1
t εt)

where

Σ1 = Σ2 = · · · = Σµ =
1

T

T∑

t=1

ε′tεt

The conditional log-likelihood for a t-distributed ε is

logL = −T−µ2 (logΓ((ν + k)/2)− logΓ(ν/2)− 1
2 log((ν − 2)π))

−1
2

∑T
t+µ+1 log | Σt | −ν+k

2

∑T
t+µ+1 log(1 + ε′tΣ

−1
t εt/(ν − 2))

26

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

Positive Definiteness of Conditional Variances

Constraints on the parameters are necessary to enforce the positive definiteness of the
conditional variance-covariances matrices. This requirement is assured by directly
constraining the eigenvalues of the conditional variance-covariance matrices to be
greater than zero.

Stationarity

Stationarity is assured if the roots of the determinantal equation

| I − (A1 +B1)z − (A2 +B2)z
2 − ... |

lie outside the unit circle (Gourieroux, 1997).

Stationarity in the DVEC GARCH-in-cv model is conditional on the exogenous
variables included in the conditional variance equation. There is no assurance of
unconditional stationarity without further constraints or assumptions with respect to
the exogenous variables.

2.4.5 Constant Correlation DVEC GARCH Model

Define a vector of ` residuals

εt = yt − xtβ
where t = 1, 2, ...T , and yt an observed multiple time series, xt an observed time series
of exogenous variables including a column of ones, and β a matrix of coefficients.

Let Σt be the conditional variance-covariance matrix of εt with constant correlation
matrix R. Then each diagonal element of Σt is modelled as a separate GARCH model

Σt,ii = Ωi + Ai,1ε
2
i,t−1 + · · ·+ Ai,qε

2
i,t−q

+Bi,1Σi,t−1 + · · ·+ Bi,pΣi,t−p

The elements of the conditional variance-covariance matrix, then, are

Σt,ij = Rij
√

Σt,iiΣt,jj

constant correlation DVEC GARCH-in-cv

For the constant correlation DVEC GARCH-in-cv (or CDVGARCHV) model,
independent variables are added to the equation for the conditional variance

Σt,ii = Ωi + Ai,1ε
2
i,t−1 + · · ·+ Ai,qε

2
i,t−q

+Bi,1Σi,t−1 + · · ·+ Bi,pΣi,t−p + ZtΓij

where Zt is the t-th vector of observed independent variables and Γij a matrix of
coefficients.

27

2. FINANCIAL ANALYSIS PACKAGE

constant correlation DVEC GARCH-in-mean

For the constant correlation DVEC GARCH-in-mean (or DVGARCHM) model, the
time series equation is modified to include the conditional variance

εi,t = yi,t − xtβ′i − δiΣt,ii

where βi is the i-th row of B, an `× k coefficient matrix.

log-likelihood

The log-likelihood conditional on µ = max(p, q) initial estimates of the conditional
variance-covariances matrices is

logL = −k(T − µ)

2
log(2π) − 1

2

T∑

t+µ+1

log | Σt | −
1

2

T∑

t+µ+1

(ε′tΣ
−1
t εt)

where

Σ1 = Σ2 = · · · = Σµ =
1

T

T∑

t=1

ε′tεt

and where

σt,ij = rij
√
σt,iiΣt,jj

where rij is a constant parameter to be estimated.

The conditional log-likelihood for a t-distributed ε is

logL = −T−µ2 (logΓ((ν + k)/2)− logΓ(ν/2)− 1
2 log((ν − 2)π))

−1
2

∑T
t+µ+1 log | Σt | −ν+k

2

∑T
t+µ+1 log(1 + ε′tΣ

−1
t εt/(ν − 2))

Positive Definiteness of Conditional Variances

Constraints on the parameters are necessary to enforce the positive definiteness of the
conditional variance-covariances matrices. This requirement is assured by directly
constraining the eigenvalues of the conditional variance-covariance matrices to be
greater than zero.

28

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

Stationarity

Stationarity is assured if the roots of the determinantal equation (Gourieroux, 1997)

| I − (A1 +B1)z − (A2 +B2)z
2 − · · · |

lie outside the unit circle. Since the Ai and Bi are diagonal matrices, this amounts to
determining the roots of k polynomials

1− (A111 +B111)z − (A211 +B211)z
2 − · · · (2.5)

1− (A122 +B122)z − (A222 +B222)z
2 − · · · (2.6)

... (2.7)

1− (A1kk +B1kk)z − (A2kk +B2kk)z
2 − · · · (2.8)

Stationarity in the constant correlation DVEC GARCH-in-cv model is conditional on
the exogenous variables included in the conditional variance equation. There is no
assurance of unconditional stationarity without further constraints or assumptions with
respect to the exogenous variables.

2.4.6 BEKK GARCH

Define a vector of ` residuals

εt = yt − xtβ

where t = 1, 2, ...T , and yt an observed multiple time series, xt an observed time series
of exogenous variables including a column of ones, and β a matrix of coefficients.

Further define the conditional variance Σt of εt

Σt = Ω + A1ε
′
t−1εt−1A

′
1 + · · ·+Aqε

′
t−qεt−qA

′
q+

B1Σt−1B
′
1 + · · ·+BpΣt−pB′p

where Ω is a symmetric matrix, and Ai and Bi are square matrices.

log-likelihood

The log-likelihood conditional on µ = max(p, q) initial estimates of the conditional
variance-covariances matrices is

logL = −k(T − µ)

2
log(2π) − 1

2

T∑

t+µ+1

log | Σt | −
1

2

T∑

t+µ+1

(ε′tΣ
−1
t εt)

29

2. FINANCIAL ANALYSIS PACKAGE

where

Σ1 = Σ2 = · · · = Σµ =
1

T

T∑

t=1

ε′tεt

The conditional log-likelihood for a t-distributed ε is

logL = −T−µ2 (logΓ((ν + k)/2)− logΓ(ν/2)− 1
2 log((ν − 2)π))

−1
2

∑T
t+µ+1 log | Σt | −ν+k

2

∑T
t+µ+1 log(1 + ε′tΣ

−1
t εt/(ν − 2))

Positive Definiteness of Conditional Variances

Constraints on the parameters are necessary to enforce the positive definiteness of the
conditional variance-covariances matrices. This requirement is assured by directly
constraining the eigenvalues of the conditional variance-covariance matrices to be
greater than zero.

2.5 Inference

The parameters of time series models in general are highly constrained. This presents
severe difficulties for statistical inference. The usual method for statistical inference,
comprising the calculation of the covariance matrix of the parameters and constructing
t-statistics from the standard errors of the parameters, fails in the context of inequality
constrained parameters because confidence regions will not generally be symmetric
about the estimates. For this reason FANPAC does not compute t-statistics, but rather
computes and reports confidence limits.

The most common type of inference is based on the Wald statistic. A (1 − α) joint
Wald-type confidence region for θ is the hyper-ellipsoid

JF (J,N −K;α) = (θ − θ̂)′V −1(θ − θ̂), (2.9)

where V is the covariance matrix of the parameters. The confidence limits are the
maximum and minimum solution of

min
{
η′kθ | (θ − θ̂)′V −1(θ − θ̂) ≥ JF (J,N −K;α))

}
, (2.10)

where η can be an arbitrary vector of constants and J =
∑
ηk 6= 0.

When there are no constraints, the solution to this problem for a given parameter is the
well known

θ̂ ± t(1−α)/2,T−kσθ̂

30

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

where σθ̂ is the square root of the diagonal element of V associated with θ̂.

When there are constraints in the model, two things happen that render the classical
method invalid. First, the solution to (2.10) is no longer (2.5) and second, (2.9) is not
valid whenever the hyper-ellipsoid is on or near a constraint boundary.

(2.9) is based on an approximation to the likelihood ratio statistic. This approximation
fails in the region of constraint boundaries because the likelihood ratio statistic itself is
known to be distributed there as a mixture of chi-squares (Gouriéroux, et al.; 1982,
Wolak, 1991). In finite samples these effects occur in the region of the constraint

boundary, specifically when the true value is within ε =
√

(σ2
e/N)χ2

(1−α,k)
of the

constraint boundary.

Here, and in FANPAC, we consider only the solution for a given parameter, a
“parameter of interest;” all other parameters are “nuisance parameters.” There are
three cases to consider:

(1) parameter constrained, no nuisance parameters constrained;

(2) parameter unconstrained, one or more nuisance parameters constrained;

(3) parameter constrained, one or more nuisance parameters constrained.

Case 1: When the true value is on the boundary, the statistics are distributed as a
simple mixture of two chi-squares. Monte Carlo evidence presented Schoenberg (1997)
shows that this holds as well in finite samples for true values within ε of the constraint
boundary.

Case 2: The statistics are distributed as weighted mixtures of chi-squares when the
correlation of the constrained nuisance parameter with the unconstrained parameter of
interest is greater than about .8. A correction for these effects is feasible. However, for
finite samples, the effects on the statistics due to a true value of a constrained nuisance
parameter being within ε of the boundary are greater and more complicated than the
effects of actually being on the constraint boundary. There is no systematic strategy
available for correcting for these effects.

Case 3: The references disagree. Gouriéroux, et al., (1982) and Wolak (1991) state that
the statistics are distributed as a mixture of chi-squares. However, Self and Liang
(1987) argue that when the distributions of the parameter of interest and the nuisance
parameter are correlated, the distributions of the statistics are not chi-square mixtures.

There is no known solution for these problems with the type of confidence limits
discussed here. Bayesian limits produce correct limits (Geweke, 1995), but they are
considerably more computationally intensive. With the correction described in
Schoenberg (1997), however, confidence limits computed via the inversion of the Wald
statistic will be correct provided that no nuisance parameter within ε of a constraint
boundary is correlated with the parameter of interest by more than about .6.

31

2. FINANCIAL ANALYSIS PACKAGE

2.5.1 Confidence Limits

FANPAC computes, by default, confidence limits computed in the standard way from
t-statistics. These limits suffer from the deficiencies reported in the previous section –
they are symmetric about the estimate, which is not usually the case for constrained
parameters, and they can include undefined regions of the parameter space.

By request, FANPAC computes confidence limits by inversion of the Wald statistic.
This includes a correction for the chi-squared statistic when the limit falls within

ε =
√

(σ2
e/N)χ2

(1−α,k) of a constraint boundary. These will be correct confidence limits

provided there is no nuisance parameter within ε of a constraint boundary correlated
with the parameter of interest by more than about .6.

To get confidence limits by inversion of the Wald statistic, call the keyword command

setInferenceType WALD

2.5.2 Covariance Matrix of Parameters

FANPAC computes a covariance matrix of the parameters that is an approximate
estimate when there are constrained parameters in the model (Gallant, 1987, Wolfgang
and Hartwig, 1995). When the model includes inequality constraints, the covariance
matrix computed directly from the Hessian, the usual method for computing this
covariance matrix, is incorrect because they do not account for boundaries placed on
the distributions of the parameters by the inequality constraints.

An argument based on a Taylor-series approximation to the likelihood function (e.g.,
Amemiya, 1985, page 111) shows that

θ̂ → N (θ, A−1BA−1),

where

A = E

[
∂2L

∂θ∂θ′

]
,

B = E

[(
∂L

∂θ

)′(
∂L

∂θ

)]
.

Estimates of A and B are

Â =
1

N

N∑

i

∂2Li
∂θ∂θ′

,

B̂ =
1

N

N∑

i

(
∂Li
∂θ

)′(
∂Li
∂θ

)
.

32

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

Assuming the correct specification of the model plim(A) = plim(B),

θ̂ → N (θ, Â−1).

Without loss of generality we may consider two types of constraints: the nonlinear
equality, and the nonlinear inequality constraints (the linear constraints are included in
nonlinear, and the bounds are regarded as a type of linear inequality). Furthermore,
the inequality constraints may be treated as equality constraints with the introduction
of “slack” parameters into the model:

H(θ) ≥ 0

is changed to

H(θ) = ζ2,

where ζ is a conformable vector of slack parameters.

Further, we distinguish active from inactive inequality constraints. Active inequality
constraints have nonzero Lagrangeans, γj , and zero slack parameters, ζj, while the
reverse is true for inactive inequality constraints. Keeping this in mind, define the
diagonal matrix, Z, containing the slack parameters, ζj , for the inactive constraints,
and another diagonal matrix, Γ, containing the Lagrangean coefficients. Also, define
H⊕(θ) representing the active constraints, and H	(θ) the inactive.

The likelihood function augmented by constraints is then

LA = L+ λ1g(θ)1 + · · ·+ λIg(θ)
I + γ1h⊕1(θ) + · · ·+ γJh⊕J (θ)

+h	1(θ)i − ζ2
1 + · · ·+ h	K(θ) − ζ2

K ,

and the Hessian of the augmented likelihood is

E(
∂2LA
∂θ∂θ′

) =




Σ 0 0 Ġ′ Ḣ ′⊕ Ḣ ′	
0 2Γ 0 0 0 0
0 0 0 0 0 2Z

Ġ 0 0 0 0 0

Ḣ⊕ 0 0 0 0 0

Ḣ	 0 2Z 0 0 0



,

where the dot represents the Jacobian with respect to θ, L =
∑N
i=1 logP (Yi; θ), and

Σ = ∂2L/∂θ∂θ′ . The covariance matrix of the parameters, Lagrangeans, and slack
parameters is the Moore-Penrose inverse of this matrix.

Construct the partitioned array

B̃ ==




Ġ

Ḣ⊕
Ḣ	


 .

Let Ξ be the orthonormal basis for the null space of B̃, then the covariance matrix of
the parameters is

Ξ(Ξ′ΣΞ)−1Ξ′.

Rows of this matrix associated with active inequality constraints may not be available,
i.e., the rows and columns of Ω associated with those parameters may be all zeros.

33

2. FINANCIAL ANALYSIS PACKAGE

2.5.3 Quasi-Maximum Likelihood Covariance Matrix of Parameters

FANPAC computes a QML covariance matrix of the parameters when requested.
Define B = (∂LA/∂θ)

′(∂LA/∂θ) evaluated at the estimates. Then the covariance
matrix of the parameters is ΩBΩ.

To request the QML covariance matrix, call the keyword command

setCovParType QML

The default ML covariance matrix can be set by

setCovParType ML

2.5.4 Ill-Conditioning and Singularity

Occasionally FANPAC fails to produce the covariance matrix of the parameters because
the Hessian, that is the matrix of second derivatives of the log-likelihood with respect
to the parameters, fails to invert. The failure to invert indicates that the sampling
distribution of the parameters is collinear, generating a linear dependency, or a near
linear dependency, in the Hessian. The consequence of this is a failure of the Hessian to
invert.

There are two types of sampling distribution problems producing linear dependencies.
In the first type, the dependency exists in the population being sampled; that is, it’s
part of the data generating process. For example, two or more exogenous variables may
be measured as proportions, and they necessarily add up to a constant in every sample.
In the second type, the sampling distribution is sufficiently close to a linear dependency
that a certain percentage of the samples will contain linear dependencies. For example,
an exogenous variable may be nearly constant in the population so that in some
samples it will be sufficiently constant, making it indistinguishable from the intercept in
the equation.

In either type, the linear dependency can be described by an equality constraint in the
covariance matrix of the parameters. The difference between the types is that the
constraint is non-stochastic in the first type, whereas it is stochastic in the second type.

The estimation of the linear dependency is conducted by NLP during the iterations.
The FANPAC keyword command

constrainPDCovPar ON;

sets an NLP global (nlp constrainHess) which causes NLP to generate at each
iteration a pivoted QR factorization of the Hessian or estimated Hessian (default =
OFF). This factorization “pivots” small values on the diagonal to the end of the matrix.
If the trailing values on the diagonal are sufficiently small, the R matrix is partitioned
into that part with the diagonal values that are sufficiently large and that part where
they are small. Suppose that there are k elements that are sufficiently large, then

34

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

b = inv(R[1:k,1:k])*R[1:k,k+1:rows(R)]

describes the linear dependency between the first k columns and the last rows(R)-k
columns of R. The pivot vector of the QR factorization stipulates the relationship of
the columns of R to the columns of the Hessian.

From the b matrix and the pivoting vector, NLP constructs an equality constraint
matrix and adds it to the other constraints on the model, if any. This constraint
enhances the progress of the iterations that would otherwise have some difficulty
because of the poor condition of the Hessian. The constraint is in the form Ax = 0,
where x is the vector of parameters, zero is a conformable vector of zeros, and A is a
coefficient matrix constructed from the b matrix.

NLP imposes the equality constraint only on the iterations where it is necessary, and
removes it when it is not needed. If it is needed at convergence, the equality constraint
is applied to the calculation of the covariance matrix of parameters, i.e., to the inversion
of the Hessian. With the feature turned on, the covariance matrix of parameters,
including the standard errors, will almost always be generated. If the equality
constraints found by NLP describe a “structural” condition of the data generating
process; i.e., it holds for all samples, the covariance matrix of the parameters computed
in this manner is consistent (Gallant,1987). If the equality constraint is stochastic, i.e.,
it is the second type, the statistical properties of this estimator aren’t established.

35

2. FINANCIAL ANALYSIS PACKAGE

2.6 FANPAC Keyword Commands

Summary of Keyword Commands

clearSession clears session from memory, resets global
variables

constrainPDCovPar sets NLP global for constraining covariance
matrix of parameters to be positive definite

computeLogReturns computes log returns from price data
computePercentReturns computes percent returns from price data
estimate estimates parameters of a time series model
forecast generates a time series and conditional variance

forecast
getCV puts conditional variances or variance-covariance

matrices into global vector fan CV
getCOR puts conditional correlations into global variable

fan COR
getEstimates puts model estimates into global variable

fan Estimates
getResiduals puts unstandardized residuals into global vector
getSeriesACF puts autocorrelations into global variable fan ACF
getSeriesPACF puts partial autocorrelations into global

variable fan PACF
getSession retrieves a data analysis session
getSR puts standardized residuals into global vector
plotCOR plots conditional correlations
plotCSD plots conditional standard deviations
plotCV plots conditional variances
plotQQ generates quantile-quantile plot
plotSeries plots time series
plotSeriesACF plots autocorrelations
plotSeriesPACF plots partial autocorrelations
plotSR plots standardized residuals
session initializes a data analysis session
setAlpha sets inference alpha level
setConstraintType sets type of constraints on parameters
setCovParType sets type of covariance matrix of parameters
setCVIndEqs declares list of independent variables

to be included in conditional variance equations
setDataset sets dataset name
setIndEqs declares list of independent variables

to be included in mean equations
setInferenceType sets type of inference
setIndVars declares names of independent variables

36

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

setLagTruncation sets lags included for FIGARCH model
setLagInitialization sets lags excluded for FIGARCH model
setLjungBoxOrder sets order for Ljung-Box statistic
setOutputFile sets output file name
setRange sets range of data
setSeries declares names of time series
setVarNames sets variable names for data stored in ASCII file
showEstimates displays estimates in simple format
showResults displays results of estimations
showRuns displays runs
simulate generates simulation
testSR generates skew, kurtosis, Ljung-Box statistics

2.6.1 Initializing the Session

First, an analysis session must be established.

session ses1 ’time series analysis’;

will start a new session, and

getSession ses1;

will retrieve a previous analysis session.

In either command, ses1 is the name of the session and is required. It must be no more
than eight characters, and the analysis results will be stored in a GAUSS matrix file of
the same name with a .fmt extension. Thus the results of either of the above sessions
will be stored in a file with the name ses1.fmt .

2.6.2 Entering Data

Before any analysis can be done, the time series must be brought into memory. If the
time series resides in a GAUSS dataset, enter

setDataset stocks;

setSeries intel;

FANPAC looks for a GAUSS dataset called stocks.dat, and then looks into that dataset
for a variable with name intel. If it exists, the time series is inserted into the FANPAC
global fan Series.

If the time series is stored in a “flat” ASCII file, it is first necessary to declare the
column names. This can be done using the FANPAC keyword command,
setVarNames:

setVarNames date intel intelvol;

setDataset intel.asc;

setSeries intel;

The setVarNames command puts the variable labels into the FANPAC global,
fan VarNames.

37

2. FINANCIAL ANALYSIS PACKAGE

2.6.3 The Date Variable

FANPAC assumes that the first observation is the oldest and the last observation is the
newest. It also assumes that the date variable, if available, is stored in the yyyymmdd
format. One or the other, or both, of the conditions may not be met in an ASCII data
file.

Many ASCII files containing stock data will have the date stored as mm/dd/yy or
mm/dd/yyyy. FANPAC will convert the dates to the standard format and the
observations will be sorted. For example:

library fanpac,pgraph;

session nissan ’Analysis of Nissan daily log-returns’;

setVarNames date nsany;

setDataset nsany.asc;

setSeries nsany;

estimate run1 garch(1,3);

showResults;

nsany.asc is an ASCII file, and the command setDataset causes FANPAC to create a
GAUSS dataset of the data with the same name as the name of the file in the keyword
command argument preceding the extension. Thus a GAUSS dataset with file name
nsany.dat is created with two variables in it with variable names date and nsany. If you
wish the GAUSS data file to have a different name, include an argument in the
keyword command with the desired name of the GAUSS dataset. For example:

setDataset nsany.asc newnsany;

It is important that the new GAUSS dataset file name come after the name of the
ASCII data file.

2.6.4 Scaling Data

A keyword command is available for computing log returns from price data. Thus if the
time series in the dataset is price data, the log returns can be computed by entering

computeLogReturns 251;

The argument is a scale factor. This function computes

LRt = κ log(
Pt
Pt−1

)

where Pi is price at time i, and κ is the scale factor. For best numerical results, data
should be scaled to the year time scale. Thus for monthly data, κ = 12, and for daily
data, κ = 251.

38

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

An additional keyword command is available for computing log percent returns from
price data by calling computePercentReturns. This function computes

PCTRi = κ
Pt − Pt−1

Pt−1

where Pi is price at time i, and κ is the scale factor. For interpretation as a percent, the
scale factor should be set to 100.

computePercentReturns 100;

2.6.5 Independent Variables

To add independent variables to the session, enter their names using

setIndVars intelvol;

This command assumes that the independent variables are stored in the same location
as the time series. The independent variables are stored in a FANPAC global,
fan IndVars.

The effect of the sequence of commands ending in setSeries is to store the time series in
a global variable, fan Series; the independent variables, if any, in fan IndVars;
and to store the names of the session, dataset time series and independent variables in
a packed matrix on the disk.

2.6.6 Selecting Observations

A subset of the time series can be analyzed by specifying row numbers or, if a date
variable exists in the dataset, by date. The date variable must be in the format,
yyyymmdd. For the Intel dataset described above, the following are equivalent subsets:

setVarNames date intel intelvol;

setDataset intel.asc;

setSeries intel 19960530 19961231;

or

setVarNames date intel intelvol;

setDataset intel.asc;

setSeries intel 54 203;

The beginning and end of the time series may be specified by start and end:

setVarNames date intel intelvol;

setDataset intel.asc;

setSeries intel start 19961231;

or

setVarNames date intel intelvol;

setDataset intel.asc;

setSeries intel 19960530 end;

39

2. FINANCIAL ANALYSIS PACKAGE

2.6.7 Simulation

A keyword command is available for simulating data from the various models in
FANPAC. First, a string array is constructed containing the information required for
the simulation, and the name of this array is passed to the keyword command. For
example:

library fanpac;

string ss = {

"Model garch(1,2)",

"NumObs 300",

"DataSetName example",

"TimeSeriesName Y",

"Omega .2",

"GarchParameter .5",

"ArchParameter .4 -.1",

"Constant .5",

"Seed 7351143"

};

simulate ss;

This produces a simulation of a GARCH(1,2) model with 300 observations and puts it
into a GAUSS dataset named example.

The following simulation parameters may be included in the string array:

Model model name (required)

NumObs number of observations (required)

DataSetName name of GAUSS dataset into which simulated data will be put
(required)

TimeSeriesName variable label of time series

Omega GARCH process constant, required for GARCH models

GarchCoefficients GARCH coefficients, required for GARCH models

ArchCoefficients ARCH coefficients, required for GARCH models

ARCoefficients AR coefficients, required for ARIMA models

MACoefficients MA coefficients, required for ARIMA models

40

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

RegCoefficients Regression coefficients, required for OLS models

DFCoefficient degrees of freedom parameter for t-density. If set, t-density will be used;
otherwise Normal density

Constant constant (required)

Seed seed for random number generator (optional)

Note: Only the first two characters of the field identifier are actually looked at.

2.6.8 Setting Type of Constraints

By Default constraints described in Nelson and Cao (1992) are imposed on
GARCH(1,q) and GARCH(2,q) models to ensure stationarity and nonnegativity of
conditional variances (as described in Section2.3.2). These are the least restrictive
constraints for these models.

Most GARCH estimation reported in the economics literature employ more restrictive
constraints for ensuring stationarity. They are invoked primarily because the
optimization software does not provide for nonlinear constraints on parameters. In this
case, the GARCH parameters are simultaneously constrained to be positive and to sum
to less than 1. For several reasons, including comparisons with published results, you
may want to impose either no constraints or the commonly employed more highly
restrictive constraints. A keyword function is provided in FANPAC for selecting these
types of constraints:

setConstraintType standard

selects the Nelson and Cao (1992) constraints (described in Section/ref:consts). These
are the least restrictive constraints that ensure stationarity and nonnegativity of the
conditional variances, and are imposed by default.

setConstraintType unconstrained

will produce GARCH estimates without constraints to ensure stationarity.
Nonnegativity of conditional variances is maintained by bounds constraints placed
directly on the conditional variances themselves.

setConstraintType bounds

imposes the more highly restrictive linear constraints on the parameters. They
constrain the coefficients in the conditional variance equation simultaneously to be
greater than zero and to sum to less than one.

41

2. FINANCIAL ANALYSIS PACKAGE

2.6.9 The Analysis

The estimate command is used for all analysis. Once the time series itself has been
stored in the global, fan Series, it can be analyzed. The following performs a
GARCH estimation:

estimate run1 garch;

estimate run2 garch(2,2);

estimate run3 egarch;

estimate run4 arima(2,1,1);

The first argument, the run name, is necessary. All results of this estimation will be
stored in the session matrix under that name.

With the exception of OLS, these estimations are iterative using NLP (Section 2.8). In
some cases, therefore, the iterations may be time consuming. NLP permits you to
monitor the iterations, as well as modify descent methods, line search methods, etc.,
“on-the-fly” using keystrokes. To cause NLP to print iteration information to the
screen, press “o”. To get a list of options that can be modifed, press “h”.

The following models may be estimated:

42

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

ols normal linear regression model
tols t distribution linear regression model
arima(p, d, q) normal arima model
tarima(p, d, q) t distribution arima model
arch(q) normal arch model
tarch(q) t distribution arch model
archm(q) normal arch-in-mean model
tarchm(q) t distribution arch-in-mean model
archv(q) normal arch-in-cv model
tarchv(q) t distribution arch-in-cv model
garch(p, q) normal garch model
tgarch(p, q) t distribution garch model
garchm(p, q) normal garch-in-mean model
tgarchm(p, q) t distribution garch-in-mean model
garchv(p, q) normal garch-in-cv model
tgarchv(p, q) t distribution garch-in-cv model
igarch(p, q) normal integrated garch model
itgarch(p, q) t distribution integrated garch model
egarch(p, q) exponential garch model
figarch(p, q) normal fractionally integrated garch model
fitgarch(p, q) t distribution fractionally integrated garch

model
figarch(p, q) normal fractionally integrated garch model
fitgarch(p, q) t distribution fractionally integrated garch

model
dvarch(p, q) normal DVEC multivariate ARCH model
cdvarch(p, q) constant correlation normal DVEC

multivariate ARCH model
bkarch(p, q) normal BEKK multivariate ARCH model
dvtarch(p, q) t distribution DVEC multivariate ARCH model
cdvtarch(p, q) constant correlation t distribution DVEC

multivariate ARCH model
bktarch(p, q) t distribution BEKK multivariate ARCH model
dvarchm(p, q) normal DVEC multivariate ARCH-in-mean model

43

2. FINANCIAL ANALYSIS PACKAGE

cdvarchm(p, q) constant correlation normal DVEC
multivariate ARCH-in-mean model

dvtarchm(p, q) t distribution DVEC multivariate ARCH-in-mean
model

cdvtarchm(p, q) constant correlation t distribution DVEC
multivariate ARCH-in-mean model

dvarchv(p, q) normal DVEC multivariate ARCH-in-cv model
cdvarchv(p, q) constant correlation normal DVEC

multivariate ARCH-in-cv model
dvtarchv(p, q) t distribution DVEC multivariate ARCH-in-cv

model
cdvtarchv(p, q) constant correlation t distribution DVEC

multivariate ARCH-in-cv model
dvgarch(p, q) normal DVEC multivariate GARCH model
cdvgarch(p, q) constant correlation normal DVEC

multivariate GARCH model
dvtgarch(p, q) t distribution DVEC multivariate GARCH model
cdvtgarch(p, q) constant correlation t distribution DVEC

multivariate GARCH model
bkgarch(p, q) normal BEKK multivariate GARCH model
bktgarch(p, q) t distribution BEKK multivariate GARCH model
dvgarchm(p, q) normal DVEC multivariate GARCH-in-mean model
cdvgarchm(p, q) constant correlation normal DVEC

multivariate GARCH-in-mean model
dvtgarchm(p, q) t distribution DVEC multivariate GARCH-in-mean

model
cdvtgarchm(p, q) constant correlation t distribution DVEC

multivariate GARCH-in-mean model
dvgarchv(p, q) normal DVEC multivariate GARCH-in-cv model
cdvgarchv(p, q) constant correlation normal DVEC

multivariate GARCH-in-cv model

dvtgarchv(p, q) t distribution DVEC multivariate GARCH-in-cv
model

cdvtgarchv(p, q) constant correlation t distribution DVEC
multivariate GARCH-in-cv model

If the models are declared without numbers in parentheses, then p, q, and d are
assumed to be one.

2.6.10 Results

After the estimations have finished, results are printed using the command

showResults;

44

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

Results for individual runs can be printed by listing them in the command

showResults run1 run3;

2.6.11 Standardized and Unstandardized Residuals

It may be useful to generate standardized residuals and analyze their moments or plot
their cumulative distribution against their predicted cumulative distributions. Thus

plotSR;

plotQQ;

produces a plot of the standardized results (for all model estimations by default, or
specified ones if listed in the command), and plots the observed against the theoretical
cumulative distributions. Both of these commands put the requested standardized
residuals into the global fan SR. If you wish only to store the standardized residuals
in the global, use

getSR;

or to get a particular standardized residual

getSR run2;

Unstandardized residuals are stored in fan Residuals with the following command

getResiduals run2;

A request can also be made to test the standardized residuals. The keyword command

testSR;

will generate an analysis of the time series and residuals. Skew and kurtosis statistics
are computed and a heteroskedastic-consistent Ljung-Box statistic (Gouriéroux, 1997)
is computed that tests the time series and residuals for autocorrelation. For example

===

Session: example1

wilshire example

Time Series

==

Series: cwret

45

2. FINANCIAL ANALYSIS PACKAGE

--

skew -266.1720 pr = 0.000

kurtosis 8558.5534 pr = 0.000

heteroskedastic-consistent

Ljung/Box 39.0881 pr = 0.124

--

Residuals

==

run1: GARCH(2,1)

--

skew -3.9581 pr = 0.047

kurtosis 8.3773 pr = 0.004

heteroskedastic-consistent

Ljung/Box 17.2809 pr = 0.969

==

run2: TGARCH(2,1)

--

skew -4.3003 pr = 0.038

kurtosis 10.4523 pr = 0.001

heteroskedastic-consistent

Ljung/Box 18.9296 pr = 0.941

--

2.6.12 Conditional Variances and Standard Deviations

For the GARCH models, the conditional variances are of particular interest. To plot
these, enter

plotCV;

This also stores them in fan CV. To store them in a global without plotting, use

getCV;

In some contexts the conditional standard deviations, that is, the square roots of the
conditional variances, are more useful. To generate a plot, enter

46

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

plotCSD;

If percentage scaling has been used for the time series, you may want to annualize the
data by scaling. This can be done by adding a scale factor in the call to plotCSD. For
example, if the data are monthly, enter a value of 12 for the scale factor:

plotCSD 12;

2.6.13 Example

The following example analyzes daily data on Intel common stock stored in an ASCII
file. The raw price data is plotted, then it is transformed to log returns. Next, several
models are fitted to the transformed data, the results are printed, and the conditional
variances are plotted.

library fanpac,pgraph;

session example1 ’wilshire example’;

setDataset wilshire;

setSeries cwret; /* capitalization weighted returns */

setInferenceType InvWald;

estimate run1 arch(2);

estimate run2 garch(1,2);

showResults;

testSR;

plotCV;

===

Session: example1

wilshire example

FANPAC Version 1.0.0 Data Set: wilshire 3/10/98 11:04 am

===

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Run: run1

---------------------------------------------------------------------

---------------------------------------------------------------------

return code = 0

47



2. FINANCIAL ANALYSIS PACKAGE

normal convergence

Model: ARCH(2)

Number of Observations : 320

Observations in likelihood : 318

Degrees of Freedom : 314

AIC 1859.43

BIC 1874.48

LRS 1851.43

roots

_______________

-4.5302737

3.7149351

Abs(roots)

_______________

4.5302737

3.7149351

unconditional variance

----------------------------

18.963071

Maximum likelihood covariance matrix of parameters

0.95 confidence limits computed from inversion of Wald statistic

Series: cwret

Parameters Estimates Standard Lower Upper

Errors Limits Limits

------------------------------------------------------------

omega 17.836 2.003 13.896 21.618

Arch1 0.048 0.068 0.000 0.171

Arch2 0.059 0.113 0.000 0.271

Const 1.163 0.275 0.622 1.700

Correlation Matrix of Parameters

48



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

omega 1.000 0.056 -0.528 0.130

Arch1 0.056 1.000 -0.628 0.405

Arch2 -0.528 -0.628 1.000 -0.389

Const 0.130 0.405 -0.389 1.000

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Run: run2

return code = 0

normal convergence

Model: GARCH(1,2)

Number of Observations : 320

Observations in likelihood : 318

Degrees of Freedom : 313

AIC 1852.20

BIC 1871.01

LRS 1842.20

roots

-8.3913093

1.0304374

1.1890779

Abs(roots)

8.3913093

1.0304374

1.1890779

unconditional variance

1.0524876

49

2. FINANCIAL ANALYSIS PACKAGE

Maximum likelihood covariance matrix of parameters

0.95 confidence limits computed from inversion of Wald statistic

Series: cwret

Parameters Estimates Standard Lower Upper

Errors Limits Limits

--

omega 0.931 0.692 0.009 2.292

Garch1 0.841 0.048 0.747 0.862

Arch1 0.010 0.030 0.000 0.043

Arch2 0.116 0.063 0.012 -0.009

Const 0.993 0.230 0.541 1.445

Correlation Matrix of Parameters

omega 1.000 -0.587 0.131 -0.214 0.079

Garch1 -0.587 1.000 0.005 -0.534 0.142

Arch1 0.131 0.005 1.000 -0.586 0.180

Arch2 -0.214 -0.534 -0.586 1.000 -0.274

Const 0.079 0.142 0.180 -0.274 1.000

==

Session: example1

--

wilshire example

--

Time Series

==

Series: cwret

--

skew -266.1720 pr = 0.000

kurtosis 8558.5534 pr = 0.000

heteroskedastic-consistent

Ljung/Box 39.0881 pr = 0.124

--

o

Residuals

50

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

==

run1: ARCH

--

skew -3.4061 pr = 0.065

kurtosis 11.0414 pr = 0.001

heteroskedastic-consistent

Ljung/Box 20.9290 pr = 0.890

==

run2: GARCH(1,2)

--

skew -4.2150 pr = 0.040

kurtosis 8.8373 pr = 0.003

heteroskedastic-consistent

Ljung/Box 17.5968 pr = 0.965

--

2.6.14 Altering NLP global variables

When an estimation is invoked (i.e., when estimate is called) FANPAC calls nlpset
which sets the NLP globals to their default values. This is required so that FANPAC
will know what the NLP globals are set to. However, this prevents the user from setting
certain NLP globals like nlp MaxIters to non-default values. To allow re-setting NLP
globals, first, add a proc to the command file that has no input or output arguments,
and include in the proc statements re-defining the NLP globals. For example,

proc(0)=globs;

_nlp_MaxIters = 100;

_nlp_IterInfo = 10;

endp;

Then in the command file prior to the invokation of estimate assign a pointer to that
function to the FANPAC global, fan NLPglobals. For example,

_fan_NLPglobals = &globs;

The procedure will be called by FANPAC before it calls NLP for the optimization of
the log-likelihood objective function, and this will re-set these globals to new values for
the optimization.

51

2. FINANCIAL ANALYSIS PACKAGE

Figure 2.1: Plot of conditional variances for ARCH and GARCH models on a 27-year
monthly series of the capitalization-weighted Wilshire 5000 index

52

FANPAC

2. FINANCIAL ANALYSIS PACKAGE

2.6.15 Multivariate Models

Most keyword commands behave in the same way for multivariate models as for
univariate. The specification of the time series being analyzed, for example, merely
requires adding another name to the keyword command

setSeries AMZN YHOO;

The specification of the independent variables is slightly different. FANPAC allows
specifying different sets of independent variables for each equation. A simple list of
independent variables, as is done for the unvariate models, causes all independent
variables to be included in all equations:

setIndVars AMZNvol YHOOvol

To specify a different list of independent variables for each equation, add the name of
the dependent variable to the list, and call setIndVars for each dependent variable as
needed. Any equation for which setIndVars is not called will contain all the
independent variables.

setIndVars AMZN AMZNvol

setIndVars YHOO YHOOvol;

2.6.16 Example

library fanpac,pgraph;

session mult ’May 15, 1997 to November 9, 1998’;

setDataSet stocks;

setSeries AMZN YHOO;

computeLogReturns 251;

setIndVars AMZNvol YHOOvol;

setCVIndEqs AMZN AMZNvol;

setCVIndEqs YHOO YHOOvol;

setIndEqs none;

constrainPDCovPar on;

estimate run1 dvtgarchv(2,1);

showResults;

forecast 5;

plotCV;

plotCOR;

53

2. FINANCIAL ANALYSIS PACKAGE

===

Session: mult

May 15, 1997 to November 9, 1998

FANPAC Version 1.0.0 Data Set: stocks 11/13/1998 16:05:54

===

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Run: run1

---------------------------------------------------------------------

---------------------------------------------------------------------

return code = 0

normal convergence

Model: DVTGARCHV(2,1)

Number of Observations : 375

Observations in likelihood : 373

Degrees of Freedom : 354

AIC 3967.68

BIC 4042.19

LRS 3929.68

Maximum likelihood covariance matrix of parameters

0.95 confidence limits computed from standard errors

Series 1: AMZN

Series 2: YHOO

Parameters Estimates Standard Lower Upper

Errors Limits Limits

------------------------------------------------------------

OM11 2.508 0.095 2.321 2.695

OM12 0.143 0.092 -0.038 0.325

OM22 1.877 0.093 1.694 2.060

G111 1.029 0.078 0.876 1.183

G112 0.141 0.063 0.018 0.265

G122 0.907 0.044 0.820 0.993

G211 -0.196 0.061 -0.317 -0.075

54



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

G212 0.712 0.062 0.590 0.834

G222 0.015 0.035 -0.055 0.084

A111 0.109 0.025 0.059 0.159

A112 0.065 0.023 0.020 0.110

A122 0.051 0.023 0.005 0.097

B01 0.369 0.084 0.204 0.534

B02 0.506 0.082 0.344 0.668

AMZNcv11 -0.019 0.104 -0.224 0.186

AMZNcv21 0.123 0.080 -0.034 0.280

YHOOcv21 -0.003 0.057 -0.114 0.108

YHOOcv22 -0.091 0.039 -0.167 -0.014

nu 5.962 0.093 5.778 6.145

=======================================================

FORECAST

-------------------------------------------------------

-------------------------------------------------------

run1: DVTGARCHV(2,1)

-------------------------------------------------------

time series

forecast

0.36907 0.50618

0.36907 0.50618

0.36907 0.50618

0.36907 0.50618

0.36907 0.50618

-------------------------------------------------------

------------------------------

forecast of

conditional variance

26.47835 32.28485

33.24599 36.93126

40.16543 41.47222

46.71268 45.88915

52.80663 50.18575

------------------------------

55



2. FINANCIAL ANALYSIS PACKAGE

Figure 2.2: Plot of conditional variances for AMZN and YHOO using a Diagonal Vec
multivariate GARCH model with t-distribution

56



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

Figure 2.3: Plot of conditional correlations of AMZN and YHOO

57



2. FINANCIAL ANALYSIS PACKAGE

2.7 FANPAC Procedures

The FANPAC procedures used by the keyword commands can be called directly. The
maximum likelihood procedures for each of the FANPAC models can be put into
command files and estimates generated using the NLP optimization procedures.

For example, the following is a command file for estimating a GARCH model. It
estimates the model in two ways: first, using the Nelson and Cao constraints; and
second, using standard constraints. The results follow the command file.

library fanpac;

fanset; /* resets globals to default values */

/* when the command file is re-run */

_fan_p = 1; /* garch(1,3) model */

_fan_q = 2;

_fan_series = loadd("example");

nobs = rows(_fan_Series);

start = { .2, /* omega */

.3, /* garch_1 */

.2, /* arch_1 */

.1, /* arch_2 */

1 }; /* constant */

_nlp_GradProc = &garch_n_grd; /* gradient proc */

/*

** Nelson and Cao constraints

*/

_nlp_IneqProc = &garch_ineq; /* inequality constraints */

_nlp_Bounds = { .001 1e250, /* omega > 0 */

0 1, /* garch_1 >= 0 */

-1e250 1e250,

-1e250 1e250,

-1e250 1e250 };

{ coefs,fct,grad,rcode } = nlp(&garch_n,start);

58



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

print;

print;

print " Nelson & Cao constraints";

print;

if rcode <= 2;

/* covariance matrix of parameters */

h = NLPCovPar(coefs,&garch_n,&garch_n_grd,nobs,1);

else;

h = error(0);

endif;

format /rd 12,4;

if not scalmiss(h);

alpha = .05; /* 95% cl’s */

dv = cdftci(0.5*alpha,nobs-rows(coefs))*sqrt(diag(h));

print "confidence limits from standard errors";

print;

print " Coefficients lower cl upper cl";

print coefs~(coefs-dv)~(coefs+dv);

print;

/* confidence limits by inversion of Wald statistic */

sel = 0; /* selection vector, if zero, all cl’s computed */

cl = NLPclimits(coefs,h,nobs,alpha,sel);

endif;

format /rd 12,4;

if not scalmiss(cl) and not scalmiss(h);

print "confidence limits from inversion of Wald statistic";

print;

print " Coefficients lower cl upper cl";

print coefs~cl;

else;

print " Coefficients";

print coefs;

endif;

/*

** standard constraints

59



2. FINANCIAL ANALYSIS PACKAGE

*/

_nlp_IneqProc = {.};

_nlp_C = { 0 -1 -1 -1 0 }; /* garch + arch < 1 */

_nlp_D = { -1 };

_nlp_Bounds = { .001 1, /* omega > 0 */

0 1, /* garch_1 >= 0 */

0 1, /* arch_1 >= 0 */

0 1, /* arch_2 >= 0 */

-1e250 1e250 };

{ coefs,fct,grad,rcode } = nlp(&garch_n,start);

print;

print;

print " standard constraints";

if rcode <= 2;

/* covariance matrix of parameters */

h = NLPCovPar(coefs,&garch_n,&garch_n_grd,nobs,1);

else;

h = error(0);

endif;

format /rd 12,4;

if not scalmiss(h);

alpha = .05; /* 95% cl’s */

dv = cdftci(0.5*alpha,nobs-rows(coefs))*sqrt(diag(h));

print;

print "confidence limits from standard errors";

print;

print " Coefficients lower cl upper cl";

print coefs~(coefs-dv)~(coefs+dv);

print;

/* confidence limits by inversion of Wald statistic */

sel = 0; /* selection vector, if zero, all cl’s computed */

cl = NLPClimits(coefs,h,nobs,alpha,sel);

endif;

60



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

format /rd 12,4;

if not scalmiss(cl) and not scalmiss(h);

print;

print "confidence limits from inversion of Wald statistic";

print " Coefficients lower cl upper cl";

print coefs~cl;

else;

print " Coefficients";

print coefs;

endif;

Nelson & Cao constraints

confidence limits from standard errors

Coefficients lower cl upper cl

0.2437 0.0329 0.4546

0.3224 -0.1957 0.8405

0.5338 0.2904 0.7771

-0.0714 -0.4648 0.3220

0.4806 0.3949 0.5664

confidence limits from inversion of Wald statistic

Coefficients lower cl upper cl

0.2437 0.0670 0.4291

0.3224 0.1337 0.3017

0.5338 0.3297 0.7378

-0.0714 -0.1721 0.0867

0.4806 0.3949 0.5664

standard constraints

confidence limits from standard errors

61



2. FINANCIAL ANALYSIS PACKAGE

Coefficients lower cl upper cl

0.2730 0.1358 0.4101

0.2390 0.0224 0.4557

0.5214 0.2866 0.7561

0.0000 . .

0.4809 0.3953 0.5666

confidence limits from inversion of Wald statistic

Coefficients lower cl upper cl

0.2730 0.1580 0.4101

0.2390 0.0574 0.4207

0.5214 0.2866 0.7182

0.0000 . .

0.4809 0.3953 0.5666

2.7.1 Bibliography

Amemiya, Takeshi, 1985. Advanced Econometrics. Cambridge, MA: Harvard University
Press.

Baillie, Richard T., Bollerslev, Tim, and Mikkelsen, Hans Ole Æ., 1996. “Fractionally
integrated generalized autoregressive conditional heteroskedasticity”,
Journal of Econometrics, 74:3-28.

Gallant, A. R., 1987. Nonlinear Statistical Models. New York: Wiley.

Geweke, John, 1995. “Posterior simulators in econometrics,” Working Paper 555,
Research Department, Federal Reserve Bank of Minneapolis.

Gouriéroux, Christian, 1997. ARCH Models and Financial Applications. New York:
Springer-Verlag.

Gouriéroux, Christian, Holly, Alberto, and Monfort, Alain, 1982. “Likelihood ratio test,
Wald Test, and Kuhn-Tucker test in linear models with inequality
constraints on the regression parameters,” Econometrica, 50:63-80.

Hartmann, Wolfgang M. and Hartwig, Robert E., 1995. “Computing the
Penrose-Moore inverse for the covariance matrix in constrained nonlinear
estimation,” SAS Institute, Inc., Cary, NC.

Nelson, Daniel B. and Cao, Charles Q., 1992. “Inequality constraints in the univariate
GARCH model,” Journal of Business and Economic Statistics,
10:229-235.

62



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

O’Leary, Dianne P. and Rust, Bert W., 1986. “Confidence intervals for
inequality-constrained least squares problems, with applications to
ill-posed problems,” American Journal for Scientific and Statistical
Computing, 7(2):473-489.

Schoenberg, Ronald J., 1997. “Constrained maximum likelihood,” Computational
Economics, 10:251-266.

Self, Steven G. and Liang, Kung-Yee, 1987. “Asymptotic properties of maximum
likelihood estimators and likelihood ratio tests under nonstandard
conditions,” Journal of the American Statistical Association, 82:605-610.

White, H., 1981. “Consequences and detection of misspecified nonlinear regression
models.” Journal of the American Statistical Association, 76:419-433.

White, H., 1982. “Maximum likelihood estimation of misspecified models,”
Econometrica, 50:1-25.

Wolak, Frank, 1991. “The local nature of hypothesis tests involving inequality
constraints in nonlinear models,” Econometrica, 59:981-995.

2.8 NLP

NLP solves the standard nonlinear programming problem

min F (θ)

subject to the linear constraints,

Aθ = B

Cθ ≥ D

the nonlinear constraints,

G(θ) = 0

H(θ) ≥ 0

and bounds,

θl ≤ θ ≤ θu

63



2. FINANCIAL ANALYSIS PACKAGE

G(θ) and H(θ) are functions provided by the user and must be differentiable at least
once with respect to θ.

F (θ) must have first and second derivatives with respect to the parameters, and the
matrix of second derivatives must be positive semi-definite.

NLP uses the Sequential Quadratic Programming method. In this method, the
parameters are updated in a series of iterations beginning with starting values that you
provide. Let θt be the current parameter values. Then the succeeding values are

θt+1 = θt + ρδ

where δ is a k × 1 direction vector, and ρ a scalar step length.

direction

Define

Σ(θ) =
∂2L

∂θ∂θ′

Ψ(θ) =
∂L

∂θ

and the Jacobians

Ġ(θ) =
∂G(θ)

∂θ

Ḣ(θ) =
∂H(θ)

∂θ

For the purposes of this exposition, and without loss of generality, we may assume that
the linear constraints and bounds have been incorporated into G and H.

The direction δ is the solution to the quadratic program

minimize
1

2
δ′Σ(θt)δ + Ψ(θt)δ

subject to Ġ(θt)δ + G(θt) = 0

Ḣ(θt)δ +H(θt) ≥ 0

This solution requires that Σ be positive semi-definite.

In practice, linear constraints are specified separately from the G and H because their
Jacobians are known and easy to compute. And, the bounds are more easily handled
separately from the linear inequality constraints.

64



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

line search

Define the merit function

m(θ) = F + max | κ |
∑

j

| gj(θ) | −max | λ |
∑

`

min(0, h`(θ))

where gj is the j-th row of G, h` is the `-th row of H, κ is the vector of Lagrangean
coefficients of the equality constraints, and λ the Lagrangean coefficients of the
inequality constraints.

The line search finds a value of ρ that minimizes or decreases m(θt + ρδ).

2.8.1 Derivatives

The SQP method requires the calculation of a Hessian, Σ, and various gradients and
Jacobians, Ψ, Ġ(θ), and Ḣ(θ). NLP computes these numerically if procedures to
compute them are not supplied.

If you provide a procedure for computing Ψ, the first derivative of L, NLP uses it in
computing Σ, the second derivative of L; i.e., Σ is computed as the Jacobian of the
gradient. This improves the computational precision of the Hessian by about four
places. The accuracy of the gradient is improved, and thus the iterations converge in
fewer iterations. Moreover, the convergence takes less time because of a decrease in
function calls – the numerical gradient requires k function calls, while an analytical
gradient reduces that to one.

2.8.2 The Secant Algorithms

The Hessian may be very expensive to compute at every iteration, and poor start
values may produce an ill-conditioned Hessian. For these reasons alternative algorithms
are provided in NLP for updating the Hessian rather than computing it directly at each
iteration. These algorithms, as well as step length methods, may be modified during
the execution of NLP.

Beginning with an initial estimate of the Hessian, or a conformable identity matrix, an
update is calculated. The update at each iteration adds more “information” to the
estimate of the Hessian, improving its ability to project the direction of the descent.
Thus, after several iterations, the secant algorithm should do nearly as well as Newton
iteration with much less computation.

There are two basic types of secant methods: the BFGS (Broyden, Fletcher, Goldfarb,
and Shanno), and the DFP (Davidon, Fletcher, and Powell). They are both rank two
updates; that is, they are analogous to adding two rows of new data to a previously
computed moment matrix. The Cholesky factorization of the estimate of the Hessian is
updated using the functions CHOLUP and CHOLDN.

65



2. FINANCIAL ANALYSIS PACKAGE

Secant Methods (BFGS and DFP)

BFGS is the method of Broyden, Fletcher, Goldfarb, and Shanno; and DFP is the
method of Davidon, Fletcher, and Powell. These methods are complementary
(Luenberger, 1984, page 268). BFGS and DFP are like the NEWTON method in that
they use both first and second derivative information. However, in DFP and BFGS the
Hessian is approximated, reducing considerably the computational requirements.
Because they do not explicitly calculate the second derivatives, they are sometimes
called quasi-Newton methods. While it takes more iterations than the NEWTON
method, the use of an approximation produces a gain because it can be expected to
converge in less overall time (unless analytical second derivatives are available, in which
case it might be a toss-up).

The secant methods are commonly implemented as updates of the inverse of the
Hessian. This is not the best method numerically for the BFGS algorithm (Gill and
Murray, 1972). This version of NLP, following Gill and Murray (1972), updates the
Cholesky factorization of the Hessian instead, using the functions CHOLUP and
CHOLDN for BFGS. The new direction is then computed using CHOLSOL, a Cholesky
solve, as applied to the updated Cholesky factorization of the Hessian and the gradient.

2.8.3 Line Search Methods

Given a direction vector d, the updated estimate of the parameters is computed

θt+1 = θt + ρδ

where ρ is a constant, usually called the step length, that increases the descent of the
function given the direction. NLP includes a variety of methods for computing ρ. The
value of the function to be minimized as a function of ρ is

m(θt + ρδ)

Given θ and d, this is a function of a single variable ρ. Line search methods attempt to
find a value for ρ that decreases m. STEPBT is a polynomial fitting method; BRENT
and HALF are iterative search methods. A fourth method, called ONE, forces a step
length of 1. The default line search method is STEPBT. If this, or any selected
method, fails, then BRENT is tried. If BRENT fails, then HALF is tried.

STEPBT

STEPBT is an implementation of a similarly named algorithm described in Dennis and
Schnabel (1983). It first attempts to fit a quadratic function to m(θt + ρδ) and
computes an ρ that minimizes the quadratic. If that fails, it attempts to fit a cubic
function. The cubic function more accurately portrays the F , which is not likely to be
very quadratic but is, however, more costly to compute. STEPBT is the default line
search method because it generally produces the best results for the least cost in
computational resources.

66



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

BRENT

This method is a variation on the golden section method due to Brent (1972). In this
method, the function is evaluated at a sequence of test values for ρ. These test values
are determined by extrapolation and interpolation using the constant
(
√

5− 1)/2 = .6180.... This constant is the inverse of the so-called “golden ratio”
((
√

5 + 1)/2 = 1.6180... and is why the method is called a golden section method. This
method is generally more efficient than STEPBT, but requires significantly more
function evaluations.

HALF

This method first computes m(x+ d), i.e., sets ρ = 1. If m(x+ d) < m(x), then the
step length is set to 1. If not, then it tries m(x+ .5d). The attempted step length is
divided by one-half each time the function fails to decrease, and exits with the current
value when it does decrease. This method usually requires the fewest function
evaluations (it often only requires one), but it is the least efficient in that it is not very
likely to find the step length that decreases m the most.

2.8.4 Active and Inactive Parameters

The NLP global nlp Active may be used to fix parameters to their start values. This
allows estimation of different models without having to modify the function procedure.
nlp Active must be set to a vector of the same length as the vector of start values.

Elements of nlp Active set to zero will be fixed to their starting values, while
nonzero elements will be estimated.

2.9 Managing Optimization

The critical elements in optimization are scaling, starting point, and the condition of
the model. When the starting point is reasonably close to the solution and the model
reasonably scaled, the iterations converge quickly and without difficulty.

For best results therefore, you want to prepare the problem so that the model is
well-specified and properly scaled, and that a good starting point is available.

The tradeoff among algorithms and step length methods is between speed and demands
on the starting point, and condition of the model. The less demanding methods are
generally time consuming and computationally intensive, whereas the quicker methods
(either in terms of time or number of iterations to convergence) are more sensitive to
conditioning and quality of starting point.

67



2. FINANCIAL ANALYSIS PACKAGE

2.9.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be roughly
equal. If some diagonal elements contain numbers that are very large and/or very small
with respect to the others, NLP has difficulty converging. How to scale the diagonal
elements of the Hessian may not be obvious, but it may suffice to ensure that the
constants (or “data”) used in the model are about the same magnitude.

2.9.2 Condition

The specification of the model can be measured by the condition of the Hessian. The
solution of the problem is found by searching for parameter values for which the
gradient is zero. If, however, the Jacobian of the gradient (i.e., the Hessian) is very
small for a particular parameter, then NLP has difficulty determining the optimal
values since a large region of the function appears virtually flat to NLP. When the
Hessian has very small elements, the inverse of the Hessian has very large elements and
the search direction gets buried in the large numbers.

Poor condition can be caused by bad scaling. It can also be caused by a poor
specification of the model or by bad data. Bad models and bad data are two sides of
the same coin. If the problem is highly nonlinear, it is important that data be available
to describe the features of the curve described by each of the parameters. For example,
one of the parameters of the Weibull function describes the shape of the curve as it
approaches the upper asymptote. If data are not available on that portion of the curve,
then that parameter is poorly estimated. The gradient of the function with respect to
that parameter is very flat, elements of the Hessian associated with that parameter are
very small, and the inverse of the Hessian contains very large numbers. In this case, it
is necessary to respecify the model in a way that excludes that parameter.

2.9.3 Singular Hessian

Alternatively, NLP can be requested to automatically estimate the linear dependency
in the Hessian. The estimation of the linear dependency is conducted by NLP during
the iterations. When the NLP Global nlp constrainHess is set to a nonzero value, a
pivoted QR factorization of the Hessian or estimated Hessian is generated at each
iteration. This factorization “pivots” small values on the diagonal to the end of the
matrix. If the trailing values on the diagonal are sufficiently small, the R matrix is
partitioned into that part with the diagonal values that are sufficiently large and that
part where they are small. Suppose there are k elements that are sufficiently large, then

b = inv(R[1:k,1:k])*R[1:k,k+1:rows(R)]

68



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

describes the linear dependency between the first k columns and the last rows(R)-k
columns of R. The pivot vector of the QR factorization stipulates the relationship of
the columns of R to the columns of the Hessian.

From the b matrix and the pivoting vector, NLP constructs an equality constraint
matrix and adds it to the other constraints on the model, if any. This constraint
enhances the progress of the iterations that would otherwise have some difficulty
because of the poor condition of the Hessian. The constraint is in the form Ax = 0,
where x is the vector of parameters, zero is a conformable vector of zeros, and A is a
coefficient matrix constructed from the b matrix.

NLP imposes the equality constraint only on the iterations where it is necessary, and
removes it when it is not needed. If it is needed at convergence, the equality constraint
is applied to the calculation of the covariance matrix of parameters; i.e., to the inversion
of the Hessian. With the feature turned on, the covariance matrix of parameters,
including the standard errors, will almost always be generated. If the equality
constraints found by NLP describe a “structural” condition of the data generating
process, i.e., it holds for all samples, the covariance matrix of the parameters computed
in this manner is consistent (Gallant, 1987). If the equality constraint is stochastic, i.e.,
it is the second type, the statistical properties of this estimator aren’t established.

2.9.4 Starting Point

When the model is not particularly well-defined, the starting point can be critical.
When the optimization doesn’t seem to be working, try different starting points. A
closed form solution may exist for a simpler problem with the same parameters. For
example, ordinary least squares estimates may be used for nonlinear least squares
problems or nonlinear regressions like probit or logit. There are no general methods for
computing start values, and it may be necessary to attempt the estimation from a
variety of starting points.

2.9.5 Diagnosis

When the optimization is not proceeding well, it is sometimes useful to examine the
function, the gradient Ψ , the direction δ, the Hessian Σ, the parameters θt, or the step
length ρ, during the iterations. The current values of these matrices can be printed out
or stored in the global nlp Diagnostic by setting nlp Diagnostic to a nonzero
value. Setting it to 1 causes NLP to print them to the screen or output file, 2 causes
NLP to store them in nlp Diagnostic, and 3 does both.

When you have selected nlp Diagnostic = 2 or 3, NLP inserts the matrices into
nlp Diagnostic using the VPUT command. The matrices are extracted using the

VREAD command. For example,

69



2. FINANCIAL ANALYSIS PACKAGE

_nlp_Diagnostic = 2;

{ x,f,g,ret } = nlp(&fct,x0);

h = vread(_nlp_Diagnostic,"hessian");

d = vread(_nlp_Diagnostic,"direct");

The following table contains the strings to be used to retrieve the various matrices in
the VREAD command:

θ “params”
δ “direct”
Σ “hessian”
Ψ “gradient”
ρ “step”

2.10 Constraints

There are two general types of constraints: nonlinear equality constraints, and
nonlinear inequality constraints. However, for computational convenience, they are
divided into five types: linear equality, linear inequality, nonlinear equality, nonlinear
inequality, and bounds.

2.10.1 Linear Equality Constraints

Linear equality constraints are of the form

Aθ = B

where A is an m1 × k matrix of known constants, B an m1 × 1 vector of known
constants, and θ the vector of parameters.

The specification of linear equality constraints is done by assigning the A and B
matrices to the NLP globals nlp A and nlp B, respectively. For example, to
constrain the first of four parameters to be equal to the third,

_nlp_A = { 1 0 -1 0 };

_nlp_B = { 0 };

2.10.2 Linear Inequality Constraints

Linear inequality constraints are of the form

Cθ ≥ D

70



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

where C is an m2 × k matrix of known constants, D an m2 × 1 vector of known
constants, and θ the vector of parameters.

The specification of linear equality constraints is done by assigning the C and D
matrices to the NLP globals nlp C and nlp D, respectively. For example, to
constrain the first of four parameters to be greater than the third, and as well the
second plus the fourth greater than 10

_nlp_C = { 1 0 -1 0,

0 1 0 1 };

_nlp_D = { 0,

10 };

2.10.3 Nonlinear Equality

Nonlinear equality constraints are of the form

G(θ) = 0

where θ is the vector of parameters and G(θ) is an arbitrary, user-supplied function.
Nonlinear equality constraints are specified by assigning the pointer to the
user-supplied function to the GAUSS global nlp EqProc.

For example, suppose you wish to constrain the norm of the parameters to be equal to
1:

proc eqp(b);

retp(b’b - 1);

endp;

_nlp_EqProc = &eqp;

2.10.4 Nonlinear Inequality

Nonlinear inequality constraints are of the form

H(θ) ≥ 0

where θ is the vector of parameters and H(θ) is an arbitrary, user-supplied function.
Nonlinear equality constraints are specified by assigning the pointer to the
user-supplied function to the GAUSS global nlp IneqProc.

For example, suppose you wish to constrain a covariance matrix to be positive definite,
the lower left nonredundant portion of which is stored in elements r:r+s of the
parameter vector:

71



2. FINANCIAL ANALYSIS PACKAGE

proc ineqp(b);

local v;

v = xpnd(b[r:r+s]); /* r and s defined elsewhere */

retp(minc(eigh(v)) - 1e-5);

endp;

_nlp_IneqProc = &ineqp;

This constrains the minimum eigenvalue of the covariance matrix to be greater than a
small number (1e-5). This guarantees the covariance matrix to be positive definite.

2.10.5 Bounds

Bounds are a type of linear inequality constraint. For computational convenience, they
may be specified separately from the other inequality constraints. To specify bounds,
the lower and upper bounds, respectively, are entered in the first and second columns of
a matrix that has the same number of rows as the parameter vector. This matrix is
assigned to the NLP global nlp Bounds.

If the bounds are the same for all of the parameters, only the first row is necessary.

To bound four parameters

_nlp_Bounds = { -10 10,

-10 0,

1 10,

0 1 };

Suppose all of the parameters are to be bounded between -50 and +50 then,

_nlp_Bounds = { -50 50 };

is all that is necessary.

2.10.6 Example

The calculation of an “efficient frontier” is a quadratic programming problem. NLP can
solve this kind of problem in one iteration. However, NLP can also solve a more general
efficient frontier problem; in particular, one in which there are general nonlinear
constraints on parameters. In the following example, a standard efficient frontier is
computed, and then a second one is computed in which the weights are constrained to
not differ from a preselected set of weights by more than a given amount, in this case
30 percent.

The correlation matrix, standard deviations, and returns are taken from Marmer and
Louis Ng (1993)

72



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

library fanpac, pgraph;

nlpset;

graphset;

corr = {

1,

.097, 1,

-.039, .231, 1,

.159, .237, .672, 1,

-.035, .211, .391, .454, 1,

-.024, .247, .424, .432, .941, 1 };

s = { .94, 11.26, 19.21, 13.67, 17.73, 12.19 };

Sigma = xpnd(corr) .* s .* s’;

Mu = { 10.67, 10.54, 12.76, 13.67, 17.73, 13.68 };

proc ObjectiveFunction(w);

retp(w’*Sigma*w); /* volatility */

endp;

/*

** Constraints

*/

_nlp_A = ones(1,6);

_nlp_B = 1;

_nlp_A = _nlp_A | Mu’;

_nlp_B = _nlp_B | 0;

_nlp_Bounds = { 0 1 };

start = { 1, 0, 0, 0, 0, 0 };

MN = seqa(10.75,.025,20);

W = {};

SD = {};

i = 1;

do until i > 20;

_nlp_B[2,1] = MN[i];

{ x,f,g,ret } = nlp(&ObjectiveFunction,start);

73



2. FINANCIAL ANALYSIS PACKAGE

w = w | x’;

SD = SD | sqrt(f); /* portfolio volatility */

i = i + 1;

endo;

format /rd 8,4;

print "Unrestricted Weights and Efficient Frontier";

print;

print " r_{k} sd_{k} w_{k}";

print mn~sd~w;

print;

print;

/*

** Now an efficient frontier restricting change from previous weights

*/

PreviousWeights = {.6,.05,.1,.0,.2,.05 };

/*

** Inequality Constraints

*/

_nlp_C = -eye(6) | eye(6);

_nlp_D = (- PreviousWeights - .3) | (PreviousWeights - .3);

W1 = {};

SD1 = {};

i = 1;

do until i > 20;

_nlp_B[2,1] = MN[i];

{ x,f,g,ret } = nlp(&ObjectiveFunction,start);

w1 = w1 | x’;

SD1 = SD1 | sqrt(f); /* portfolio volatility */

i = i + 1;

endo;

print "Restricted Weights and Efficient Frontier";

print;

print " r_{k} sd_{k} w_{k}";

74



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

print mn~sd1~w1;

title("Efficient Frontier");

Xlabel("Variance");

Ylabel("Return");

_plegstr = "Unrestricted Solution\000Restricted Solution";

_plegctl = { 1 5 .95 11.1 };

xy(SD~SD1,MN~MN);

Unrestricted Weights and Efficient Frontier

r_{k} sd_{k} w_{k}

10.7500 0.9431 0.9872 0.0000 0.0021 0.0000 0.0107 0.0000

10.7750 0.9534 0.9839 0.0000 0.0017 0.0000 0.0144 0.0000

10.8000 0.9677 0.9807 0.0000 0.0012 0.0000 0.0181 0.0000

10.8250 0.9857 0.9775 0.0000 0.0007 0.0000 0.0217 0.0000

10.8500 1.0072 0.9743 0.0000 0.0003 0.0000 0.0254 0.0000

10.8750 1.0321 0.9710 0.0000 0.0000 0.0000 0.0290 0.0000

10.9000 1.0601 0.9674 0.0000 0.0000 0.0000 0.0326 0.0000

10.9250 1.0911 0.9639 0.0000 0.0000 0.0000 0.0361 0.0000

10.9500 1.1247 0.9603 0.0000 0.0000 0.0000 0.0397 0.0000

10.9750 1.1608 0.9568 0.0000 0.0000 0.0000 0.0432 0.0000

11.0000 1.1991 0.9533 0.0000 0.0000 0.0000 0.0467 0.0000

11.0250 1.2394 0.9497 0.0000 0.0000 0.0000 0.0503 0.0000

11.0500 1.2815 0.9462 0.0000 0.0000 0.0000 0.0538 0.0000

11.0750 1.3253 0.9426 0.0000 0.0000 0.0000 0.0574 0.0000

11.1000 1.3706 0.9391 0.0000 0.0000 0.0000 0.0609 0.0000

11.1250 1.4173 0.9356 0.0000 0.0000 0.0000 0.0644 0.0000

11.1500 1.4652 0.9320 0.0000 0.0000 0.0000 0.0680 0.0000

11.1750 1.5141 0.9285 0.0000 0.0000 0.0000 0.0715 0.0000

11.2000 1.5641 0.9246 0.0000 0.0000 0.0006 0.0748 0.0000

11.2250 1.6149 0.9207 0.0000 0.0000 0.0012 0.0781 0.0000

Restricted Weights and Efficient Frontier

r_{k} sd_{k} w_{k}

10.7500 1.3106 0.9000 0.0684 0.0066 0.0000 0.0000 0.0249

10.7750 1.2891 0.9000 0.0604 0.0068 0.0000 0.0000 0.0328

10.8000 1.2771 0.9000 0.0528 0.0057 0.0027 0.0000 0.0388

75



2. FINANCIAL ANALYSIS PACKAGE

10.8250 1.2734 0.9000 0.0454 0.0038 0.0073 0.0000 0.0435

10.8500 1.2778 0.9000 0.0379 0.0019 0.0118 0.0000 0.0483

10.8750 1.2903 0.9000 0.0305 0.0001 0.0164 0.0000 0.0530

10.9000 1.3077 0.9000 0.0300 0.0000 0.0172 0.0058 0.0470

10.9250 1.3265 0.9000 0.0299 0.0000 0.0177 0.0119 0.0405

10.9500 1.3466 0.9000 0.0298 0.0000 0.0183 0.0180 0.0340

10.9750 1.3679 0.9000 0.0297 0.0000 0.0189 0.0240 0.0274

11.0000 1.3904 0.9000 0.0296 0.0000 0.0195 0.0301 0.0209

11.0250 1.4140 0.9000 0.0294 0.0000 0.0200 0.0362 0.0143

11.0500 1.4387 0.9000 0.0293 0.0000 0.0206 0.0423 0.0078

11.0750 1.4643 0.9000 0.0292 0.0000 0.0212 0.0484 0.0012

11.1000 1.4914 0.9000 0.0264 0.0000 0.0212 0.0524 0.0000

11.1250 1.5209 0.9000 0.0230 0.0000 0.0212 0.0559 0.0000

11.1500 1.5526 0.9000 0.0195 0.0000 0.0211 0.0594 0.0000

11.1750 1.5863 0.9000 0.0161 0.0000 0.0211 0.0629 0.0000

11.2000 1.6220 0.9000 0.0126 0.0000 0.0210 0.0664 0.0000

11.2250 1.6596 0.9000 0.0092 0.0000 0.0209 0.0699 0.0000

2.11 Gradients

2.11.1 Analytical Gradient

To increase accuracy and reduce time, you may supply a procedure for computing the
gradient Ψ(θ) = ∂L/∂θ analytically.

This procedure has two input arguments: a K × 1 vector of parameters and an Ni × L
submatrix of the input data set. The NLP global nlp GradProc is then set to the
pointer to that procedure.

In practice, unfortunately, much of the time spent on writing the gradient procedure is
devoted to debugging. To help in this debugging process, NLP can be instructed to
compute the numerical gradient along with your prospective analytical gradient for
comparison purposes. In the example above, this is accomplished by setting
nlp GradCheckTol to a small nonzero value.

2.11.2 Analytical Hessian

You may provide a procedure for computing the Hessian Σ(θ) = ∂2F/∂θ∂θ′. This
procedure has one argument, the K × 1 vector of parameters, and returns a K ×K
symmetric matrix of second derivatives of the objection function with respect to the
parameters.

76



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

Figure 2.4: Comparison of efficient frontiers

77



2. FINANCIAL ANALYSIS PACKAGE

The pointer to this procedure is stored in the global variable nlp HessProc.

In practice, unfortunately, much of the time spent on writing the Hessian procedure is
devoted to debugging. To help in this debugging process, NLP can be instructed to
compute the numerical Hessian along with your prospective analytical Hessian for
comparison purposes. To accomplish, this nlp GradCheckTol is set to a small
nonzero value.

2.11.3 Analytical Nonlinear Constraint Jacobians

When nonlinear equality or inequality constraints have been placed on the parameters,
the convergence can be improved by providing a procedure for computing their
Jacobians i.e., Ġ(θ) = ∂G(θ)/∂θ and Ḣ(θ) = ∂H(θ)/∂θ.

These procedures have one argument, the K × 1 vector of parameters, and return an
Mj ×K matrix, where Mj is the number of constraints computed in the corresponding
constraint function. Then the NLP globals nlp EqJacobian and nlp IneqJacobian
are set to pointers to the nonlinear equality and inequality Jacobians, respectively.

2.11.4 Example

The following example illustrates furnishing procedures for computing gradients and
Jacobians. It is taken from Hock and Schittkowski (1981, page 55). The function to be
minimized is

F (θ) = (θ1 + 3θ2 + θ3)
2 + 4(θ1 − θ2)2

subject to the inequality constraint,

6θ2 + 4θ3 − θ3
1 − 3 ≥ 0

and the equality constraint,

1−
3∑

i=1

θi = 0

and bounds

θi ≥ 0, i = 1, 2, 3

The starting point
[
.1 .7 .2

]

is feasible. The published solution is
[

0 0 1
]

The procedure for solving this problem is

78



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

library co;

#include co.ext;

coset;

proc fct(x);

retp( (x[1] + 3*x[2] + x[3])^2 + 4*(x[1] - x[2])^2 );

endp;

proc ineqp(x);

retp(6*x[2] + 4*x[3] - x[1]^3 - 3);

endp;

proc ineqj(x);

retp(-3*x[1]^2~6~4);

endp;

proc eqp(x);

retp(1-sumc(x));

endp;

proc eqj(x);

retp(-ones(1,3));

endp;

proc gp(x);

local g, t;

g = zeros(3,1);

g[1] = 10*x[1] - 2*x[2] + 2*x[3];

g[2] = -2*x[1] + 26*x[2] + 6*x[3];

g[3] = 2*x[1] + 6*x[2] + 2*x[3];

retp(g);

endp;

proc hsp(x);

local h;

h = zeros(3,3);

h[1,1] = 10;

h[1,2] = -2;

h[1,3] = 2;

h[2,1] = -2;

h[2,2] = 26;

h[2,3] = 6;

h[3,1] = 2;

79



2. FINANCIAL ANALYSIS PACKAGE

h[3,2] = 6;

h[3,3] = 2;

retp(h);

endp;

_nlp_Bounds = { 0 1e256 };

start = { .1, .7, .2 };

_nlp_GradProc = &gp;

_nlp_HessProc = &hsp;

_nlp_IneqProc = &ineqp;

_nlp_IneqJacobian = &ineqj;

_nlp_EqProc = &eqp;

_nlp_EqJacobian = &eqj;

{ x,f,g,ret } = co( &fct,start );

call coprt(x,f,g,ret);

print;

print;

print "published solution";

print " 0 0 1";

print;

print "nonlinear equality Lagrangeans";

print vread(_nlp_Lagrange,"nlineq");

print;

print "nonlinear inequality Lagrangeans";

print vread(_nlp_Lagrange,"nlinineq");

print;

print "boundary Lagrangeans";

print vread(_nlp_Lagrange,"bounds");

The output from this run is

===============================================================

NLP Version 1.0.0 2/20/95 1:05 pm

===============================================================

return code = 0

normal convergence

Value of objective function 1.000000

80



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

Parameters Estimates Gradient

-----------------------------------------

P01 0.0000 2.0000

P02 0.0000 6.0000

P03 1.0000 2.0000

Number of iterations 3

Minutes to convergence 0.00267

published solution

0 0 1

nonlinear equality Lagrangeans

-2.0000

nonlinear inequality Lagrangeans

0.0000

boundary Lagrangeans

.

The missing value for the boundary Lagrangeans indicates that they are all inactive.
The zero nonlinear inequality Lagrangean indicates that the nonlinear inequality
boundary was encountered somewhere during the iterations, but is now inactive.

2.11.5 Run-Time Switches

If the user presses H on their keyboard during the iterations, a help table is printed to
the screen which describes the run-time switches. By this method, important global
variables may be modified during the iterations.

G Toggle nlp GradMethod
V Revise nlp DirTol
O Toggle nlp IterInfo
M Maximum Tries
I Compute Hessian
E Edit Parameter Vector
C Force Exit
A Change Algorithm
J Change Line Search Method
T Trust Region method
H Help Table

81



2. FINANCIAL ANALYSIS PACKAGE

The algorithm may be switched during the iterations either by pressing A, or by
pressing one of the following:

1 Broyden-Fletcher-Goldfarb-Shanno (BFGS)
2 Davidon-Fletcher-Powell (DFP)
3 Newton-Raphson (NEWTON) or (NR)

The line search method may be switched during the iterations either by pressing S, or
by pressing one of the following:

Shift-1 no search (1.0 or 1 or ONE)
Shift-2 cubic or quadratic method (STEPBT)
Shift-3 step halving method (HALF)
Shift-4 Brent’s method (BRENT)

2.12 Error Handling

Return Codes

The fourth argument in the return from NLP contains a scalar number that contains
information about the status of the iterations upon exiting NLP. The following table
describes their meanings:

0 normal convergence
1 forced exit
2 maximum iterations exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 function cannot be evaluated at

initial parameter values
8 error with gradient
9 error with constraints
10 secant update failed
11 maximum time exceeded
12 error with weights
13 quadratic program failed
14 equality Jacobian failed
15 inequality Jacobian failed
20 Hessian failed to invert
34 data set could not be opened
99 termination condition unknown

82



FANPAC

2. FINANCIAL ANALYSIS PACKAGE

Error Trapping

Setting the global nlp IterInfo = 1 turns on printing iteration information to the
screen. Even if nlp IterInfo is set to zero, error codes are printed to the screen unless
error trapping is also turned on. Setting the trap flag to 4 causes NLP to not send the
messages to the screen:

trap 4;

Whatever the setting of the trap flag, NLP discontinues computations and returns with
an error code. The trap flag in this case only affects whether messages are printed to
the screen or not. This is an issue when the NLP function is embedded in a larger
program, and you want the larger program to handle the errors.

2.12.1 Bibliography

Brent, R. P., 1972. Algorithms for Minimization Without Derivatives. Englewood
Cliffs, NJ: Prentice-Hall.

Dennis, J. E. Jr., and Schnabel, R.B., 1983. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ:
Prentice-Hall.

Gallant, A. R., 1987, Nonlinear Statistical Methods, New York: Wiley.

Gill, P. E. and Murray, W., 1972. “Quasi-Newton methods for unconstrained
optimization.” J. Inst. Math. Appl., 9, 91-108.

Han, S.P., 1977. “A globally convergent method for nonlinear programming.” Journal
of Optimization Theory and Applications, 22:297-309.

Hock, Willi and Schittkowski, Klaus, 1981. Lecture Notes in Economics and
Mathematical Systems. New York: Springer-Verlag.

Jamshidian, Mortaza and Bentler, P.M., 1993. “A modified Newton method for
constrained estimation in covariance structure analysis.” Computational
Statistics & Data Analysis, 15:133-146.

Marmer, Harry S. and Ng, F.K. Louis, 1993. “Mean-Semivariance Analysis of
Option-Based Strategies: A Total Asset Mix Perspective,” Financial
Analysts Journal, May-June.

83



2. FINANCIAL ANALYSIS PACKAGE

84



Keyword Reference

Chapter 3

85



3. FANPAC KEYWORD REFERENCE

FANPAC Keyword Reference

Summary of Keyword Commands

clearSession clears session from memory, resets global
variables

constrainPDCovPar sets NLP global for constraining covariance
matrix of parameters to be positive definite

computeLogReturns computes log returns from price data
computePercentReturns computes percent returns from price data
estimate estimates parameters of a time series model
forecast generates a time series and conditional variance

forecast
getCV puts conditional variances or variance-covariance

matrices into global vector fan CV
getCOR puts conditional correlations into global variable

fan COR
getEstimates puts model estimates into global variable

fan Estimates
getResiduals puts unstandardized residuals into global vector
getSeriesACF puts autocorrelations into global variable fan ACF
getSeriesPACF puts partial autocorrelations into global

variable fan PACF
getSession retrieves a data analysis session
getSR puts standardized residuals into global vector
plotCOR plots conditional correlations
plotCSD plots conditional standard deviations
plotCV plots conditional variances
plotQQ generates quantile-quantile plot
plotSeries plots time series
plotSeriesACF plots autocorrelations
plotSeriesPACF plots partial autocorrelations
plotSR plots standardized residuals
session initializes a data analysis session
setAlpha sets inference alpha level
setConstraintType sets type of constraints on parameters
setCovParType sets type of covariance matrix of parameters

86



Keyword Reference

3. FANPAC KEYWORD REFERENCE

setCVIndEqs declares list of independent variables
to be included in conditional variance equations

setDataset sets dataset name
setIndEqs declares list of independent variables

to be included in mean equations
setInferenceType sets type of inference
setIndVars declares names of independent variables
setLagTruncation sets lags included for FIGARCH model
setLagInitialization sets lags excluded for FIGARCH model
setLjungBoxOrder sets order for Ljung-Box statistic
setOutputFile sets output file name
setRange sets range of data
setSeries declares names of time series
setVarNames sets variable names for data stored in ASCII file
showEstimates displays estimates in simple format
showResults displays results of estimations
showRuns displays runs
simulate generates simulation
testSR generates skew, kurtosis, Ljung-Box statistics

87



clearSession 3. FANPAC KEYWORD REFERENCE

Purpose

Resets globals to default values.

Library

fanpac

Format

clearSession;

Source

fanpac.src

88



Keyword Reference

3. FANPAC KEYWORD REFERENCE constrainPDCovPar

Purpose

Sets NLP global for constraining covariance matrix of parameters to be positive definite

Library

fanpac

Format

constrainPDCovPar [action];

Input

action String. If absent, constraint feature is turned off, otherwise, set to

ON feature is turned on,

OFF feature is turned off,

Global Output

gg constPDCovPar Scalar, internal FANPAC global. If nonzero, the NLP global
nlp ConstrainHess is set to a nonzero value, causing NLP to construct

equality constraints to handle linear dependencies in the Hessian.

Remarks

If an equality constraint is so constructed by NLP at convergence, it will be used in
calculating the covariance matrix of the parameters. This equality constraint is stored
by NLP in the NLP global, nlp PDA and is reported by the FANPAC keyword
command showResults.

Source

fanpac.src

89



computeLogReturns 3. FANPAC KEYWORD REFERENCE

Purpose

Computes log returns from price data.

Library

fanpac

Format

computeLogReturns [list] [scale];

Input

list List of time series. Default, all time series.

scale Scale factor. If omitted, scale factor is set to one.

Global Input

fan Series N×k matrix, time series.

Global Output

fan Series N×k matrix, time series.

Remarks

Computes the log returns from price data.

Ri = κ log

(
Pi
Pi−1

)

where Pi is the price at time i and κ is the scale factor. For best numerical results, use
a scale factor that scales the time units of the series to a year. Thus for monthly data,
σ = 12, and for daily data, σ = 251.

Source

fanpac.src

90



Keyword Reference

3. FANPAC KEYWORD REFERENCE computePercentReturns

Purpose

Computes percent returns from price data.

Library

fanpac

Format

computePercentReturns [list] [scale];

Input

list List of time series. Default, all time series.

scale Scale factor. If omitted, scale factor is set to 100.

Global Input

fan Series N×k matrix, time series.

Global Output

fan Series N×k matrix, time series.

Remarks

Computes the percent returns from price data.

Ri = κ

(
Pi − Pi−1

Pi−1

)

where Pi is the price at time i and κ is the scale factor. For interpretation as a
“percent,” use the default scale factor of 100.

Source

fanpac.src

91



estimate 3. FANPAC KEYWORD REFERENCE

Purpose

Generates estimates of parameters of a time series model.

Library

fanpac

Format

estimate run name [run title] model ;

Input

run name Name of estimation run. It must come first and it cannot contain
embedded blanks.

run title Title of run, put in SINGLE quotes if title contains embedded blanks.
May be omitted.

model Type of time series model:

OLS Normal ordinary least squares.

TOLS t distribution ordinary least squares.

ARIMA(p,d,q) Normal ARIMA. If p, d, and q are not specified, an
ARIMA(1,1,1) is estimated.

TARIMA(p,d,q) t distribution ARIMA.

EGARCH GARCH with generalized error distribution.

ARCH(p,q) Normal ARCH.

TARCH(p,q) Student’s t distribution ARCH.

ARCHM(p,q) Normal ARCH-in-mean.

TARCHM(p,q) Student’s t distribution ARCH-in-mean.

ARCHV(p,q) Normal ARCH-in-cv.

TARCHV(p,q) Student’s t distribution ARCH-in-cv.

GARCH(p,q) Normal GARCH.

TGARCH(p,q) Student’s t distribution GARCH.

GARCHM(p,q) Normal GARCH-in-mean.

TGARCHM(p,q) Student’s t distribution GARCH-in-mean.

GARCHV(p,q) Normal GARCH-in-cv.

TGARCHV(p,q) Student’s t distribution GARCH-in-cv.

IGARCH(p,q) Normal integrated GARCH.

92



Keyword Reference

3. FANPAC KEYWORD REFERENCE estimate

ITGARCH(p,q) t distribution integrated GARCH.

FIGARCH(p,q) Normal fractionally integrated GARCH.

FITGARCH(p,q) t distribution fractionally integrated GARCH.

IGARCHV(p,q) Normal integrated GARCH-in-cv.

ITGARCHV(p,q) t distribution integrated GARCH-in-cv.

FIGARCHV(p,q) Normal fractionally integrated GARCH-in-cv.

FITGARCHV(p,q) t distribution fractionally integrated GARCH-in-cv.

IGARCHM(p,q) Normal integrated GARCH-in-mean.

ITGARCHM(p,q) t distribution integrated GARCH-in-mean.

FIGARCHM(p,q) Normal fractionally integrated GARCH-in-mean.

FITGARCHM(p,q) t distribution fractionally integrated
GARCH-in-mean.

DVARCH(p,q) Normal diagonal vec multivariate ARCH.

DVTARCH(p,q) t distribution diagonal vec multivariate ARCH.

CDVARCH(p,q) Normal constant correlation diagonal vec multivariate
ARCH.

CDVTARCH(p,q) t distribution constant correlation diagonal vec
multivariate ARCH.

BKARCH(p,q) Normal BEKK multivariate ARCH.

BKTARCH(p,q) t distribution BEKK multivariate ARCH.

DVARCHM(p,q) Normal diagonal vec multivariate ARCH-in-mean.

DVTARCHM(p,q) t distribution diagonal vec multivariate
ARCH-in-mean.

CDVARCHM(p,q) Normal constant correlation diagonal vec
multivariate ARCH-in-mean.

CDVTARCHM(p,q) t distribution constant correlation diagonal vec
multivariate ARCH-in-mean.

DVARCHV(p,q) Normal diagonal vec multivariate ARCH-in-cv.

DVTARCHV(p,q) t distribution diagonal vec multivariate ARCH-in-cv.

CDVARCHV(p,q) Normal constant correlation diagonal vec
multivariate ARCH-in-cv.

CDVTARCHV(p,q) t distribution constant correlation diagonal vec
multivariate ARCH-in-cv.

DVGARCH(p,q) Normal diagonal vec multivariate GARCH.

DVTGARCH(p,q) t distribution diagonal vec multivariate GARCH.

CDVGARCH(p,q) Normal constant correlation diagonal vec
multivariate GARCH.

93



estimate 3. FANPAC KEYWORD REFERENCE

CDVTGARCH(p,q) t distribution constant correlation diagonal vec
multivariate GARCH.

BKGARCH(p,q) Normal BEKK multivariate GARCH.

BKTGARCH(p,q) t distribution BEKK multivariate GARCH.

DVGARCHM(p,q) Normal diagonal vec multivariate GARCH-in-mean.

DVTGARCHM(p,q) t distribution diagonal vec multivariate
GARCH-in-mean.

CDVGARCHM(p,q) Normal constant correlation diagonal vec
multivariate GARCH-in-mean.

CDVTGARCHM(p,q) t distribution constant correlation diagonal vec
multivariate GARCH-in-mean.

DVGARCHV(p,q) Normal diagonal vec multivariate GARCH-in-cv.

DVTGARCHV(p,q) t distribution diagonal vec multivariate
GARCH-in-cv.

CDVGARCHV(p,q) Normal constant correlation diagonal vec
multivariate GARCH-in-cv.

CDVTGARCHV(p,q) t distribution constant correlation diagonal vec
multivariate GARCH-in-cv.

Global Input

fan Dataset Name of GAUSS data set containing time series being analyzed.

fan SeriesNames Name of time series being analyzed.

fan IndVarNames K×1, character vector of labels of independent variables.

Remarks

estimate generates estimates of the parameters of the specified model. The results are
stored in a GAUSS .fmt file on the disk in the form of a vpacked matrix. These results
are not printed by estimate. See showResults for displaying results.

All models except OLS are estimated using the NLP optimization program. See the
NLP procedure in Section 2.8 for details concerning the optimization.

Example

library fanpac,pgraph;

session test ’test session’;

setDataset stocks;

94



Keyword Reference

3. FANPAC KEYWORD REFERENCE estimate

setSeries intel;

setOutputfile test.out reset;

estimate run1 garch;

estimate run2 garch(2,1);

estimate run3 arima(1,2,1);

showResults;

plotSeries;

plotCV;

Source

fanpac.src

95



forecast 3. FANPAC KEYWORD REFERENCE

Purpose

Generates forecasts of a time series model.

Library

fanpac

Format

forecast [list] [periods];

Input

list Names of run for forecast. If none is specified, forecasts will be generated
for all runs.

periods Number of periods to be forecast. If not specified, the forecast is for one
period.

Global Output

fan TSforecast L×K matrix, L forecasts for K models.

fan CVforecast L×K matrix, L forecasts for K models.

Remarks

If the model is a GARCH model, a forecast of the conditional variance is generated as
well. The forecasts are written to a FANPAC global. The time series forecast is written
to fan TSforecast and the conditional variance is written to fan CVforecast. If
plotCV or plotCSD is called after the call to forecast, the forecasts are included in the
plot. If plotSeries is called after the call to forecast, the time series forecast is plotted
with the time series as well.

Source

fanpac.src

96



Keyword Reference

3. FANPAC KEYWORD REFERENCE getCV

Purpose

Computes conditional variances and puts them into a global variable.

Library

fanpac

Format

getCV [list];

Input

list List of runs. If omitted, conditional variances will be produced for all
runs.

Global Output

fan CV N×K matrix, conditional variances.

Remarks

Conditional variances are relevant only for ARCH/GARCH models. No results are
generated for other models.

See also

plotCV

Source

fanpac.src

97



getCOR 3. FANPAC KEYWORD REFERENCE

Purpose

Computes conditional correlations and puts them into a global variable.

Library

fanpac

Format

getCOR [list];

Input

list List of runs. If omitted, conditional correlations will be produced for all
runs.

Global Output

fan COR N×K matrix, conditional correlations

Remarks

Conditional correlations are relevant only for multivariate ARCH/GARCH models. No
results are generated for other models.

See also

plotCOR

Source

fanpac.src

98



Keyword Reference

3. FANPAC KEYWORD REFERENCE getEstimates

Purpose

Stores estimates in global variable.

Library

fanpac

Format

getEstimates [list];

Input

list List of runs. If omitted, estimates for all runs will be stored in global
variable.

Global Output

fan Estimates K×L matrix, global into which estimates are stored.

Remarks

Source

fanpac.src

99



getRD 3. FANPAC KEYWORD REFERENCE

Purpose

Computes unstandardized residuals and puts them into a global variable.

Library

fanpac

Format

getRD [list];

Input

list List of runs. If omitted, standardized residuals will be produced for all
runs.

Global Output

fan Residuals N×K matrix, standardized residuals.

Source

fanpac.src

100



Keyword Reference

3. FANPAC KEYWORD REFERENCE getSeriesACF

Purpose

Computes autocorrelation function and puts the vector into a global variable.

Library

fanpac

Format

getSeriesACF [list] num diff ;

Input

list List of series. If omitted, will be produced for all series.

num Scalar, maximum number of autocorrelations to compute. If omitted, set
to number of observations.

diff Scalar, order of differencing. If omitted, set to zero.

Global Output

fan ACF num×K matrix, autocorrelations.

Remarks

If one number is entered as an argument, num will be set to that value. If two numbers
are entered as arguments, num will be set to the larger number and diff to the smaller
number.

See also

plotSeriesACF, plotSeriesPACF, getSeriesPACF

Source

fanpac.src

101



getSeriesPACF 3. FANPAC KEYWORD REFERENCE

Purpose

Computes autocorrelation function and puts the vector into a global variable.

Library

fanpac

Format

getSeriesPACF [list] num diff ;

Input

list List of series. If omitted, will be produced for all series.

num Scalar, maximum number of autocorrelations to compute. If omitted, set
to number of observations.

diff Scalar, order of differencing. If omitted, set to zero.

Global Output

fan PACF num×K matrix, autocorrelations.

Remarks

If one number is entered as an argument, num will be set to that value. If two numbers
are entered as arguments, num will be set to the larger number and diff to the smaller
number.

See also

plotSeriesPACF, plotSeriesACF, getSeriesACF

Source

fanpac.src

102



Keyword Reference

3. FANPAC KEYWORD REFERENCE getSession

Purpose

Retrieves a data analysis session.

Library

fanpac

Format

getSession session name;

Input

session name Name of an existing session.

Remarks

getSession retrieves a session created by a previous analysis.

Source

fanpac.src

103



getSR 3. FANPAC KEYWORD REFERENCE

Purpose

Computes standardized residuals and puts them into a global variable.

Library

fanpac

Format

getSR [list];

Input

list List of runs. If omitted, standardized residuals will be produced for all
runs.

Global Output

fan SR N×K matrix, standardized residuals.

See also

plotSR

Source

fanpac.src

104



Keyword Reference

3. FANPAC KEYWORD REFERENCE plotCOR

Purpose

Plots conditional correlations.

Library

fanpac, pgraph

Format

plotCOR [list] [start end];

Input

list List of runs. If no list, conditional correlations will be plotted for all runs.

start Scalar, starting row or date to be included in plot. If row number, it
must be greater than 1 and less than end .

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting start to START is equivalent to first observation.

end Scalar, ending row or date to be included in plot. If row number, it must
be greater than start and less than or equal to the number of
observations.

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting end to END is equivalent to last observation.

Global Output

fan COR N×K matrix, conditional correlations.

Remarks

Conditional correlations are relevant only for multivariate ARCH/GARCH models. No
plots or output are generated for other models.

Source

fanplot.src

105



plotCSD 3. FANPAC KEYWORD REFERENCE

Purpose

Plots conditional standard deviations.

Library

fanpac, pgraph

Format

plotCSD [list] [start end] [scale];

Input

list List of runs. If no list, conditional variances will be plotted for all runs.

start Scalar, starting row or date to be included in plot. If row number, it
must be greater than 1 and less than end .

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting start to START is equivalent to first observation.

end Scalar, ending row or date to be included in plot. If row number, it must
be greater than start and less than or equal to the number of
observations.

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting end to END is equivalent to last observation.

scale Scalar, scale factor. The conditional standard deviations are multiplied
by the square root of the scale factor before plotting. Default = 1.

Global Input

fan CVforecast L×K matrix, forecasts of conditional variances.

Global Output

fan CV N×K matrix, conditional variances.

106



Keyword Reference

3. FANPAC KEYWORD REFERENCE plotCSD

Remarks

Conditional standard deviations are relevant only for ARCH/GARCH models. No plots
or output are generated for other models.

plotCSD plots the square roots of the conditional variances times the scale factor, if
any.

If plotCSD is called after a call to forecast, the square root of the forecasts of the
conditional variances stored in fan CVforecast are plotted as well.

Source

fanplot.src

107



plotCV 3. FANPAC KEYWORD REFERENCE

Purpose

Plots conditional variances.

Library

fanpac, pgraph

Format

plotCV [list] [start end];

Input

list List of runs. If no list, conditional variances will be plotted for all runs.

start Scalar, starting row or date to be included in plot. If row number, it
must be greater than 1 and less than end .

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting start to START is equivalent to first observation.

end Scalar, ending row or date to be included in plot. If row number, it must
be greater than start and less than or equal to the number of
observations.

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting end to END is equivalent to last observation.

Global Output

fan CV N×K matrix, conditional variances.

fan CVforecast L×K matrix, forecasts of conditional variances.

Remarks

Conditional variances are relevant only for ARCH/GARCH models. No plots or output
are generated for other models.

If plotCV is called after a call to forecast, the forecasts of the conditional variance
stored in fan CVforecast are plotted as well.

Source

fanplot.src

108



Keyword Reference

3. FANPAC KEYWORD REFERENCE plotQQ

Purpose

Plots quantile-quantile plot.

Library

fanpac, pgraph

Format

plotQQ [list];

Input

list List of runs. If no list, QQ plots will be generated for all runs.

Global Output

fan SR N×K matrix, standardized residuals.

Source

fanplot.src

109



plotSeries 3. FANPAC KEYWORD REFERENCE

Purpose

Plots time series.

Library

fanpac, pgraph

Format

plotSeries [list] [start end];

Input

list List of series. If no list, all series will be plotted.

start Scalar, starting row or date to be included in plot. If row number, it
must be greater than 1 and less than end .

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting start to START is equivalent to first observation.

end Scalar, ending row or date to be included in plot. If row number, it must
be greater than start and less than or equal to the number of
observations.

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting end to END is equivalent to last observation.

Global Input

fan Series N×1 vector, time series.

fan TSforecast L×1 vector, forecasts.

Remarks

If forecast is called before plotSeries, the time series forecast stored in
fan TSforecast is included in the plot.

Source

fanplot.src

110



Keyword Reference

3. FANPAC KEYWORD REFERENCE plotSeriesACF

Purpose

Computes autocorrelation function and puts the vector into a global variable.

Library

fanpac, pgraph

Format

plotSeriesACF [list] [num] [diff ];

Input

list List of series. If omitted, will be produced for all series.

num Scalar, maximum number of autocorrelations to compute. If omitted, set
to number of observations.

diff Scalar, order of differencing. If omitted, set to zero.

Global Output

fan ACF num×K matrix, autocorrelations.

Remarks

If one number is entered as an argument, num will be set to that value. If two numbers
are entered as arguments, num will be set to the larger number and diff to the smaller
number.

See also

plotSeriesPACF, getSeriesACF

Source

fanplot.src

111



plotSeriesPACF 3. FANPAC KEYWORD REFERENCE

Purpose

Computes autocorrelation function and puts the vector into a global variable.

Library

fanpac, pgraph

Format

plotSeriesPACF [list] [num] [diff ];

Input

list List of series. If omitted, will be produced for all series.

num Scalar, maximum number of autocorrelations to compute. If omitted, set
to number of observations.

diff Scalar, order of differencing. If omitted, set to zero.

Global Output

fan PACF num×K matrix, autocorrelations.

Remarks

If one number is entered as an argument, num will be set to that value. If two numbers
are entered as arguments, num will be set to the larger number and diff to the smaller
number.

See also

plotSeriesACF, getSeriesPACF

Source

fanplot.src

112



Keyword Reference

3. FANPAC KEYWORD REFERENCE plotSR

Purpose

Plots standardized residuals.

Library

fanpac, pgraph

Format

plotSR [list] [start end];

Input

list List of runs. If no list, standardized residuals will be plotted for all runs.

start Scalar, starting row or date to be included in plot. If row number, it
must be greater than 1 and less than end .

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting start to START is equivalent to first observation.

end Scalar, ending row or date to be included in plot. If row number, it must
be greater than start and less than or equal to the number of
observations.

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting end to END is equivalent to last observation.

Global Output

fan SR N×K matrix, standardized residuals.

Remarks

Standardized residuals are relevant only for ARCH/GARCH models. No plots or
output are generated for other models.

Source

fanplot.src

113



session 3. FANPAC KEYWORD REFERENCE

Purpose

Initializes a data analysis session.

Library

fanpac

Format

session session name [session title];

Input

session name Name of session; it must contain no more than 8 characters and no
embeddded blanks.

session title Title of run, put in SINGLE quotes if title contains embedded blanks. If
no title entered, it is set to null string.

Source

fanpac.src

114



Keyword Reference

3. FANPAC KEYWORD REFERENCE setAlpha

Purpose

Sets confidence level for statistical inference.

Library

fanpac

Format

setAlpha alpha;

Input

alpha Scalar, confidence level. Default = .05.

Source

fanpac.src

115



SetConstraintType 3. FANPAC KEYWORD REFERENCE

Purpose

sets type of constraints for stationarity conditions in Garch models

Library

fanpac

Format

SetConstraintType type;

Input

type String, type of constraint

standard standard constraints

bounds bounds constraints on parameters

unconstrained no constraints

Global Output

gg ConstType Scalar, type of constraints

1 standard constraints

2 bounds constraints on parameters

3 no constraints

Remarks

standard For garch(1,q) and garch(2,q) models, parameter are constrained using
the Nelson & Cao specifications to ensure that conditional variances are
nonnegative for all observations in and out of sample. Also, stationarity
is assured by constraining roots to be outside unit circle. This involves a
nonlinear constraint on parameters. These are the least restrictive
constraints that satisfy the conditions of nonnegative conditional
variances and stationarity.

bounds Nonnegativity of conditional variances is carried out by direct constraints
on the conditional variances. This does not assure nonnegativity outside
of the sample. Stationarity is imposed by placing bounds on parameters,
that is, arch and garch coefficients are constrained to be greater than zero
and sum to less than one. These constraints are more restrictive than the
standard coefficients, and are the most commonly applied constraints.

unconstrained Conditional variances are directly constrained to be nonnegative as in
the bounds method, but no constraints are applied to ensure stationarity.

Source

fanpac.src

116



Keyword Reference

3. FANPAC KEYWORD REFERENCE setCovParType

Purpose

Sets type of covariance matrix of parameters.

Library

fanpac

Format

setCovParType type;

Input

type String, type of covariance matrix.

ML Maximum likelihood.

XPROD Cross product of first derivatives.

QML Quasi-maximum likelihood.

Global Output

fan CovParType Scalar, type of covariance matrix of parameters.

ML Maximum likelihood.

XPROD Cross-product of first derivatives.

QML Quasi-maximum likelihood.

Remarks

let H = ∂logl/∂θ∂θ′ be the Hessian and G = ∂logl/∂θ the matrix of first derivatives.
Then ML = H−1, XPROD = (G′G)−1, and WML = H−1(G′G)H−1.

Source

fanpac.src

117



setCVIndEqs 3. FANPAC KEYWORD REFERENCE

Purpose

Declares independent variables for inclusion into conditional variance equation.

Library

fanpac

Format

setCVIndEqs name list ;

Input

name Name of time series for this set of independent. variables

list List of names of independent variables.

Global Output

fan CVIndEquations L×K character vector, names of independent variables for each
equation.

Remarks

An equation is associated with each time series. For multivariate models, call
setCVIndEqs for each time series, listing the independent variables by name in each
call:

setCVIndEqs msft logVol1 SandP

setCVIndEqs intc logVol2 SandP

If time series names are omitted, only one call is permitted and all independent
variables are assumed to be entered in all equations.

setCVIndEqs logVol1 logVol2 SandP

Source

fanpac.src

118



Keyword Reference

3. FANPAC KEYWORD REFERENCE setDataset

Purpose

Sets dataset name for analysis.

Library

fanpac

Format

setDataset name [newname];

Input

name Name of file containing data.

newname If name is not the name of a GAUSS data set, a GAUSS data set will be
created with name newname from the data in name.

Global Input

fan VarNames Scalar or K×1 character vector, column numbers
– or –

variable names of the columns

of the data in the data file. If name is not a GAUSS data set file,
fan VarNames is required to name the variables in the data set.

If fan VarNames is set to scalar number of columns, the variables in
the data file will be given labels X1, X2..... If fan VarNames is scalar
missing (default), it is assumed that the data file contains a single
column of data.

Global Output

fan dataset String, name of GAUSS data set.

Remarks

If name is not a GAUSS data set file or a DRI database, FANPAC assumes that name
is a file containing the data.

If one of the columns in the GAUSS data set is labeled DATE, FANPAC will assume
that this variable is a date variable in the format yyyymmddhhmmss.

If the data file is not a GAUSS data set file or DRI database, and one of the variable
names in fan VarNames is DATE, FANPAC will assume that the associated column

119



setDataset 3. FANPAC KEYWORD REFERENCE

in the data on that file is a date variable. The format of the date in that file can be
mm/dd/yy or mm/dd/yyyy or yyyymmdd , and it will be put by FANPAC into the
yyyymmddhhmmss format.

If the data in the data file are in the nonstandard order, i.e., from most recent date at
the top to the oldest date at the bottom, FANPAC reverses the order of the data in the
GAUSS data set generated from the data. This will also occur if any of the dates are
out of order. If the data are stored in a GAUSS data set, this check will not be made.

Example

library fanpac,pgraph;

session nissan ’Analysis of Nissan daily log-returns’;

setVarNames date nsany;

setDataset nsany.asc;

setSeries nsany;

estimate run1 garch(1,3);

showResults;

Source

fanpac.src

120



Keyword Reference

3. FANPAC KEYWORD REFERENCE setIndEqs

Purpose

Declares independent variables.

Library

fanpac

Format

setIndEqs name list ;

Input

name Name of time series for this set of independent variables.

list List of names of independent variables.

Global Output

fan IndEquations L×K matrix, indicator matrix for coefficients to be estimated.

Remarks

An equation is associated with each time series. For multivariate models, call
setIndEqs for each time series, listing the independent variables by name in each call:

setIndEqs msft logVol1 SandP

setIndEqs intc logVol2 SandP

If setIndEqs is not called for a particular dependent variable, coefficients for all
independent variables will be estimated for that dependent variable.

Source

fanpac.src

121



setInferenceType 3. FANPAC KEYWORD REFERENCE

Purpose

Sets type of statistical inference.

Library

fanpac

Format

setInferenceType [type];

Input

type If omitted, standard errors computed from covariance matrix of
parameters are computed. Otherwise, set to

WALD inversion of Wald statistic,

PFL inversion of LR statistic,

SE standard errors computed from covariance matrix of parameters.

Source

fanpac.src

122



Keyword Reference

3. FANPAC KEYWORD REFERENCE setIndVars

Purpose

Declares exogenous or independent variables.

Library

fanpac

Format

setIndVars list ;

Input

list List of names of independent variables for current session.

Global Output

fan IndvarNames L×K character vector, names of independent variables for each
equation.

Source

fanpac.src

123



setLagTruncation 3. FANPAC KEYWORD REFERENCE

Purpose

Sets number of lags INCLUDED in analysis for FIGARCH models.

Library

fanpac

Format

setLagTruncation num;

Input

num Number of lags included.

Remarks

The conditional variance in the FIGARCH(p,q) model is the sum of an infinite series of
prior conditional variances. In practice, the log-likelihood is computed from available
data; and this means that the calculation of the conditional variance will be truncated.
To minimize this error, the log-probabilities for initial observations can be excluded
from the log-likelihood. The default is one-half of the observations. To change this
specification, setLagTruncation can be set to some other value that determines the
number of observations to be included.

Source

fanpac.src

124



Keyword Reference

3. FANPAC KEYWORD REFERENCE setLagInitialization

Purpose

Sets number of lags EXCLUDED in analysis for FIGARCH models.

Library

fanpac

Format

setLagInitialization num;

Input

num Number of lags included.

Remarks

The conditional variance in the FIGARCH(p,q) model is the sum of an infinite series of
prior conditional variances. In practice, the log-likelihood is computed from available
data; and this means that the calculation of the conditional variance will be truncated.
To minimize this error, the log-probabilities for initial observations can be excluded
from the log-likelihood. The default is one-half of the observations. To change this
specification setLagInitialization can be set to some other value that determines the
number of observations to be excluded.

Source

fanpac.src

125



setLjungBoxOrder 3. FANPAC KEYWORD REFERENCE

Purpose

Sets order for Ljung-Box statistic.

Library

fanpac

Format

setLjungBoxOrder order ;

Input

order Number of autocorrelations included in the Ljung-Box test statistic. It
must be less than the total number of observations.

Source

fanpac.src

126



Keyword Reference

3. FANPAC KEYWORD REFERENCE setOutputFile

Purpose

Sets output file name and status.

Library

fanpac

Format

setOutputFile filename [action];

Input

filename Output file is created with this name.

action String. If absent, output file is turned on, otherwise, set to

ON output file is turned on,

OFF output file is turned off,

RESET output file is reset.

Source

fanpac.src

127



setRange 3. FANPAC KEYWORD REFERENCE

Purpose

sets range of time series to be analyzed

Library

fanpac

Format

setRange start end ;

Input

start Scalar, starting row or date to be included in series. If row number, it
must be greater than 1 and less than end .

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting start to START is equivalent to first observation.

end scalar, ending row or date to be included in series. If row number, it
must be greater than start and less than or equal to the number of
observations.

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting end to END is equivalent to last observation.

Global Output

fan Series N×L matrix, time series.

fan Date N/times1 vector, dates of observations in yyyymmmdd format. This
requires that the session dataset contain a variable in that same format
with variable name “date.”

Source

fanpac.src

128



Keyword Reference

3. FANPAC KEYWORD REFERENCE setSeries

Purpose

Declares time series to be analyzed.

Library

fanpac

Format

setSeries list [start end];

Input

list List of names of time series.

start Scalar, starting row or date to be included in series. If row number, it
must be greater than 1 and less than end .

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting start to START is equivalent to first observation.

end Scalar, ending row or date to be included in series. If row number, it
must be greater than start and less than or equal to the number of
observations.

If date, it may be in one of the formats, yyyymmdd , yyyymmddhhmmss,
mm/dd/yy , mm/dd/yyyy , where if yy the 20th century is assumed. The
session dataset must also have included a variable with the variable name
“date.”

Setting end to END is equivalent to last observation.

Global Output

fan Series N×L matrix, time series.

fan SeriesNames L×1 character vector, names of time series.

fan Date N/times1 vector, dates of observations in yyyymmmdd format. This
requires that the session dataset contain a variable in that same format
with variable name “date.”

Source

fanpac.src

129



setVarNames 3. FANPAC KEYWORD REFERENCE

Purpose

Sets variable names for ASCII file containing data.

Library

fanpac

Format

setVarNames list ;

Input

list Variable names of the columns of an ASCII file containing data
– or –

scalar number of columns of data in ASCII file

.

Global Output

fan VarNames K×1 character vector, variable names of data in the ASCII data file.

Remarks

If list is a scalar number of columns, variables in data file will be given labels X1, X2,....

Source

fanpac.src

130



Keyword Reference

3. FANPAC KEYWORD REFERENCE showEstimates

Purpose

Displays estimates and their lables in a simple format

Library

fanpac

Format

showEstimates list ;

Input

list List of names of estimation runs. If no run names are provided, all runs
are displayed.

Source

fanpac.src

131



showResults 3. FANPAC KEYWORD REFERENCE

Purpose

Displays results of a run.

Library

fanpac

Format

showResults list ;

Input

list List of names of estimation runs. If no run names are provided, all runs
are displayed.

Example

library fanpac,pgraph;

session test ’test session’;

setDataset stocks;

setSeries intel;

setOutputfile test.out reset;

estimate run1 garch;

estimate run2 garch(2,1);

estimate run3 arima(1,2,1);

showResults;

Source

fanpac.src

132



Keyword Reference

3. FANPAC KEYWORD REFERENCE showRuns

Purpose

Displays a List of current runs in a session.

Library

fanpac

Format

showRuns;

Source

fanpac.src

133



simulate 3. FANPAC KEYWORD REFERENCE

Purpose

Simulates data with GARCH errors.

Library

fanpac

Format

simulate starray ;

Input

starray K×1 string array, simulation parameters

Model model name (required).

NumObs number of observations (required).

DatasetName name of Gauss data set into which simulated data will be
put (required).

TimeSeriesName variable label of time series.

Omega GARCH process constant, required for GARCH models.

GarchCoefficients GARCH coefficients, required for GARCH models.

ArchCoefficients ARCH coefficients, required for GARCH models.

ARCoefficients AR coefficients, required for ARIMA models.

MACoefficients MA coefficients, required for ARIMA models.

RegCoefficients Regression coefficients, required for OLS models.

DFCoefficient degrees of freedom parameter for t-density. If set,
t-density will be used; otherwise Normal density.

Constant constant (required).

Seed seed for random number generator (optional).

Example

library fanpac;

string ss = {

"Model garch(1,2)",

"NumObs 300",

"DatasetName example",

"TimeSeriesName Y",

134



Keyword Reference

3. FANPAC KEYWORD REFERENCE simulate

"Omega .2",

"GarchParameter .5",

"ArchParameter .4 -.1",

"Constant .5",

"Seed 7351143"

};

simulate ss;

Source

fansim.src

135



testSR 3. FANPAC KEYWORD REFERENCE

Purpose

Computes skew and kurtosis statistics and a heteroskedastic-consistent Ljung-Box
statistic for standardized residuals as well as time series.

Library

fanpac

Format

testSR list ;

Input

list List of runs.

Remarks

The Ljung-Box statistic is the heteroskedastic-consistent statistic described in
Gouriéroux, 1997.

Source

fanpac.src

136



Procedure Reference

Chapter 4

FANPAC Procedure Reference

137



arch forecast 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes time series and conditional variance forecasts.

Library

fanpac

Format

{ r ,s } = arch forecast(b,q ,period ,xp);

Input

b K × 1 vector, coefficients.

q Scalar, order of ARCH parameters.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

Output

r L× 1 vector, L period forecast of times series.

s L× 1 vector, L period forecast of conditional variance.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if ARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if ARCH-in-cv model, else zero.

138



Procedure Reference

4. FANPAC PROCEDURE REFERENCE arch forecast

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

ARCH-in-mean coefficient, if any,

ARCH-in-cv coefficients, if any.

Source

arch.src

139



arch n 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes Normal density ARCH log-likelihood.

Library

fanpac

Format

y = arch n(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N × k matrix, independent variables. If none, set to missing value.

fan q Scalar, order of ARCH parameters.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if ARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if ARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan q ARCH parameters,

140



Procedure Reference

4. FANPAC PROCEDURE REFERENCE arch n

constant in time series equation,

regression coefficients, if any,

ARCH-in-mean coefficient, if any,

ARCH-in-cv coefficients, if any.

The ARCH model cannot be both ARCH-in-mean and ARCH-in-CV.

Source

arch.src

141



arch n grd 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes gradient of Normal density ARCH log-likelihood.

Library

fanpac

Format

y = arch n grd(b);

Input

b K × 1 vector, coefficients.

Output

y N ×K matrix, gradient matrix.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan q Scalar, order of ARCH parameters.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any.

Source

arch.src

142



Procedure Reference

4. FANPAC PROCEDURE REFERENCE arch t

Purpose

Computes t-density ARCH log-likelihood.

Library

fanpac

Format

y = arch t(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N × k matrix, independent variables. If none, set to missing value.

fan q Scalar, order of ARCH parameters.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if ARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if ARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan p GARCH parameters,

143



arch t 4. FANPAC PROCEDURE REFERENCE

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

ARCH-in-mean coefficient, if any,

ARCH-in-cv coefficients, if any.

residual variance,

ν.

Source

arch.src

144



Procedure Reference

4. FANPAC PROCEDURE REFERENCE arch t grd

Purpose

Computes gradient of t-density ARCH log-likelihood.

Library

fanpac

Format

y = arch t grd(b);

Input

b K × 1 vector, coefficients.

Output

y N ×K matrix, gradient matrix.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan q Scalar, order of ARCH parameters.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

residual variance,

ν.

Source

arch.src

145



arch ineq 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes ARCH model Nelson and Cao constraints.

Library

fanpac

Format

y = arch ineq(b);

Input

b K × 1 vector, coefficients.

Output

y L× 1 vector, roots.

Global Input

fan q Scalar, order of ARCH parameters.

Remarks

Computes Nelson and Cao (1992) constraint function. When the statement

_nlp_IneqProc = &arch_ineq;

the appropriate constraints are placed on the ARCH model such that the parameters
satisfy the constraints described in Nelson and Cao (1992).

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any.

Source

arch.src

146



Procedure Reference

4. FANPAC PROCEDURE REFERENCE arch cv

Purpose

Computes ARCH conditional variances.

Library

fanpac

Format

h = arch cv(b,q);

Input

b K × 1 vector, coefficients.

q scalar, order of ARCH parameters.

Output

h N × 1 vector, conditional variances.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N × k matrix, independent variables. If none, set to missing value.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if ARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if ARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan q ARCH parameters,

147



arch cv 4. FANPAC PROCEDURE REFERENCE

constant in time series equation,

regression coefficients, if any,

ARCH-in-mean coefficient, if any,

ARCH-in-cv coefficients, if any.

The ARCH model cannot be both ARCH-in-mean and ARCH-in-CV.

Source

arch.src

148



Procedure Reference

4. FANPAC PROCEDURE REFERENCE arch sr

Purpose

Computes ARCH standardized residuals.

Library

fanpac

Format

h = arch sr(b,q);

Input

b K × 1 vector, coefficients.

q scalar, order of ARCH parameters.

Output

h N × 1 vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if ARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if ARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan q ARCH parameters,

149



arch sr 4. FANPAC PROCEDURE REFERENCE

constant in time series equation,

regression coefficients, if any,

ARCH-in-mean coefficient, if any,

ARCH-in-cv coefficients, if any.

The ARCH model cannot be both ARCH-in-mean and ARCH-in-CV.

Source

arch.src

150



Procedure Reference

4. FANPAC PROCEDURE REFERENCE arch roots

Purpose

Computes roots of ARCH model.

Library

fanpac

Format

r = arch roots(b,q);

Input

b K × 1 vector, coefficients.

q scalar, order of ARCH parameters.

Output

r L× 1 vector, roots.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if ARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if ARCH-in-cv model, else zero.

Remarks

Computes roots of

1− α1Z − α2Z
2 + · · ·+ αqZ

q

where the αi are the ARCH parameters.

The parameters in b are expected in the following order:

151



arch roots 4. FANPAC PROCEDURE REFERENCE

ω, constant in conditional variance equation,

p GARCH parameters,

q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

ARCH-in-mean coefficient, if any,

ARCH-in-cv coefficients, if any.

The ARCH model cannot be both ARCH-in-mean and ARCH-in-CV.

Source

arch.src

152



Procedure Reference

4. FANPAC PROCEDURE REFERENCE arima forecast

Purpose

Computes time series and conditional variance forecasts.

Library

fanpac

Format

f = arima forecast(b,p,d ,q ,period ,xp);

Input

b K × 1 vector, coefficients.

p Scalar, order of AR parameters.

d Scalar, order of differencing.

q Scalar, order of MA parameters.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

Output

f L× 3 matrix, column 1 gives the lower forecast confidence limit, column
2 the forecasts, and column 3 the upper forecast confidence limits.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

p MA parameters,

q AR parameters,

constant in time series equation,

regression coefficients, if any.

Source

fanarima.src

153



arima n 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes Normal density ARIMA log-likelihood.

Library

fanpac

Format

y = arima n(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of AR parameters.

fan d Scalar, order of differencing.

fan q Scalar, order of MA parameters.

Remarks

The parameters in b are expected in the following order:

fan p AR parameters,

fan q MA parameters,

a constant,

regression coefficients, if any.

Source

fanarima.src

154



Procedure Reference

4. FANPAC PROCEDURE REFERENCE arima t

Purpose

Computes t-density ARIMA log-likelihood.

Library

fanpac

Format

y = arima t(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of AR parameters.

fan d Scalar, order of differencing.

fan q Scalar, order of MA parameters.

Remarks

The parameters in b are expected in the following order:

fan p AR parameters,

fan q MA parameters,

a constant,

regression coefficients, if any,

residual variance,

ν.

Source

fanarima.src

155



arima ineq 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes ARIMA model constraints.

Library

fanpac

Format

y = arima ineq(b);

Input

b K × 1 vector, coefficients.

Output

y L× 1 vector, roots.

Global Input

fan p Scalar, order of AR parameters.

fan d Scalar, order of differencing.

fan q Scalar, order of MA parameters.

Remarks

Constrains the roots of the characteristic polynomials

1− β1Z − β2Z
2 + · · ·+ βpZ

p

where the βi are the MA parameters and

1− α1Z − α2Z
2 + · · ·+ αqZ

q

where the αi are the AR parameters, to be outside the unit circle.

Remarks

The parameters in b are expected in the following order:

fan p AR parameters,

fan q MA parameters,

regression coefficients, if any,

a constant.

Source

fanarima.src

156



Procedure Reference

4. FANPAC PROCEDURE REFERENCE arima n sr

Purpose

Computes Normal density ARIMA standardized residuals.

Library

fanpac

Format

s = arima n sr(b,p,d ,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of AR parameters.

d Scalar, order of differencing.

q Scalar, order of MA parameters.

Output

s N × 1 vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

p AR parameters,

q MA parameters,

a constant,

regression coefficients, if any.

Source

fanarima.src

157



arima t sr 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes t-density ARIMA standardized residuals.

Library

fanpac

Format

s = arima t sr(b,p,d ,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of AR parameters.

d Scalar, order of differencing.

q Scalar, order of MA parameters.

Output

s N × 1 vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

p AR parameters,

q MA parameters,

a constant,

regression coefficients, if any,

residual variance,

ν.

Source

fanarima.src

158



Procedure Reference

4. FANPAC PROCEDURE REFERENCE arima roots

Purpose

Computes roots of ARIMA model.

Library

fanpac

Format

r = arima roots(b,p,d ,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of AR parameters.

d Scalar, order of differencing.

q Scalar, order of MA parameters.

Output

r L× 1 vector, roots.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

Computes roots of

1− β1Z − β2Z
2 + · · ·+ βpZ

p

where the βi are the MA parameters and

1− α1Z − α2Z
2 + · · ·+ αqZ

q

where the αi are the AR parameters.

Remarks

The parameters in b are expected in the following order:

p AR parameters,

q MA parameters,

a constant,

regression coefficients, if any.

Source

fanarima.src

159



bkarch forecast 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes time series and conditional variance forecasts for the multivariate diagonal
vec ARCH model.

Library

fanpac

Format

{ r ,s } = bkarch forecast(b,q ,period ,xp);

Input

b K × 1 vector, coefficients.

q Scalar, order of ARCH parameters.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

Output

r L× 1 vector, L period forecast of times series.

s L× 1 vector, L period forecast of conditional variance.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L ×K matrix, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 vector of constants in conditional variance-covariance equation,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

Source

march.src

160



Procedure Reference

4. FANPAC PROCEDURE REFERENCE bkarch n

Purpose

Computes Normal density multivariate diagonal vec ARCH log-likelihood.

Library

fanpac

Format

y = bkarch n(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan q Scalar, order of BKARCH parameters.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any.

Source

march.src

161



bkarch t 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes t-density multivariate diagonal vec ARCH log-likelihood.

Library

fanpac

Format

y = bkarch t(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan q Scalar, order of BKARCH parameters.

fan IndEquations L ×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

Remarks

The parameters in b are expected in the following order:

L ω, L× 1 vector of constants in conditional variance-covariance equation,

fan p GARCH parameters,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

nonredundant portion of residual variance-covariance matrix,

ν.

Source

march.src

162



Procedure Reference

4. FANPAC PROCEDURE REFERENCE bkarch cv

Purpose

Computes multivariate diagonal vec ARCH conditional variance-covariance matrices.

Library

fanpac

Format

h = bkarch cv(b,q);

Input

b K × 1 vector, coefficients.

q Scalar, order of ARCH parameters.

Output

h N × L ∗ (L + 1)/2 vector, conditional variance-covariance matrices.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

Remarks

The variance-covariance matrix for the t-th observation is stored in transposed vech-ed
form in the t-th row of h.

The parameters in b are expected in the following order:

ω, L× 1 vector of constants in conditional variance-covariance equation,

q ARCH parameters,

constant in time series equation,

regression coefficients, if any.

Source

march.src

163



bkarch sr 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes ARCH standardized residuals.

Library

fanpac

Format

s = bkarch sr(b,q);

Input

b K × 1 vector, coefficients.

q Scalar, order of ARCH parameters.

Output

s N × L vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L ×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

Remarks

The parameters in b are expected in the following order:

ω, L × 1 vector of constants in conditional variance-covariance equation,

q ARCH parameters,

constant in time series equation,

regression coefficients, if any.

Source

march.src

164



Procedure Reference

4. FANPAC PROCEDURE REFERENCE bkgarch forecast

Purpose

Computes time series and conditional variance forecasts for the multivariate diagonal
vec GARCH model.

Library

fanpac

Format

{ r ,s } = bkgarch forecast(b,p,q ,period ,xp);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

Output

r L× 1 vector, L period forecast of times series.

s L× 1 vector, L period forecast of conditional variance.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K matrix, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

Remarks

The parameters in b are expected in the following order:

165



bkgarch forecast 4. FANPAC PROCEDURE REFERENCE

ω, L × 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

Source

bkgarch.src

166



Procedure Reference

4. FANPAC PROCEDURE REFERENCE bkgarch n

Purpose

Computes Normal density multivariate diagonal vec GARCH log-likelihood.

Library

fanpac

Format

y = bkgarch n(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

Source

bkgarch.src

167



bkgarch t 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes t-density multivariate diagonal vec GARCH log-likelihood.

Library

fanpac

Format

y = bkgarch t(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

fan IndEquations L ×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

Remarks

The parameters in b are expected in the following order:

ω, L × 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

nonredundant portion of residual variance-covariance matrix,

ν.

Source

bkgarch.src

168



Procedure Reference

4. FANPAC PROCEDURE REFERENCE bkgarch cv

Purpose

Computes multivariate diagonal vec GARCH conditional variance-covariance matrices.

Library

fanpac

Format

h = bkgarch cv(b,p,q);

Input

b K × 1 vector, coefficients,

p Scalar, order of GARCH parameters,

q Scalar, order of ARCH parameters.

Output

h N × L ∗ (L + 1)/2 vector, conditional variance-covariance matrices.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

Remarks

The variance-covariance matrix for the t-th observation is stored in transposed vech-ed
form in the t-th row of h.

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

Source

bkgarch.src

169



bkgarch sr 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes GARCH standardized residuals.

Library

fanpac

Format

s = bkgarch sr(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

s N × L vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L ×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

Remarks

The parameters in b are expected in the following order:

ω, L × 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

Source

bkgarch.src

170



Procedure Reference

4. FANPAC PROCEDURE REFERENCE cdvarch forecast

Purpose

Computes time series and conditional variance forecasts for the multivariate constant
correlation diagonal vec ARCH model.

Library

fanpac

Format

{ r ,s } = cdvarch forecast(b,q ,period ,xp);

Input

b K × 1 vector, coefficients.

q Scalar, order of ARCH parameters.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

Output

r L× 1 vector, L period forecast of times series.

s L× 1 vector, L period forecast of conditional variance.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K matrix, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L×K matrix, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVARCH-in-cv model, else zero.

171



cdvarch forecast 4. FANPAC PROCEDURE REFERENCE

Remarks

The parameters in b are expected in the following order:

ω, L × 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, CDVARCH-in-mean coefficients, if any,

L×K matrix, CDVARCH-in-cv coefficients, if any.

Source

cdvarch.src

172



Procedure Reference

4. FANPAC PROCEDURE REFERENCE cdvarch n

Purpose

Computes Normal density multivariate constant correlation diagonal vec ARCH
log-likelihood.

Library

fanpac

Format

y = cdvarch n(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan q Scalar, order of CDVARCH parameters.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean nonzero if CDVARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

173



cdvarch n 4. FANPAC PROCEDURE REFERENCE

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, CDVARCH-in-mean coefficients, if any,

L×K matrix, CDVARCH-in-cv coefficients, if any.

The CDVARCH model cannot be both CDVARCH-in-mean and CDVARCH-in-CV.

Source

cdvarch.src

174



Procedure Reference

4. FANPAC PROCEDURE REFERENCE cdvarch t

Purpose

Computes t-density multivariate constant correlation diagonal vec ARCH log-likelihood.

Library

fanpac

Format

y = cdvarch t(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan q Scalar, order of CDVARCH parameters.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

175



cdvarch t 4. FANPAC PROCEDURE REFERENCE

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, CDVARCH-in-mean coefficients, if any,

L×K matrix, CDVARCH-in-cv coefficients, if any,

nonredundant portion of residual variance-covariance matrix,

ν.

Source

cdvarch.src

176



Procedure Reference

4. FANPAC PROCEDURE REFERENCE cdvarch cv

Purpose

Computes multivariate constant correlation diagonal vec ARCH conditional
variance-covariance matrices.

Library

fanpac

Format

h = cdvarch cv(b,q);

Input

b K × 1 vector, coefficients.

q Scalar, order of ARCH parameters.

Output

h N × L ∗ (L + 1)/2 vector, conditional variance-covariance matrices.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVARCH-in-cv model, else zero.

Remarks

The variance-covariance matrix for the t-th observation is stored in transposed vech-ed
form in the t-th row of h.

The parameters in b are expected in the following order:

177



cdvarch cv 4. FANPAC PROCEDURE REFERENCE

ω, L × 1 constant vector in conditional variance equation,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, CDVARCH-in-mean coefficients, if any,

L×K matrix, CDVARCH-in-cv coefficients, if any.

The CDVARCH model cannot be both CDVARCH-in-mean and CDVARCH-in-CV.

Source

cdvarch.src

178



Procedure Reference

4. FANPAC PROCEDURE REFERENCE cdvarch sr

Purpose

Computes standardized residuals for constant correlation diagonal vec ARCH model.

Library

fanpac

Format

s = cdvarch sr(b,q);

Input

b K × 1 vector, coefficients.

q Scalar, order of ARCH parameters.

Output

s N × L vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

L× fan q ARCH parameters,

179



cdvarch sr 4. FANPAC PROCEDURE REFERENCE

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, CDVARCH-in-mean coefficients, if any,

L×K matrix, CDVARCH-in-cv coefficients, if any.

The CDVARCH model cannot be both CDVARCH-in-mean and CDVARCH-in-CV.

Source

cdvarch.src

180



Procedure Reference

4. FANPAC PROCEDURE REFERENCE cdvgarch forecast

Purpose

Computes time series and conditional variance forecasts for the multivariate constant
correlation diagonal vec GARCH model.

Library

fanpac

Format

{ r ,s } = cdvgarch forecast(b,p,q ,period ,xp);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

Output

r L× 1 vector, L period forecast of times series.

s L× 1 vector, L period forecast of conditional variance.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K matrix, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L×K matrix, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVGARCH-in-mean model, else zero.

181



cdvgarch forecast 4. FANPAC PROCEDURE REFERENCE

fan inCV Scalar, nonzero if CDVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L × 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, CDVGARCH-in-mean coefficients, if any,

L×K matrix, CDVGARCH-in-cv coefficients, if any.

Source

mgarch.src

182



Procedure Reference

4. FANPAC PROCEDURE REFERENCE cdvgarch n

Purpose

Computes Normal density multivariate constant correlation diagonal vec GARCH
log-likelihood.

Library

fanpac

Format

y = cdvgarch n(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean nonzero if CDVGARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

183



cdvgarch n 4. FANPAC PROCEDURE REFERENCE

ω, L × 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, CDVGARCH-in-mean coefficients, if any,

L×K matrix, CDVGARCH-in-cv coefficients, if any.

The CDVGARCH model cannot be both CDVGARCH-in-mean and
CDVGARCH-in-CV.

Source

mgarch.src

184



Procedure Reference

4. FANPAC PROCEDURE REFERENCE cdvgarch t

Purpose

Computes t-density multivariate constant correlation diagonal vec GARCH
log-likelihood.

Library

fanpac

Format

y = cdvgarch t(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVGARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

185



cdvgarch t 4. FANPAC PROCEDURE REFERENCE

ω, L × 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, CDVGARCH-in-mean coefficients, if any,

L×K matrix, CDVGARCH-in-cv coefficients, if any,

nonredundant portion of residual variance-covariance matrix,

ν.

Source

mgarch.src

186



Procedure Reference

4. FANPAC PROCEDURE REFERENCE cdvgarch cv

Purpose

Computes multivariate constant correlation diagonal vec GARCH conditional
variance-covariance matrices.

Library

fanpac

Format

h = cdvgarch cv(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

h N × L ∗ (L + 1)/2 vector, conditional variance-covariance matrices.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVGARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVGARCH-in-cv model, else zero.

Remarks

The variance-covariance matrix for the t-th observation is stored in transposed vech-ed
form in the t-th row of h.

The parameters in b are expected in the following order:

187



cdvgarch cv 4. FANPAC PROCEDURE REFERENCE

ω, L × 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, CDVGARCH-in-mean coefficients, if any,

L×K matrix, CDVGARCH-in-cv coefficients, if any.

The CDVGARCH model cannot be both CDVGARCH-in-mean and
CDVGARCH-in-CV.

Source

mgarch.src

188



Procedure Reference

4. FANPAC PROCEDURE REFERENCE cdvgarch sr

Purpose

Computes standardized residuals for constant correlation diagonal vec GARCH model.

Library

fanpac

Format

s = cdvgarch sr(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

s N × L vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVGARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

189



cdvgarch sr 4. FANPAC PROCEDURE REFERENCE

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, CDVGARCH-in-mean coefficients, if any,

L×K matrix, CDVGARCH-in-cv coefficients, if any.

The CDVGARCH model cannot be both CDVGARCH-in-mean and
CDVGARCH-in-CV.

Source

mgarch.src

190



Procedure Reference

4. FANPAC PROCEDURE REFERENCE dvarch forecast

Purpose

Computes time series and conditional variance forecasts for the multivariate diagonal
vec ARCH model.

Library

fanpac

Format

{ r ,s } = dvarch forecast(b,q ,period ,xp);

Input

b K × 1 vector, coefficients.

q Scalar, order of ARCH parameters.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

Output

r L× 1 vector, L period forecast of times series.

s L× 1 vector, L period forecast of conditional variance.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K matrix, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L×K matrix, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if DVARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if DVARCH-in-cv model, else zero.

191



dvarch forecast 4. FANPAC PROCEDURE REFERENCE

Remarks

The parameters in b are expected in the following order:

ω, L × 1 constant vector in conditional variance equation,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, DVARCH-in-mean coefficients, if any,

L×K matrix, DVARCH-in-cv coefficients, if any.

Source

dvarch.src

192



Procedure Reference

4. FANPAC PROCEDURE REFERENCE dvarch n

Purpose

Computes Normal density multivariate diagonal vec ARCH log-likelihood.

Library

fanpac

Format

y = dvarch n(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan q Scalar, order of dvarch parameters.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean nonzero if DVARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if DVARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

L× fan q ARCH parameters,

193



dvarch n 4. FANPAC PROCEDURE REFERENCE

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, DVARCH-in-mean coefficients, if any,

L×K matrix, DVARCH-in-cv coefficients, if any.

The DVARCH model cannot be both DVARCH-in-mean and DVARCH-in-CV.

Source

dvarch.src

194



Procedure Reference

4. FANPAC PROCEDURE REFERENCE dvarch t

Purpose

Computes t-density multivariate diagonal vec ARCH log-likelihood.

Library

fanpac

Format

y = dvarch t(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan q Scalar, order of dvarch parameters.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if DVARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if DVARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

L× fan q ARCH parameters,

195



dvarch t 4. FANPAC PROCEDURE REFERENCE

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, DVARCH-in-mean coefficients, if any,

L×K matrix, DVARCH-in-cv coefficients, if any.

nonredundant portion of residual variance-covariance matrix,

ν.

Source

dvarch.src

196



Procedure Reference

4. FANPAC PROCEDURE REFERENCE dvarch cv

Purpose

Computes multivariate diagonal vec ARCH conditional variance-covariance matrices.

Library

fanpac

Format

h = dvarch cv(b,q);

Input

b K × 1 vector, coefficients.

q Scalar, order of ARCH parameters.

Output

h N × L ∗ (L + 1)/2 vector, conditional variance-covariance matrices.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if DVARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if DVARCH-in-cv model, else zero.

Remarks

The variance-covariance matrix for the t-th observation is stored in transposed vech-ed
form in the t-th row of h.

The parameters in b are expected in the following order:

197



dvarch cv 4. FANPAC PROCEDURE REFERENCE

ω, L × 1 constant vector in conditional variance equation,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, DVARCH-in-mean coefficients, if any,

L×K matrix, DVARCH-in-cv coefficients, if any.

The DVARCH model cannot be both DVARCH-in-mean and DVARCH-in-CV.

Source

dvarch.src

198



Procedure Reference

4. FANPAC PROCEDURE REFERENCE dvarch sr

Purpose

Computes ARCH standardized residuals.

Library

fanpac

Format

s = dvarch sr(b,q);

Input

b K × 1 vector, coefficients.

q Scalar, order of ARCH parameters.

Output

s N × L vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if DVARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if DVARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

L× fan q ARCH parameters,

199



dvarch sr 4. FANPAC PROCEDURE REFERENCE

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, DVARCH-in-mean coefficients, if any,

L×K matrix, DVARCH-in-cv coefficients, if any.

The DVARCH model cannot be both DVARCH-in-mean and DVARCH-in-CV.

Source

dvarch.src

200



Procedure Reference

4. FANPAC PROCEDURE REFERENCE dvgarch forecast

Purpose

Computes time series and conditional variance forecasts for the multivariate diagonal
vec GARCH model.

Library

fanpac

Format

{ r ,s } = dvgarch forecast(b,p,q ,period ,xp);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

Output

r L× 1 vector, L period forecast of times series.

s L× 1 vector, L period forecast of conditional variance.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K matrix, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L×K matrix, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if DVGARCH-in-mean model, else zero.

201



dvgarch forecast 4. FANPAC PROCEDURE REFERENCE

fan inCV Scalar, nonzero if DVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L × 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, DVGARCH-in-mean coefficients, if any,

L×K matrix, DVGARCH-in-cv coefficients, if any.

Source

mgarch.src

202



Procedure Reference

4. FANPAC PROCEDURE REFERENCE dvgarch n

Purpose

Computes Normal density multivariate diagonal vec GARCH log-likelihood.

Library

fanpac

Format

y = dvgarch n(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × L vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean nonzero if DVGARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if DVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

203



dvgarch n 4. FANPAC PROCEDURE REFERENCE

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, DVGARCH-in-mean coefficients, if any,

L×K matrix, DVGARCH-in-cv coefficients, if any.

The DVGARCH model cannot be both DVGARCH-in-mean and DVGARCH-in-CV.

Source

mgarch.src

204



Procedure Reference

4. FANPAC PROCEDURE REFERENCE dvgarch t

Purpose

Computes t-density multivariate diagonal vec GARCH log-likelihood.

Library

fanpac

Format

y = dvgarch t(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if DVGARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if DVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

205



dvgarch t 4. FANPAC PROCEDURE REFERENCE

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, DVGARCH-in-mean coefficients, if any,

L×K matrix, DVGARCH-in-cv coefficients, if any.

nonredundant portion of residual variance-covariance matrix,

ν.

Source

mgarch.src

206



Procedure Reference

4. FANPAC PROCEDURE REFERENCE dvgarch cv

Purpose

Computes multivariate diagonal vec GARCH conditional variance-covariance matrices.

Library

fanpac

Format

h = dvgarch cv(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

h N × L ∗ (L + 1)/2 vector, conditional variance-covariance matrices.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

fan inMean Scalar, nonzero if DVGARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if DVGARCH-in-cv model, else zero.

207



dvgarch cv 4. FANPAC PROCEDURE REFERENCE

Remarks

The variance-covariance matrix for the t-th observation is stored in transposed vech-ed
form in the t-th row of h.

The parameters in b are expected in the following order:

ω, L × 1 constant vector in conditional variance equation,

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, DVGARCH-in-mean coefficients, if any,

L×K matrix, DVGARCH-in-cv coefficients, if any.

The DVGARCH model cannot be both DVGARCH-in-mean and DVGARCH-in-CV.

Source

mgarch.src

208



Procedure Reference

4. FANPAC PROCEDURE REFERENCE dvgarch sr

Purpose

Computes GARCH standardized residuals.

Library

fanpac

Format

s = dvgarch sr(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

s N × L vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L ×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if DVGARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if DVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, L× 1 constant vector in conditional variance equation,

209



dvgarch sr 4. FANPAC PROCEDURE REFERENCE

L× fan p GARCH parameters,

L× fan q ARCH parameters,

L× 1 constant vector in time series equation,

regression coefficients, if any.

L× 1 vector, DVGARCH-in-mean coefficients, if any,

L×K matrix, DVGARCH-in-cv coefficients, if any.

The DVGARCH model cannot be both DVGARCH-in-mean and DVGARCH-in-CV.

Source

mgarch.src

210



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch e

Purpose

Computes log-likelihood for exponential GARCH model with generalized error density.

Library

fanpac

Format

y = garch e(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan p GARCH parameters,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

ρ,

φ.

Source

egarch.src

211



garch e forecast 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes time series and conditional variance forecasts.

Library

fanpac

Format

{ r ,s } = garch e forecast(b,p,q ,period ,xp);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

Output

r L× 1 vector, L period forecast of times series.

s L× 1 vector, L period forecast of conditional variance.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan p GARCH parameters,

fan q ARCH parameters,

212



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch e forecast

constant in time series equation,

regression coefficients, if any,

ρ,

φ.

Source

egarch.src

213



garch e grd 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes gradient of log-likelihood for exponential GARCH model with generalized
error density.

Library

fanpac

Format

y = garch e grd(b);

Input

b K × 1 vector, coefficients.

Output

y N ×K matrix, gradient matrix.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan p GARCH parameters,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

ρ,

φ.

Source

egarch.src

214



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch e cv

Purpose

Computes EGARCH conditional variances.

Library

fanpac

Format

h = garch e cv(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

h N × 1 vector, conditional variances.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

p GARCH parameters,

q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

ρ,

φ.

Source

egarch.src

215



garch e sr 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes EGARCH standardized residuals.

Library

fanpac

Format

s = garch e sr(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

s N × 1 vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

p GARCH parameters,

q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

ρ,

φ.

Source

egarch.src

216



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch fi forecast

Purpose

Computes time series and conditional variance forecasts.

Library

fanpac

Format

{ r ,s } = garch fi forecast(b,p,q ,period ,xp);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

Output

r L× 1 vector, L period forecast of time series.

s L× 1 vector, L period forecast of conditional variance.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K matrix, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L×K matrix, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVGARCH-in-mean model, else zero.

217



garch fi forecast 4. FANPAC PROCEDURE REFERENCE

fan inCV Scalar, nonzero if CDVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan p GARCH parameters,

fan q ARCH parameters,

d, dimension parameter,

constant in time series equation,

regression coefficients, if any,

Garch-in-mean coefficient, if any,

Garch-in-cv coefficients, if any.

Source

figarch.src

218



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch fi n

Purpose

Computes Normal density FIGARCH log-likelihood.

Library

fanpac

Format

y = garch fi n(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

fan Init Scalar, number of lags not included in likelihood.

fan IndEquations L×K matrix, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L×K matrix, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVGARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

219



garch fi n 4. FANPAC PROCEDURE REFERENCE

ω, constant in conditional variance equation,

fan p GARCH parameters,

fan q ARCH parameters,

d, dimension parameter,

constant in time series equation,

regression coefficients, if any,

Garch-in-mean coefficient, if any,

Garch-in-cv coefficients, if any.

Source

figarch.src

220



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch fi t

Purpose

Computes t-density FIGARCH log-likelihood.

Library

fanpac

Format

y = garch fi t(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

fan Init Scalar, number of lags not included in likelihood

fan IndEquations L×K matrix, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L×K matrix, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVGARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

221



garch fi t 4. FANPAC PROCEDURE REFERENCE

ω, constant in conditional variance equation,

fan p GARCH parameters,

fan q ARCH parameters,

d, dimension parameter,

constant in time series equation,

regression coefficients, if any,

Garch-in-mean coefficient, if any,

Garch-in-cv coefficients, if any.

ν.

Source

figarch.src

222



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch fi cv

Purpose

Computes FIGARCH conditional variances.

Library

fanpac

Format

h = garch fi cv(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

h N × 1 vector, conditional variances.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations L×K matrix, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations L×K matrix, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if CDVGARCH-in-mean model, else zero.

fan inCV Scalar, nonzero if CDVGARCH-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

223



garch fi cv 4. FANPAC PROCEDURE REFERENCE

p GARCH parameters,

q ARCH parameters,

d , dimension parameter,

constant in time series equation,

regression coefficients, if any,

Garch-in-mean coefficient, if any,

Garch-in-cv coefficients, if any.

Source

figarch.src

224



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch fi sr

Purpose

Computes FIGARCH standardized residuals.

Library

fanpac

Format

s = garch fi sr(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

s N × 1 vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

p GARCH parameters,

q ARCH parameters,

d , dimension parameter,

constant in time series equation,

regression coefficients, if any.

Source

figarch.src

225



garch forecast 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes time series and conditional variance forecasts.

Library

fanpac

Format

{ r ,s } = garch forecast(b,p,q ,period ,xp);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

Output

r L× 1 vector, L period forecast of time series.

s L× 1 vector, L period forecast of conditional variance.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if Garch-in-mean model, else zero.

226



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch forecast

fan inCV Scalar, nonzero if Garch-in-cv model, else zero.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan p GARCH parameters,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

Garch-in-mean coefficient, if any,

Garch-in-cv coefficients, if any.

The Garch model cannot be both Garch-in-mean and Garch-in-CV.

Source

garch.src

227



garch n 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes Normal density GARCH log-likelihood.

Library

fanpac

Format

y = garch n(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if Garch-in-mean model, else zero.

fan inCV Scalar, nonzero if Garch-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

228



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch n

fan p GARCH parameters,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

Garch-in-mean coefficient, if any,

Garch-in-cv coefficients, if any.

The Garch model cannot be both Garch-in-mean and Garch-in-CV.

Source

garch.src

229



garch t 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes t-density GARCH log-likelihood.

Library

fanpac

Format

y = garch t(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

fan inMean Scalar, nonzero if Garch-in-mean model, else zero.

fan inCV Scalar, nonzero if Garch-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

230



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch t

fan p GARCH parameters,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

Garch-in-mean coefficient, if any,

Garch-in-cv coefficients, if any.

ν.

The Garch model cannot be both Garch-in-mean and Garch-in-CV.

Source

garch.src

231



garch ineq 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes GARCH model Nelson and Cao constraints.

Library

fanpac

Format

y = garch ineq(b);

Input

b K × 1 vector, coefficients.

Output

y L× 1 vector, roots.

Global Input

fan p Scalar, order of GARCH parameters.

fan q Scalar, order of ARCH parameters.

Remarks

Computes Nelson and Cao (1992) constraint function. When the statement

_nlp_IneqProc = &garch_ineq;

the appropriate constraints are placed on the GARCH model such that the parameters
satisfy the constraints described in Nelson and Cao (1992).

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

fan p GARCH parameters,

fan q ARCH parameters,

constant in time series equation,

regression coefficients, if any.

Source

garch.src

232



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch cv

Purpose

Computes GARCH conditional variances.

Library

fanpac

Format

h = garch cv(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

h N × 1 vector, conditional variances.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if Garch-in-mean model, else zero.

fan inCV Scalar, nonzero if Garch-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

233



garch cv 4. FANPAC PROCEDURE REFERENCE

p GARCH parameters,

q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

Garch-in-mean coefficient, if any,

Garch-in-cv coefficients, if any.

The Garch model cannot be both Garch-in-mean and Garch-in-CV.

Source

garch.src

234



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch sr

Purpose

Computes GARCH standardized residuals.

Library

fanpac

Format

s = garch sr(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

s N × 1 vector, standardized residuals.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

fan IndEquations 1×K vector, specification matrix for independent variables. If
element is nonzero, a coefficient is estimated, otherwise not.

fan CVIndEquations 1×K vector, specification matrix for independent variables in
conditional variance equation. If element is nonzero, a coefficient is
estimated, otherwise not.

fan inMean Scalar, nonzero if Garch-in-mean model, else zero.

fan inCV Scalar, nonzero if Garch-in-cv model, else zero.

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

235



garch sr 4. FANPAC PROCEDURE REFERENCE

p GARCH parameters,

q ARCH parameters,

constant in time series equation,

regression coefficients, if any,

Garch-in-mean coefficient, if any,

Garch-in-cv coefficients, if any.

The Garch model cannot be both Garch-in-mean and Garch-in-CV.

Source

garch.src

236



Procedure Reference

4. FANPAC PROCEDURE REFERENCE garch roots

Purpose

Computes roots of GARCH model.

Library

fanpac

Format

r = garch roots(b,p,q);

Input

b K × 1 vector, coefficients.

p Scalar, order of GARCH parameters.

q Scalar, order of ARCH parameters.

Output

r L× 1 vector, roots.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

Computes roots of

1− (α1 + β1)Z − (α2 + β2)Z
2 + · · ·

where the βi are the GARCH parameters and where the αi are the ARCH parameters,
and

1− β1Z − β2Z
2 + · · ·+ βpZ

p

Remarks

The parameters in b are expected in the following order:

ω, constant in conditional variance equation,

p GARCH parameters,

q ARCH parameters,

constant in time series equation,

regression coefficients, if any.

Source

garch.src

237



ols forecast 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes time series and conditional variance forecasts.

Library

fanpac

Format

r = ols forecast(b,period ,xp,vc,density);

Input

b K × 1 vector, coefficients.

period Scalar, number of periods to be forecast.

xp M ×K matrix, forecast independent variables. If there are independent
variables but no forecast independent variables, set xp = 0, and the
means of the independent variables will be used for forecast.

vc K×K matrix, covariance matrix of parameters.

density Scalar, if 0, Normal density, else t-density.

Output

r L× 1 vector, L period forecast of time series.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

regression coefficients,

residual variance, if t-density,

ν, if t-density.

Source

fanols.src

238



Procedure Reference

4. FANPAC PROCEDURE REFERENCE ols t

Purpose

Computes t-density ordinary least squares log-likeihood.

Library

fanpac

Format

y = ols t(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

regression coefficients,

residual variance,

ν.

Source

fanols.src

239



ols t grd 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes gradient of t-density ordinary least squares log-likeihood.

Library

fanpac

Format

y = ols t grd(b);

Input

b K × 1 vector, coefficients.

Output

y N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

regression coefficients,

residual variance,

ν.

Source

fanols.src

240



Procedure Reference

4. FANPAC PROCEDURE REFERENCE ols n sr

Purpose

Computes standardized residuals from Normal density ordinary least squares model.

Library

fanpac

Format

s = ols n sr(b);

Input

b K × 1 vector, coefficients.

Output

s N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

regression coefficients.

Source

fanols.src

241



ols t sr 4. FANPAC PROCEDURE REFERENCE

Purpose

Computes standardized residuals from t-density ordinary least squares model.

Library

fanpac

Format

s = ols t sr(b);

Input

b K × 1 vector, coefficients.

Output

s N × 1 vector, minus log-likelihood.

Global Input

fan Series N × 1 vector, time series.

fan IndVars N ×K matrix, independent variables. If none, set to missing value.

Remarks

The parameters in b are expected in the following order:

regression coefficients,

residual variance,

ν.

Source

fanols.src

242



NLP Reference

Chapter 5

NLP Reference

243



NLP 5. NLP REFERENCE

Purpose

Minimizes a function subject to general constraints on parameters.

Library

fanpac

Format

{ x ,f ,g ,retcode } = NLP(&fct ,start);

Input

&fct A pointer to a procedure that returns the function evaluated at the
parameters.

start K × 1 vector, start values.

Output

x K × 1 vector, estimated parameters.

f Scalar, function at minimum.

g K × 1 vector, gradient evaluated at x .

retcode Scalar, return code. If normal convergence is achieved, then retcode = 0,
otherwise a positive integer is returned indicating the reason for the
abnormal termination:

0 normal convergence

1 forced exit

2 maximum iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 function cannot be evaluated at initial parameter values

8 error with gradient

9 error with constraints

10 secant update failed

11 maximum time exceeded

244



NLP Reference

5. NLP REFERENCE NLP

13 quadratic program failed

20 Hessian failed to invert

99 termination condition unknown

Globals

nlp A M1 ×K matrix. Linear equality constraint coefficient matrix nlp A is
used with nlp B to specify linear equality constraints:

_nlp_A * X = _nlp_B

where X is the K × 1 unknown parameter vector.

nlp Active Vector, defines fixed/active coefficients. This global allows you to fix a
parameter to its starting value. This is useful, for example, when you
wish to try different models with different sets of parameters without
having to re-edit the function. When it is to be used, it must be a vector
of the same length as the starting vector. Set elements of nlp Active
to 1 for an active parameter, and to zero for a fixed one.

nlp Algorithm Scalar, selects optimization method:

1 BFGS – Broyden, Fletcher, Goldfarb, Shanno method

2 DFP – Davidon, Fletcher, Powell method

3 NEWTON – Newton-Raphson method

4 scaled BFGS

5 scaled DFP

Default = 3

nlp Delta Scalar, floor for eigenvalues of Hessian in the NEWTON algorithm. When
nonzero, the eigenvalues of the Hessian are augmented to this value.

nlp B M1 × 1 vector. Linear equality constraint constant vector nlp B is
used with nlp A to specify linear equality constraints:

_nlp_A * X = _nlp_B

where X is the K × 1 unknown parameter vector.

nlp Bounds K × 2 matrix, bounds on parameters. The first column contains the
lower bounds, and the second column the upper bounds. If the bounds
for all the coefficients are the same, a 1x2 matrix may be used. Default =
{ -1e256 1e256 }.

nlp C M3 ×K matrix. Linear inequality constraint coefficient matrix nlp C
is used with nlp D to specify linear inequality constraints:

245



NLP 5. NLP REFERENCE

_nlp_C * X = _nlp_D

where X is the K × 1 unknown parameter vector.

nlp D M3 × 1 vector. Linear inequality constraint constant vector . nlp D is
used with nlp C to specify linear inequality constraints:

_nlp_C * X = _nlp_D

where X is the K × 1 unknown parameter vector.

nlp Diagnostic scalar:

0 Nothing is stored or printed.

1 Current estimates, gradient, direction function value, Hessian, and
step length are printed to the screen.

2 The current quantities are stored in nlp Diagnostic using the
VPUT command. Use the following strings to extract from
nlp Diagnostic using VREAD:

function “function”
estimates “params”
direction “direct”
Hessian “hessian”
gradient “gradient”
step “step”

nlp DirTol Scalar, convergence tolerance for gradient of estimated coefficients.
When this criterion has been satisifed, NLP exits the iterations. Default
= 1e-5.

nlp EqJacobian Scalar, pointer to a procedure that computes the Jacobian of the
nonlinear equality constraints with respect to the parameters. The
procedure has one input argument, the K × 1 vector of parameters, and
one output argument, the M2 ×K matrix of derivatives of the
constraints with respect to the parameters. For example, if the nonlinear
equality constraint procedure was

proc eqproc(p);

retp(p[1]*p[2]-p[3]);

endp;

the Jacobian procedure and assignment to the global would be

proc eqj(p);

retp(p[2]~p[1]~-1);

endp;

_nlp_EqJacobian = &eqj;

246



NLP Reference

5. NLP REFERENCE NLP

nlp EqProc Scalar, pointer to a procedure that computes the nonlinear equality
constraints. For example, the statement

_nlp_EqProc = &eqproc;

tells NLP that nonlinear equality constraints are to be placed on the
parameters and where the procedure computing them is to be found. The
procedure must have one input argument, the K × 1 vector of
parameters, and one output argument, the M2 × 1 vector of computed
constraints that are to be equal to zero. For example, suppose that you
wish to place the following constraint:

P[1] * P[2] = P[3]

The procedure for this is:

proc eqproc(p);

retp(p[1]*[2]-p[3]);

endp;

nlp FeasibleTest Scalar. If nonzero, testing for feasibility in the line search is
turned off.

nlp FinalHess K ×K matrix. The Hessian used to compute the covariance matrix
of the parameters is stored in nlp FinalHess. This is most useful if the
inversion of the Hessian fails, which is indicated when NLP returns a
missing value for the covariance matrix of the parameters. An analysis of
the Hessian stored in nlp FinalHess can then reveal the source of the
linear dependency responsible for the singularity.

nlp GradCheckTol Scalar. Tolerance for the deviation of numerical and analytical
gradients when procedures exist for the computation of analytical
gradients, Hessians, and/or Jacobians. If set to zero, the analytical
gradients will not be compared to their numerical versions. When adding
procedures for computing analytical gradients, it is highly recommended
that you perform the check. Set nlp GradCheckTol to some small
value (1e-3, say) when checking. It may have to be set larger if the
numerical gradients are poorly computed to make sure that NLP doesn’t
fail when the analytical gradients are being properly computed.

nlp GradMethod Scalar, method for computing numerical gradient:

0 central difference

1 forward difference (default)

nlp GradProc Scalar, pointer to a procedure that computes the gradient of the
function with respect to the parameters. For example, the statement

_nlp_GradProc=&gradproc;

247



NLP 5. NLP REFERENCE

tells NLP that a gradient procedure exists, as well as, where to find it.
The user-provided procedure has one input argument, the K × 1 vector
of parameter values. The procedure returns a single output argument,
the K × 1 vector of gradients of the function with respect to the
parameters evaluated at the vector of parameter values.

For example, suppose the function is b1 exp−b2, then the following would
be added to the command file:

proc lgd(b);

retp(exp(-b[2])|-b[1]*b[2]*exp(-b[2]));

endp;

_nlp_GradProc = &lgd;

Default = 0; i.e., no gradient procedure has been provided.

nlp GradStep Scalar, or 1× 2, or K × 1, or K × 2 matrix, increment size for
computing gradient and/or Hessian. If scalar, step size will be value times
parameter estimates for the numerical gradient. If 1× 2, the first element
is multiplied times parameter value for gradient, and second element the
same for the Hessian. If K × 1, the step size for the gradient will be the
elements of the vector; i.e., it will not be multiplied times the parameters.
If K × 2, the second column sets the step sizes for the Hessian.

When the numerical gradient is not performing well, set to a larger value
(1e-3, say). Default is the cube root of machine precision.

nlp HessProc Scalar, pointer to a procedure that computes the Hessian, i.e., the
matrix of second order partial derivatives of the function with respect to
the parameters. For example, the instruction

_nlp_HessProc = &hessproc;

tells NLP that a procedure has been provided for the computation of the
Hessian and where to find it. The procedure that is provided by the user
must have one input argument, the K × 1 vector of parameter values.
The procedure returns a single output argument, the K ×K symmetric
matrix of second order derivatives of the function evaluated at the
parameter values.

nlp IneqJacobian Scalar, pointer to a procedure that computes the Jacobian of the
nonlinear equality constraints with respect to the parameters. The
procedure has one input argument, the K × 1 vector of parameters, and
one output argument, the M4 ×K matrix of derivatives of the
constraints with respect to the parameters. For example, if the nonlinear
equality constraint procedure was

proc ineqproc(p);

retp(p[1]*p[2]-p[3]);

endp;

248



NLP Reference

5. NLP REFERENCE NLP

the Jacobian procedure and assignment to the global would be

proc ineqj(p);

retp(p[2]~p[1]~-1);

endp;

_nlp_IneqJacobian = &ineqj;

nlp IneqProc Scalar, pointer to a procedure that computes the nonlinear inequality
constraints. For example, the statement

_nlp_IneqProc = &ineqproc;

tells NLP that nonlinear equality constraints are to be placed on the
parameters and where the procedure computing them is to be found. The
procedure must have one input argument, the K × 1 vector of
parameters, and one output argument, the M4 × 1 vector of computed
constraints that are to be equal to zero. For example, suppose that you
wish to place the following constraint:

P[1] * P[2] >= P[3]

The procedure for this is:

proc ineqproc(p);

retp(p[1]*[2]-p[3]);

endp;

nlp IterInfo 2x1 vector, contains information about the iterations. The first element
contains the number of iterations, the second element contains the
elapsed time in minutes of the iterations.

nlp Lagrange Vector, created using VPUT. Contains the Lagrangean coefficients for
the constraints. They may be extracted with the VREAD command
using the following strings:

“lineq” linear equality constraints
“nlineq” nonlinear equality constraints
“linineq” linear inequality constraints
“nlinineq” nonlinear inequality constraints
“bounds” bounds

When an inequality or bounds constraint is active, its associated
Lagrangean is nonzero. The linear Lagrangeans preceed the nonlinear
Lagrangeans in the covariance matrices.

nlp LineSearch Scalar, selects method for conducting line search. The result of the
line search is a step length; i.e., a number that reduces the function value
when multiplied times the direction..

1 step length = 1

249



NLP 5. NLP REFERENCE

2 cubic or quadratic step length method (STEPBT)

3 step halving (HALF)

4 Brent’s step length method (BRENT)

Default = 2.

Usually nlp LineSearch = 2 is best. If the optimization bogs down, try
setting nlp LineSearch = 1, 4, or 5. nlp LineSearch = 3 generates
slower iterations but faster convergence, and nlp LineSearch = 1
generates faster iterations but slower convergence.

nlp MaxIters Scalar, maximum number of iterations.

nlp MaxTime Scalar, maximum time in iterations in minutes. Default = 1e+5,
about 10 weeks.

nlp MaxTry Scalar, maximum number of tries to find step length that produces a
descent.

nlp Options Character vector, specification of options. This global permits setting
various NLP options in a single global using identifiers. For example,

_nlp_Options = { newton brent trust central file };

sets the line search method to BRENT, the descent method to
NEWTON, trust region on, the numerical gradient method to central
differences.

The following is a list of the identifiers:

Algorithms BFGS, DFP, NEWTON, BFGS-SC, DFP-SC

Line Search ONE, STEPBT, HALF, BRENT

Trust Method TRUST

Gradient method CENTRAL, FORWARD

Output method NONE, FILE, SCREEN

nlp ParNames K × 1 character vector, parameter labels.

nlp Switch 4×1 or 4×2 vector, algorithm switching. If 4×1, row number

1 algorithm number to switch to

2 NLP switches if function changes less than this amount

3 NLP switches if this number of iterations is exceeded

4 NLP switches if line search step changes less than this amount

else if 4×2, NLP switches between the algorithm defined in row 1,
column 1, and that defined in row 1, column 2.

250



NLP Reference

5. NLP REFERENCE NLP

nlp Trust Scalar. If nonzero, the trust region method is turned on. Default = 0.

nlp TrustRadius Scalar. The trust region if the trust region method is turned on.
Default = .01.

nlp title String. Title of run

Remarks

Specifying Constraints.

There are five types of constraints: linear equality, linear inequality, nonlinear equality,
nonlinear inequality, and bounds. Linear constraints are specified by initializing the
appropriate NLP globals to known matrices of constants. The linear equality constraint
matrices are nlp A and nlp B, and they assume the following relationship with the
parameter vector:

_nlp_A * x = _nlp_B

where x is the parameter vector.

Similarly, the linear inequality constraint matrices are nlp C and nlp D, and
assume the following relationship with the parameter vector:

_nlp_C * x >= _nlp_D

The nonlinear constraints are specified by providing procedures and assigning their
pointers to NLP globals. These procedures take a single argument, the vector of
parameters, and return a column vector of evaluations of the constraints at the
parameters. Each element of the column vector is a separate constraint.

For example, suppose you wish to constrain the product of the first and third
coefficients to be equal to 10, and the squared second and fourth coefficients to be equal
to the squared fifth coefficient:

proc eqp(x);

local c;

c = zeros(2,1);

c[1] = x[1] * x[3] - 10;

c[2] = x[2] * x[2] + x[4] * x[4] - x[5] * x[5];

retp(c);

endp;

_nlp_EqProc = &eqp;

251



NLP 5. NLP REFERENCE

The nonlinear equality constraint procedure causes NLP to find estimates for which its
evaluation is equal to a conformable vector of zeros.

The nonlinear inequality constraint procedure is similar to the equality procedure.
NLP finds estimates for which the evaluation of the procedure is greater than or equal
to zero. The nonlinear inequality constraint procedure is assigned to the global
nlp IneqProc. For example, suppose you wish to constrain the norm of the

coefficients to be greater than one:

proc ineqp(x);

retp(x’x-3);

endp;

_nlp_IneqProc = &ineqp;

Bounds are a type of linear inequality constraint. They are specified separately for
computational and notational convenience. To declare bounds on the parameters,
assign a two column vector with rows equal to the number of parameters to the NLP
global nlp Bounds. The first column is the lower bounds and the second column the
upper bounds. For example,

_nlp_Bounds = { 0 10,

-10 0

-10 20 };

If the bounds are the same for all of the parameters, only the first row is required.

Writing the Function to be Minimized

The user must provide a procedure for computing the function. The procedure has one
input argument, a vector of parameters. The output is the scalar value of the function
evaluated at the current value of the parameters. Suppose that the function procedure
has been named pfct . The format of the procedure is

f = fct(x);

where x is a column vector of parameters.

Supplying an Analytical GRADIENT Procedure

To decrease the time of computation, the user may provide a procedure for the
calculation of the gradient of the function. The global variable nlp GradProc must
contain the pointer to this procedure. Suppose the name of this procedure is gradproc.
Then

g = gradproc(x);

252



NLP Reference

5. NLP REFERENCE NLP

where the input argument is the vector of parameters and the output argument is g is
column vector of gradients of the function with respect to coefficients

Providing a procedure for the calculation of the first derivatives also has a significant
effect on the calculation time of the Hessian. The calculation time for the numerical
computation of the Hessian is a quadratic function of the size of the matrix. For large
matrices, the calculation time can be very significant. This time can be reduced to a
linear function of size if a procedure for the calculation of analytical first derivatives is
available. When such a procedure is available, NLP automatically uses it to compute
the numerical Hessian.

The major problem one encounters when writing procedures to compute gradients and
Hessians is in making sure that the gradient is being properly computed. NLP checks
the gradients and Hessian when nlp GradCheckTol is nonzero. NLP generates both
numerical and analytical gradients, and viewing the discrepancies between them can
help in debugging the analytical gradient procedure.

Supplying an Analytical HESSIAN Procedure

Selection of the NEWTON algorithm becomes feasible if the user supplies a procedure
to compute the Hessian. If such a procedure is provided, the global variable
nlp HessProc must contain a pointer to this procedure. Suppose this procedure is

called hessproc. The format is

h = hessproc(x);

The input argument is the K × 1 vector of parameter values. The output argument is
the K ×K matrix of second order partial derivatives evaluated at the coefficients in x .

253



NLP 5. NLP REFERENCE

Supplying Analytical Jacobians of the Nonlinear Constraints

At each iteration the Jacobians of the nonlinear constraints, if they exist, are computed
numerically. This is time-consuming and generates a loss of precision. For models with
a large number of inequality constraints a significant speed-up can be achieved by
providing analytical Jacobian procedures. The improved accuracy can also have a
significant effect on convergence.

The Jacobian procedures take a single argument, the vector of parameters, and return a
matrix of derivatives of each constraint with respect to each parameter. The rows are
associated with the constraints and the columns with the parameters. The pointer to
the nonlinear equality Jacobian procedure is assigned to nlp EqJacobian. The
pointer to the nonlinear inequality Jacobian procedure is assigned to
nlp IneqJacobian.

For example, suppose the following procedure computes the equality constraints:

proc eqp(x);

local c;

c = zeros(2,1);

c[1] = x[1] * x[3] - 10;

c[2] = x[2] * x[2] + x[4] * x[4] - x[5] * x[5];

retp(c);

endp;

_nlp_EqProc = &eqp;

Then the Jacobian procedure would look like this:

proc eqJacob(x);

local c;

c = zeros(2,5);

c[1,1] = x[3];

c[1,3] = x[1];

c[2,2] = 2*x[2];

c[2,4] = 2*x[4];

c[3,5] = -2*x[5];

retp(c);

endp;

_nlp_EqJacobian = &eqJacob;

The Jacobian procedure for the nonlinear inequality constraints is specified similarly,
except that the associated global containing the pointer to the procedure is
nlp IneqJacobian.

Source

nlp.src

254



NLP Reference

5. NLP REFERENCE NLPSet

Purpose

Resets NLP global variables to default values.

Library

fanpac

Format

NLPSet;

Input

None.

Output

None.

Remarks

Putting this instruction at the top of all command files that invoke NLP is generally
good practice. This prevents globals from being inappropriately defined when a
command file is run several times or when a command file is run after another
command file has executed that calls NLP.

Source

nlp.src

255



NLPCovPar 5. NLP REFERENCE

Purpose

Computes covariance matrix of parameters.

Library

fanpac

Format

h = NLPCovPar(x ,&fct ,&grd ,nobs,ind);

Input

x K × 1 vector, maximum likelihood parameter estimates.

&fct A pointer to a procedure that returns minus the log-likelihood evaluated
for each observation at the parameter estimates.

&grd A pointer to a procedure that returns the gradient of minus the
log-likelihood evaluated for each observation at the parameters. If set to
zero, a numerical gradient is computed.

nobs Scalar, number of observations in dataset.

ind Scalar:

1 Maximum likelihood covariance matrix of parameters from inverse
of Hessian with correction made for constraints, if any. Requires
Lagrangeans stored in nlp Lagrange.

2 covariance matrix of parameters from inverse of crossproduct of
Jacobian with correction made for constraints, if any. Requires
Lagrangeans stored in nlp Lagrange.

3 Quasi-Maximum Likelihood covariance matrix of parameters from
inverse of Hessian with correction made for constraints, if any.
Requires Lagrangeans stored in nlp Lagrange.

-1 Maximum likelihood covariance matrix of parameters from inverse
of Hessian with no correction made for constraints.

-2 Covariance matrix of parameters from inverse of crossproduct of
Jacobian with no correction made for constraints.

-3 Quasi-Maximum Likelihood covariance matrix of parameters from
inverse of Hessian with no correction made for constraints.

Output

256



NLP Reference

5. NLP REFERENCE NLPCovPar

h K × K matrix, covariance matrix of parameters

Global Input

nlp Lagrange Vector, created by NLP using VPUT. Contains the Lagrangean
coefficients for the constraints.

Source

nlp.src

257



NLPClimits 5. NLP REFERENCE

Purpose

Computes confidence limits of parameters by inversion of the Wald statistic.

Library

fanpac

Format

cl = NLPClimits(x ,vc,nobs,alpha,sel);

Input

x K × 1 vector, maximum likelihood parameter estimates.

vc K ×K matrix, covariance matrix of parameter estimates.

nobs Scalar, number of observations in dataset.

alpha (1-alpha)% two-tailed limits are computed. Default = .95.

sel L× 1 vector, selection of parameters. If set to zero, all parameters are
selected.

Output

cl L× 2 matrix, lower (first column) and upper (second column) limits of
the selected parameters.

Global Input

nlp Lagrange Vector, created by NLP using VPUT. Contains the Lagrangean
coefficients for the constraints.

Source

nlpclim.src

258



Index

Index

active parameters, 67
algorithm, 81
ARCH, 11
ARCH-in-cv, 11
ARCH-in-mean, 11
arch cv, 147
arch forecast, 138
arch ineq, 146
arch n, 140
arch n grd, 142
arch roots, 151
arch sr, 149
arch t, 143
arch t grd, 145
ARCHM, 11
ARCHV, 11
ARIMA, 20
arima forecast, 153
arima ineq, 156
arima n, 154
arima n sr, 157
arima roots, 159
arima t, 155
arima t sr, 158

B

BEKK, 25, 29
BFGS, 66, 82, 245
BFGS-SC, 245
bkarch cv, 163
bkarch forecast, 160
bkarch n, 161
bkarch sr, 164
bkarch t, 162
bkgarch cv, 169

bkgarch forecast, 165
bkgarch n, 167
bkgarch sr, 170
bkgarch t, 168
bounds, 72, 252
BRENT, 67

C

CDVARCH, 23
cdvarch cv, 177
cdvarch forecast, 171
cdvarch n, 173
cdvarch sr, 179
cdvarch t, 175
CDVARCHM, 23
CDVGARCH, 27
cdvgarch cv, 187
cdvgarch forecast, 181
cdvgarch n, 183
cdvgarch sr, 189
cdvgarch t, 185
CDVGARCHM, 28
CDVGARCHV, 27
CDVTARCHM, 23
CDVTGARCHM, 28
clearSession, 88
computeLogReturns, 38, 90
computePercentReturns, 39, 91
condition of Hessian, 68
conditional correlations, 105
conditional standard deviations, 46, 106
conditional variance, 14, 18, 46
conditional variances, 108
confidence limits, 30, 32
constant correlation DVEC GARCH, 27



INDEX

constant correlation model, 23
constrainPDCovPar, 89
constraint Jacobians, 78
constraints, 12, 32, 70, 78, 251
convergence, 250
covariance matrix of parameters, 32
Covariance Matrix of Parameters, 256,

258
cubic step, 250

D

date variable, 38
derivatives, 65, 76
DFP, 66, 82, 245
DFP-SC, 245
diagnosis, 69
direction, 64
DOS, 2, 3
dvarch cv, 197
dvarch forecast, 191
dvarch n, 193
dvarch sr, 199
dvarch t, 195
DVARCHM, 21
DVARCHV, 21, 23, 26
DVEC, 21, 26
DVEC ARCH-in-cv, 21
DVEC ARCH-in-mean, 21
DVEC GARCH-in-cv, 26, 27
DVEC GARCH-in-mean, 26, 28
dvgarch cv, 207
dvgarch forecast, 201
dvgarch n, 203
dvgarch sr, 209
dvgarch t, 205
DVGARCHM, 26
DVTARCH-in-cv, 21
DVTARCH-in-mean, 21
DVTARCHM, 21
DVTARCHV, 21, 23
DVTGARCH-in-cv, 26
DVTGARCH-in-mean, 26
DVTGARCHM, 26
DVTGARCHV, 26

E

efficient frontier, 72
EGARCH, 19
equality constraints, 70, 71, 245, 247,

251
estimate, 42, 47, 92
exogenous variables, 39

F

fan CV, 46
fan CVforecast, 96, 107, 108
fan IndVars, 39
fan init, 18
fan NLPglobals, 51
fan Residuals, 45
fan Series, 39, 42
fan SR, 45
fan TSforecast, 96, 110

FANPAC models, 8, 42
FANPAC procedures, 58
fanpac.src, 88, 89, 90, 91, 95, 96, 97,

98, 99, 100, 101, 102, 103, 104,
114, 115, 116, 117, 118, 120,
121, 122, 123, 124, 125, 126,
127, 128, 129, 130, 131, 132,
133, 136

fanplot.src, 105, 107, 108, 109, 110,
111, 112, 113

fansim.src, 135
FIGARCH, 16
FIGARCH-in-cv, 17
FIGARCHV, 17
FITGARCH, 16
FITGARCHV, 17
forecast, 96, 107, 108, 110
function, 252

G

GARCH, 13
GARCH-in-cv, 13
GARCH-in-mean, 13, 17
garch cv, 233
garch e, 211
garch e cv, 215
garch e forecast, 212

260



Index

INDEX

garch e grd, 214
garch e sr, 216
garch fi cv, 223
garch fi forecast, 217
garch fi n, 219
garch fi sr, 225
garch fi t, 221
garch forecast, 226
garch ineq, 232
garch n, 228
garch n grd, 58
garch roots, 237
garch sr, 235
garch t, 230
GARCHM, 13, 17
GARCHV, 13
getCOR, 98
getCV, 46, 97
getEstimates, 99
getRD, 100
getResiduals, 45
getSeriesACF, 101
getSeriesPACF, 102
getSession, 103
getsession, 37
getSR, 104
global variables, 81
gradient, 244
gradient procedure, 76, 247, 252

H

HALF, 67
Hessian, 65, 68, 81
Hessian procedure, 76, 253

I

IGARCH, 16
Ill-conditioned Hessian, 34, 68
inactive parameters, 67
independent variables, 39
inequality constraints, 70, 71, 245, 246,

249, 251
inference, 30
Installation, 1
ITGARCH, 16

J

Jacobian, 78

K

keyword commands, 7, 36, 86

L

Lagrange coefficients, 249, 257, 258
line search, 65, 66, 81
linear constraints, 70, 245, 246, 251
Ljung-Box statistic, 45
log-likelihood, 12, 14, 17, 19, 20, 22, 23,

25, 26, 28, 29

M

maximum likelihood, 6
mean-variance analysis, 72
multivariate ARCH, 21, 23, 25
multivariate GARCH, 26, 27, 29
multivariate models, 53

N

NEWTON, 66, 82, 245, 253
NLP, 58, 63, 244
nlp A, 70, 245, 251
nlp Active, 67, 245
nlp Algorithm, 245
nlp B, 70, 245, 251
nlp Bounds, 58, 72, 252
nlp C, 58, 71, 245, 251
nlp D, 58, 71, 251

nlp Delta, 245
nlp Diagnostic, 69, 246
nlp DirTol, 81, 246
nlp EqJacobian, 78, 246, 254
nlp EqProc, 71, 247
nlp FeasibleTest, 247
nlp FinalHess, 247
nlp GradCheckTol, 78, 247, 253
nlp GradMethod, 81, 247
nlp GradProc, 247, 252
nlp GradStep, 248

261



INDEX

nlp HessProc, 78, 248, 253
nlp IneqJacobian, 78, 248, 254
nlp IneqProc, 58, 249
nlp EqProc, 71
nlp IneqProc, 252
nlp IterInfo, 81, 249
nlp Lagrange, 249, 257, 258
nlp LineSearch, 249, 250
nlp MaxIters, 250
nlp MaxTime, 250

nlp MaxTry, 81, 250
nlp Options, 250
nlp ParNames, 250
nlp Switch, 250
nlp Trust, 251
nlp TrustRadius, 251

NLPClimits, 58, 258
NLPCovPar, 58, 256
NLPSet, 255
nonlinear constraints, 71, 247, 249, 251
NR, 82

O

OLS, 20
ols forecast, 238
ols n sr, 241
ols t, 239
ols t grd, 240
ols t sr, 242
optimization, 244

P

plotCOR, 105
plotCSD, 46, 96, 106
plotCV, 46, 47, 96, 108
plotQQ, 45, 109
plotSeries, 96, 110
plotSeriesACF, 111
plotSeriesPACF, 112
plotSR, 45, 113

Q

QML covariance matrix, 34

quadratic step, 250
quasi-Newton, 66

R

residuals, 45
run-time switches, 81

S

scaling, 68
scaling data, 38
session, 37, 47, 114
setAlpha, 115
SetConstraintType, 116
setCovParType, 117
setCVIndEqs, 118
setDataset, 37, 47, 119
setIndEqs, 121
setIndVars, 39, 53, 123
setInferenceType, 47, 122
setLagInitialization, 125
setLagTruncation, 124
setLjungBoxOrder, 126
setOutputFile, 127
setRange, 128
setSeries, 37, 47, 129
setVarNames, 37, 39, 130
Shift-1, 82
Shift-2, 82
Shift-4, 82
Shift-3, 82
showEstimates, 131
showResults, 44, 47, 132
showRuns, 133
simulate, 40, 134
simulation, 40
simulation parameters, 40
Singular Hessian, 34, 68
standard errors, 30
starting point, 69
stationarity, 12, 14, 15, 18, 22, 24, 27,

29
step length, 66, 81, 249
STEPBT, 66

T

262



Index

INDEX

t-distribution, 22, 26
t-statistics, 30
TARCH, 11
TARCH-in-cv, 11
TARCH-in-mean, 11
TARCHM, 11
TARCHV, 11
TARIMA, 20
testSR, 45, 47, 136
TGARCH, 13
TGARCHM, 13, 17
TGARCHV, 13
time series, 11, 21

title, 251
TOLS, 20

U

UNIX, 1, 3

V

VPUT, 69
VREAD, 69

W

Wald statistic, 30

263


