Linear Programming

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software described in
this document is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.
The purchaser may make one copy of the software for backup purposes. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose other than the
purchaser’s personal use without the written permission of Aptech Systems, Inc.
(©Copyright 1988-1997 by Aptech Systems, Inc., Maple Valley, WA.

All Rights Reserved.

GAUSS, GAUSS Engine, GAUSSi, GAUSS Light, GAUSS-386 and GAUSS-386i are
trademarks of Aptech Systems, Inc. All other trademarks are the properties of their
respective owners.

Documentation Version: January 15, 2001

Contents

1 Installation 1
1.1 UNIX .o 1
1.1.1 Solaris 2.x Volume Management 2

1.2 DOS . . 2
1.3 Differences Between the UNIX and DOS Versions 3

2 Linear Programming 5
2.1 Introduction. 5

2.2 Getting Started 6
221 README Files. i 6

2.2.2 Setup e 6

2.3 About the simplex Procedure 7
2.3.1 Setting Up Arguments to simplex 7

2.3.2 The Global Control Variables 9

2.4 Example Programs L Lo 11
2.5 Advanced Topics Using simplex 16

2.6

References e 17

3 Linear Programming Reference 19

Ipprt . . o 20
Ipset . . . o e e e 22
Ipview . . . o Lo 23
simplex 25
Index 33

ii

1.1 UNIX

=1
D
«
D
<}
=
o
S

Chapter 1

Installation

If you are unfamiliar with UNIX, see your system administrator or system
documentation for information on the system commands referred to below. The device
names given are probably correct for your system.

1. Use cd to make the directory containing GAUSS the current working

directory.

2. Use tar to extract the files.
tar xvf device_name
If this software came on diskettes, repeat the tar command for each

diskette.

The following device names are suggestions. See your system administrator. If you are
using Solaris 2.x, see Section 1.1.1.

| Operating System | 3.5-inch diskette 1/4-inch tape | DAT tape |
Solaris 1.x SPARC /dev/rfd0 /dev/rst8
Solaris 2.x SPARC /dev/rfdo0a (vol. mgt. off) /dev/rst12 /dev/rmt/11
Solaris 2.x SPARC /vol/dev/aliases/floppy0 /dev/rsti12 /dev/rmt/11
Solaris 2.x x86 /dev/rfdoc (vol. mgt. off) /dev/rmt/11
Solaris 2.x x86 /vol/dev/aliases/floppy0 /dev/rmt/11
HP-UX /dev/rfloppy/c20Ad1s0 /dev/rmt/Om
IBM AIX /dev/rfd0 /dev/rmt .0
SGI IRIX /dev/rdsk/fds0d2.3.5hi

1. INSTALLATION

1.1.1 Solaris 2.x Volume Management

If Solaris 2.x volume management is running, insert the floppy disk and type
volcheck

to signal the system to mount the floppy.

The floppy device names for Solaris 2.x change when the volume manager is turned off
and on. To turn off volume management, become the superuser and type

/etc/init.d/volmgt off
To turn on volume management, become the superuser and type

/etc/init.d/volmgt on

1.2 DOS

1. Place the diskette in a floppy drive.
2. Log onto the root directory of the diskette drive. For example:

A:<enter>
cd\<enter>

3. Type: ginstall source_drive target_path

source_drive Drive containing files to install
with colon included

For example: A:

target_path Main drive and subdirectory to install
to without a final \

For example: C:\GAUSS

A directory structure will be created if it does not already exist and the files
will be copied over.

target_path\src source code files

target_path\lib library files

target_path\examples example files

1. INSTALLATION

4. The screen output option used may require that the DOS screen driver
ANSI.SYS be installed on your system. If ANSIL.SYS is not already installed
on your system, you can put the command like this one in your
CONFIG.SYS file:

DEVICE=C:\DOS\ANSIL.SYS
(This particular statement assumes that the file ANSIL.SYS is on the
subdirectory DOS; modify as necessary to indicate the location of your copy
of ANSIL.SYS.)

=1
D
«
D
<}
=
o
S

1.3 Differences Between the UNIX and DOS Versions

e In the DOS version, when the global __output = 2, information may be written
to the screen using commands requiring the ANSI.SYS screen driver. These are
not available in the current UNIX version, and therefore setting — _output = 2
may have the same effect as setting ——output = 1.

e If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press Enter after the keystroke in the
UNIX version.

e On the Intel math coprocessors used by the DOS machines, intermediate
calculations have 80-bit precision, while on the current UNIX machines, all
calculations are in 64-bit precision. For this reason, GAUSS programs executed
under UNIX may produce slightly different results, due to differences in
roundoff, from those executed under DOS.

1. INSTALLATION

Chapter 2

Linear Programming

.
}
D
QD
=
o
—
o
«Q
=
QD
3
3.
>
(=]

by
Donna Calhoun

Aptech Systems

2.1 Introduction

This module contains procedures for solving small scale linear programming problems.

A linear programming problem is a optimization problem presented in the following
typical manner:
n
(%) maximize: Z CjT;
j=1

n
subject to: Zaijxj <y, (i=1,2,...m)
j=1

lj S Zj S Uj (] = 1,2, Tl)

where a, b, ¢, | and u are user-supplied vectors and matrices. The expression c- x is
called the objective function, the system {a; - x < b;}7, make up the constraints, and
the inequalities I; < x; < u; describe the variable bounds.

If the constraints in (x) can be satisfied and the problem is not unbounded, then (x)
has an optimal solution and an optimal value. In this case, x is the optimal solution
and the value of the expression ¢ - x at the optimal solution is the optimal value.

To solve the above problem and its variations, simplex uses the two-phase standard
revised simplex method with an eta factorization similar to the product form of the
inverse.

2. LINEAR PROGRAMMING

2.2 Getting Started

GAUSS 3.1.0+ is required to use these routines.

2.2.1 README Files

The file README. 1p contains any last minute information on this module. Please read it
before using the procedures in this module.

2.2.2 Setup

In order to use the procedures in the LINEFAR PROGRAMMING module the
simplex library must be active. This is done by including simplex in the LIBRARY
statement at the top of your program:

library simplex,nlsys,pgraph;
This enables GAUSS to find the procedures contained in this module.
If you plan to make any right-hand references to the global variables (described in

section 2.3.2 and under the simplex function definition in Chapter 3) you also need the
statement:

#include simplex.ext;

Finally, to reset global variables in succeeding executions of the program the following
instruction can be used:

lpset;

This could be included with the above statements without harm and would insure the
proper definition of the global variables for all executions of the program.

The version number of each module is stored in a global variable. For the LINEAR
PROGRAMMING module, this global is:

—lp_ver 3x1 matrix, the first element contains the major version number, the
second element the minor version number, and the third element the
revision number.

If you call for technical support, you may be asked for the version of your copy of this
module.

2. LINEAR PROGRAMMING

2.3 About the simplex Procedure

To call simplex, use the following syntax:
{ x,optval,retcode } = simplex(a,b,c,1l,u);
Or, simply
call simplex(a,b,c,1l,u);
if return values are not needed.

In the above, a is an MxN matrix of coefficients for the M constraint equations in N
unknowns, b is an Mx1 vector or Mx2 matrix which defines the bounds on the
constraints, ¢ is an Nx1 vector containing coefficients of the objective function, and [
and u are Nx1 vectors and define the lower and upper bounds on the variables,
respectively. The values returned by simplex are the final solution (), the value of the
objective function upon termination of the algorithm (optval), and a return code
(retcode). Other output information such as dual variables, a final basis, and quality of
the solution are returned in global variables. See the discussion of global control
variables in Section 2.3.2.

The variable names used here are standard and are used throughout this
documentation and the example programs.

2.3.1 Setting Up Arguments to simplex

Here is a sample program:

library simplex;
lpset;

a={

b={1, 1, 22 };

c=4{8, -9, 12, 4, 11 };
1= 0;

u = 1e200;

__output = 1;

output reset;
{ x,optval,retcode } = lpprt(simplex(a,b,c,l,u));

output off;

.
}
D
QD
=
o
—
o
«Q
=
QD
=
3.
>
(=]

2. LINEAR PROGRAMMING

Here simplex uses all default values (maximization problem with < constraints), which
were initialized with the statement

lpset;

and returns the final solution, the value of the objective function upon termination, and
a return code. Output from simplex is sent to the screen and a disk file.

In this example, the arguments are set up explicitly in the program. In general,
however, the user can set up arguments to simplex in any way he or she chooses. The
data may be loaded from ASCII files, from matrices previously saved to disk in an .fmt
file, or set up explicitly in the program calling simplex.

As the above sample program illustrates, the arguments [and « may take on the values
400 or —oo. In simplex, —oo is represented by —1e200 and +oco by 1e200. By setting

[=0 and u = 1e200, the variables x; are restricted to nonnegative values. Here are
examples of two other ways to set up ! and u:

2. LINEAR PROGRAMMING

(1)

=
Il

-1e200;

1 =4{0, -1e200, -50, -1e200 };

—
u = { 1e200, 0, 50, 1e200 }; =1
QD
In (1), all variables are bounded below by —oco and above by 50. g
«Q
o
In (2), the variables are restricted as follows: g
=.
(=]

X1 Z 0

o S 0

—50 < z3 < 50

The argument b is used to provide upper and/or lower bounds for the constraint
expressions and, if desired, to define constraint types. Usually, though, constraint types
(<, >, =) are defined using global variables. This is discussed next. For more details
on defining b see the simplex function definition in Chapter 3. Please note that simplex
cannot handle free constraints. Do not set b; = +1e200 for any q.

2.3.2 The Global Control Variables

Once the arguments to simplex are set up, you probably want to customize your
program. Almost all aspects of the linear programming problem, including the
constraint type and variable bounds, can be modified by changing the value of one or
more of the global control variables provided by simplex. A complete list of all globals
is given under the simplex function definition in Chapter 3. Described below are some
of the aspects that the user can customize and the global variable used in each case:

e Whether simplex should solve the minimization or maximization
problem. (—lpmin)

e The variables bounds. In the case where the user wants simply to define
variables as nonnegative, nonpositive or free, a global variable may be
used to indicate variable types, rather than explicitly setting ! and u.
(—lpxcnst)

e The constraint type (<, >, =). (—lpcnst).

2. LINEAR PROGRAMMING

Whether to report a feasible solution only (i.e., terminate with Phase I)
or return the optimal solution (i.e., continue on to Phase II). (—lpstflg)

Maximum number of iterations that the algorithm is allowed to execute.
(—lpmaxit)

The choice of starting value. This is useful if the user plans to solve
several similar problems (e.g., problems which vary only in the b vector).
(—lpstrtx)

The type of output desired. The user can specify whether simplex should
produce output suitable for a disk file or the screen. Also, the user may
customize the output with a title, variable names and header of his/her
choosing. (—_output, _Ipname, __title, __altnam, __header)

Globals also control more advanced options of the solution process. For a brief
discussion on how to control these options, see Section 2.5. The advanced options
include:

The tie breaking rules which are used to determine the entering variable
and the leaving variable. (—Iprule)

The tolerances used in determining the entering and leaving variables.
(—lpepsl, _lpeps2)

Other tolerances used to minimize roundoff errors. (—lpeps3, —lpcstol,
—lpfstol)

The number of solutions returned. If the solution first found by simplex
is not unique, the user can specify how many more optimal solutions
simplex should attempt to find. (—lpsoltn, _lpuniq)

Using the Global Control Variables

To use the global variables, simply assign the desired value to the selected global
variable in the GAUSS program before calling simplex (but after the call to Ipset, if
any). The following is an example of how to solve a minimization problem with
equality constraints and free variables:

10

library simplex;

lpset;

a = trunc(100*rndu(20,30));
b = 100*ones(20,1);

¢ = ones(30,1);

2. LINEAR PROGRAMMING

_lpxcnst = 0; /* All variables are free x/
_lpmin = 1; /* Solve minimization problem */
_lpcnst = 3; /* Constraints are all equalities */
__output = 1; /* Output suitable for disk file */
_lpname = "Y"; /* Variable name to be used in output */

output file = lpl.out reset;
{ y, optval, retcode } = 1lpprt(simplex(a,b,c,0,0));
output off;

By setting _lpmin = 1, the minimum value of the objective function is computed. By
setting —lpcnst = 3, the constraint equations are treated as equalities. Here _lpcnst is
a scalar, but in general it can be a Mx1 vector where each element describes the
corresponding equation type. Also note that instead of setting [= —1€200 and

u = 1e200, this program uses the global variable _lpxcnst to specify that the variables
should be unrestricted. In this case, the values of [and u are ignored. (The two
methods are equivalent. The user may choose whichever is preferable.)

.
}
D
QD
=
o
—
o
«Q
=
QD
3
3.
>
(=]

The global variable —_output has been set to specify that information generated
during the iterative stages of simplex should be sent to the output file 1p1.out. The
call to Ipprt prints a final report to the same disk file. In general, __output controls
the output produced by the procedure simplex and can take the value 0, 1 or 2, where
0 is no output, 1 is disk output (suitable for an output file) and 2 is screen output
(suitable only for the screen). Final reports can be generated with either Ipprt (for disk
file) or Ipview (for screen display). Both final report formats report the return code,
the value of the objective function upon termination, the total number of iterations
required by simplex, final solution z (with an indication of which variables are basic
upon termination), the quality of the solution, the value of the constraints and the dual
variables. If output is directed to the screen, the state of each constraint is also
reported.

2.4 Example Programs

These and other example programs, simpn.e, can be found on the examples
subdirectory.

EXAMPLE 1

This program solves a straightforward linear programming problem. By default, the
maximization problem is solved, the variables are restricted to nonnegative values, and
the constraints are all of the type <. Since —_output = 2, information generated
during the iterations is formatted for output to the screen. The call to simplex is nested
inside a call to Ipview, so the final report also will be suitable only for the screen.

11

/*
** simpl.e

*/

library simplex;
lpset;
a=9{2-

~

38

w

6
1
3

o N

312,
202
87 -13,

-36 -2 -11};

B

o > 00

0
2

b={1,2,4,1, 51

c=4{18, -7, 12, 5, 0, 8 };
__output = 2;

_lpname ="Y";

__title = "SIMP1.E";

2. LINEAR PROGRAMMING

{ y,optval,retcode } = lpview(simplex(a,b,c,0,1e200));

EXAMPLE 2

A more complicated example might look like this:

12

/*
** simp2.e

*/

library simplex;
lpset;
a=A

1 =10, 2, -1e200, -3, -1e200, -1e200 };

1e200, 10, 0, 3, 1e200, 1e200 };
_lpenst = {1, 1, 3 };

__output = 1;
output file = 1p2.out reset;

2. LINEAR PROGRAMMING

{ x, optval, retcode } = lpprt(simplex(a,b,c,1l,u));
output off;
Here _lpcnst is a 3x1 vector which indicates that the first two constraints are <

constraints and the final constraint is an equality constraint. The variables should all
satisfy the inequalities:

I Z 0
I3 S 0
-3 S T4 S 3

z5 and xg are free variables.

Results of the algorithm’s progress and the final solution report are sent to the output
file 1p2.out.

EXAMPLE 3

In this example both the primal and the dual problem are solved. The fundamental
principle of linear programming states that the optimal value of the primal is equal to
the optimal value of the dual problem (assuming both have optimal solutions). Then
the solution to one problem is compared with the dual variables of another. Here, the
statement

#include simplex.ext;

is needed because a right-hand reference to a global variable (in this case, —lpdlvar) has
been made.

/*

** simp3.e

** This example illustrates how to solve
** both a primal and dual problem

*/

library simplex;
#include simplex.ext;

lpset;

a=9{4 0-1 1,
2 1 4 -1,
-3 2 0 -8,
1 1 1 13}

13

.
}
D
QD
=
o
—
o
«Q
=
QD
=
3.
>
(=]

14

2. LINEAR PROGRAMMING

o’
]

{2, 12, -31, 12 };

(@]
]

{ _2: _9; _1’ 6 }:

1 =0;

u = 1e200;

_lpmin = 1;

_lpcnst = { 3, 2, 3, 1 };
__output = 0;

__title = "PRIMAL PROBLEM";
output file = 1p3.out reset;

{ x, optp, retcp } = lpprt(simplex(a,b,c,1l,u));

dlp = _lpdlvar;

lpset;

_lpmin = 0;

_lpxecnst = { 0, 1, 0, -1 }; /* 1 and u set to O below */
_lpcnst = 1;

__output = 0;

__title = "DUAL PROBLEM";

_lpname = "Y";

{ y, optd, retcd } = lpprt(simplex(a’,c,b,0,0));

dld = _lpdlvar;
output off;

2. LINEAR PROGRAMMING

EXAMPLE 4

Suppose that the user wishes to solve multiple linear programming problems using the
same objective function, constraints and variable bounds, but wishes to modify the b
vector. This can of course be done by solving each problem from scratch, but this
approach is unnecessarily time-consuming. An alternative method is to solve one
problem from scratch and use the optimal solution and final basis found in that
problem to initialize the following problems. This can be done by setting the global
variable —lpstrtx.

For this example the variables a, —_lpcnst, _lpxcnst and ¢ have already been saved to
disk in .fmt files for use by multiple programs. The variables z and _lpbasis have been
saved to disk by a previously run program. All the current program needs to do is
create the new b vector and initialize simplex by setting up —lIpstrtx. Here, a is 20x10.
The columns of the matrix bmat are the b vectors used by the two problems.

/*
** an example similar to simp4.e

*/

library simplex;
#include simplex.ext;
lpset;

load a, x, c;

load _lpcnst = lpcnst;
load _lpxcnst = lpxcnst;
load _lpbasis = lpbasis;
load bmat[20,2] = b.arg;
b = bmat[.,2];

m = rows(a);

n = cols(a);

tmp = zeros(m+n,1);
tmp[_lpbasis] = ones(m,1);
_lpstrtx = x"tmp;
__output = 0;

{ x, optval, retcode } = simplex(a,b,c,0,0);
save x, lpbasis;

Here, the first column of bmat was used to solve the original problem from scratch, and
the second column is now being used to solve the second problem. Because this problem
is starting with a value calculated to be feasible and optimal by a previous similar
problem, this problem may require as few as half the number of iterations it would
require were it starting from scratch. The new optimal solution and the final basis are
saved to disk for use by another problem. Again, note the use of the statement

15

.
}
D
QD
=
o
—
o
«Q
=
QD
=
3.
>
(=]

2. LINEAR PROGRAMMING

#include simplex.ext;

to make the global variable _lIpbasis accessible.

2.5 Advanced Topics Using simplex

By changing the values of the tolerances —lpepsl, _lpeps2, _lpeps3, _lpfstol and
—lpcstol, the user can affect the speed and accuracy of simplex. Also, if simplex is
returning a return code of 5 or 13, these tolerances can be modified to encourage
simplex to return a more informative code.

If simplex is returning a return code of 13, _lpepsl or _lpeps2 are probably set too
high. Generally, by setting —Ipepsl lower the number of variables from which simplex
chooses the variable entering the basis is increased. The more variables from which
simplex has to choose, the more likely it is that it will find one which doesn’t cause
numerical errors.

Another tolerance which the user might wish to modify is _Ipeps3. Briefly, _Ipeps3
determines how well z, the intermediate solution determined at each iteration, should
satisfy a particular expression. By modifying the value of _lpeps3, the user can have
some affect on how much time simplex requires and on the accuracy of the final
solution. In general, increasing the value of _Ipeps3 reduces the amount of time
simplex requires, and decreasing —lpeps3 should improve the accuracy of the solution.

Two other tolerances, —Ipfstol and _lpcstol, are used to determine whether an optimal
solution found during Phase I is feasible and whether the = found during a particular
iteration satisfies the constraints to within the user’s specifications.

In solving a linear programming problem, the user may find that simplex reports that
the problem is infeasible, but also reports that the value of the objective function at
termination is very small—i.e., less than 10~°. In this case, the user should consider
increasing —lIpfstol to at least as large as the value of the objective function returned
by simplex. This guarantees that simplex will proceed to Phase II and attempt to find
an optimal solution to the problem.

Due to scaling differences among constraints, the user may wish to allow differences
among what it takes to satisfy those constraints. That is, a greater degree of
infeasibility may be allowed in those constraints with larger coeflicients. _lpcstol can
be set to a scalar, in which case all constraints are satisfied to within the same degree
of accuracy, or to an Mx1 vector (M = ROWS(a)), in which case each constraint uses
the tolerance in the corresponding element of _Ipcstol.

A return code of 5 indicates that the algorithm required more iterations than allowed
by the global variable —Ipmaxit. If cycling is not occurring, simply increase the value of
—lpmaxit. If it is suspected that cycling is occurring, change the value of _lprule[2].
Changing the rules used to choose entering and leaving variables may decrease the
number of iterations required by simplex. It should be noted, however, that cycling is
very rare.

16

2. LINEAR PROGRAMMING

2.6 References

Chvatal, Vasek 1983. Linear Programming. New York: W. H. Freeman and Company.

.
}
D
QD
=
o
—
o
«Q
=
QD
3
3.
>
(=]

17

18

2. LINEAR PROGRAMMING

Chapter 3

Linear Programming Reference

P
@D
—h
@D
=
@D
>
Q
@D

19

Ipprt

3. LINEAR PROGRAMMING REFERENCE

Library
simplex
Purpose

Formats and prints the output from simplex. This printout is suitable for output to a
disk file.

Format

{ z,0optval,retcode } = lpprt(z,optval,retcode);

Input

z Kx1 vector, the solution returned from simplex.

optval scalar, the value of the objective function upon termination.
retcode scalar, the return code returned by simplex.

Output

Same as input.

Globals

——altnam Nx1 character vector, alternate variable names to be used for printout
purposes. These names are used in the iterations printout and in the
final report. By default, the iterations report uses numbers to indicate
variables and the final solution report uses —lpname.

——_header string. This is used by Ipprt to display information about the date, time,
version of module, etc. The string can contain one or more of the
following characters:

“t” print title (see —_title)

“1? bracket title with lines

“d” print date and time

“yv” print version number of module

“f7 print file name being analyzed (NOT USED BY simplex)

20

3. LINEAR PROGRAMMING REFERENCE Ipprt

Example:
__header = "t1ld";
Default = “tldvf”.

—lpname string, single character, the variable name to be used for output
purposes. Default = “X”.

——_title string, message printed at the top of the screen and printed out by Ipprt
and lpview. By default, no title is printed.

Remarks
The call to simplex can be nested inside the call to Ipprt:
{ x,optval, retcode } = lpprt(simplex(a,b,c,1l,u));

Ipprt requires that the output globals returned by simplex still be in memory. Either
nest the call to simplex inside the call to Ipprt (the safest way) or call lpprt directly
after the call to simplex.

Globals

P
@D
—h
@D
=
@D
>
Q
@D

—lpmin, _lpcnst, _Ipdlvar, _lpbasis, _Ipitnum, _lpstate, _lpax, _lpqual, _Ip_phse,
—lp—b

Source

lpprt.src

21

Ipset 3. LINEAR PROGRAMMING REFERENCE

= Library
simplex
= Purpose

Initializes simplex global variables to default values.

= Format
Ipset;

= Input
None

= Output
None

= Remarks

Putting this instruction at the top of all programs that invoke simplex is generally
good practice. This prevents globals from being inappropriately defined when a
program is run several times, or when a program is run after another program has
executed that calls simplex.

Ipset calls gausset.

= Source

simplex.src

22

3. LINEAR PROGRAMMING REFERENCE Ipview

Library

simplex

Purpose

Creates a screen display of the final results returned from simplex. This display allows
the user to page through the values of constraints upon termination, the dual variables

and the final solution. The state of each constraint is reported and slack variables are
marked.

Format

{ z,0ptval,retcode } = lpview(z,optval,retcode);

Input

z Kx1 vector, the solution returned from simplex.

optval scalar, the value of the objective function upon termination.

retcode scalar, the return code returned by simplex. cf
@
=

Output 3

Same as input.

Globals

——altnam Nxl1 character vector, alternate variable names to be used for printout
purposes. These names are used in the iterations printout and in the
final report. By default, the iterations report uses numbers to indicate
variables and the final solution report uses —lpname.

——header string. This is used by Ipview to display information about the date,
time, version of module, etc. In Ipview, if __header is set to anything
other than the null string (“”), a complete header is printed.

—lpname string, single character, the variable name to be used for output
purposes. Default = “X”.

——title string, message printed at the top of the screen and printed out by Ipprt
and lpview. By default, no title is printed.

Remarks
The call to simplex can be nested inside the call to Ipview:

23

Ipview

3. LINEAR PROGRAMMING REFERENCE

{ x,optval, retcode } = lpview(simplex(a,b,c,l,u));
Ipview requires that the output globals returned by simplex still be in memory. Either
nest the call to simplex inside the call to Ipview (the safest way) or call Ipview directly
after the call to simplex.
Ipview makes use of the ANSI.SYS escape sequences. If the user aborts execution of

simplex during screen output, the GAUSS editor may remain in reverse video. To
return the command mode screen to its original settings, run the command:

scrnrst;
This clears the screen.

Globals

—lIpmin, _lpcnst, _Ipdivar, _Ipbasis, _Ipitnum, _lpstate, _Ipax, _lpqual, _Ip_phse,
—Ip—b

Source

lpprt.src

24

3. LINEAR PROGRAMMING REFERENCE simplex

= Library
simplex
= Purpose

Computes the optimal value of a linear objective function subject to linear inequality
constraints and bounds on variables. The problem typically is of the form:

n
maximize: E Cix;
=1

subject to: Zaijxj <y, (i=1,2,...m)
j=1
lj Sl‘j S’LLJ' (j: 1,2,71)
= Format

{ z,optval,retcode } = simplex(a,b,c,l,u);

@
= Input o)
@
a
a MxN matrix of constraint coefficients. The problem should not be @
supplied with slack variables.
b Mx1 vector or Mx2 matrix. If b is Mx2, the constraint expressions are
bounded below by the first column and above by the second column.
That is,
n
bil S Zaijxj S bi2 (’L =]., 2, m)
j=1
This format can be used to generate all three constraint types. For
example:
31‘1 + 4()’)2 — 13563 Z 24
is equivalent to:
24 < 3x1 +4xo — 1323 < 1200
Note the use of 1e200 for +oco. This is also used below in describing
variable ranges.
c Nx1 vector containing the coefficients of the objective function.
l Nx1 vector or a scalar, containing the lower bounds of z. Use —1e200 for

—oo. If [is a scalar, it is assumed that all elements of z have the same
lower bound.

25

simplex

= Output

optval

retcode

3. LINEAR PROGRAMMING REFERENCE

Nx1 vector or a scalar, containing the upper bounds of z. Use 1e200 for
4o00. If u is a scalar, it is assumed that all elements of z have the same
upper bound.

(N+M)x1 vector containing either (1) an optimal solution to the original
problem, (2) the z values which minimize the sum of the infeasibilities or
(3) the last solution found before it was determined that the problem was
unbounded or that the algorithm was unable to continue. The last M
elements contain the values of the slack variables.

scalar, the value of the objective function upon termination of simplex.
This may be the optimal value, the minimum sum of the infeasibilities or
the largest (or smallest) value found before it was determined that the
problem was unbounded or that the algorithm was unable to continue.

scalar, return code:

0 An optimal solution was found.

1 The problem is unbounded.

2 The problem is infeasible.

5 Maximum number of iterations exceeded. Cycling may be occurring.

13 Algorithm unable to find a suitable variable to enter the basis. Set
—lIpepsl or _lpeps2 to a lower value or change _lprule[1] to another
value.

If the return code is negative, the program terminated in Phase I.

= Global Input

—lpcnst

26

scalar, or Mx1 vector used to describe each equation type. Values for
each equation type are:

1 Corresponding constraint is <
2 Corresponding constraint is >.

3 Corresponding constraint is =.
For example,
_lpcnst = { 1, 3, 3, 2 };

If _lpcnst is a scalar, it is assumed that all constraints are of the same
type. Default = 1.

3. LINEAR PROGRAMMING REFERENCE

—lpcstol

—lpepsl

—lpeps2

—lpeps3

—lpfstol

—Ipmaxit

—lpmin

—lpname

—lprule

scalar, or Mx1 vector. Tolerances used to determine whether a constraint
has been violated. Default = 1078,

scalar. This is the smallest value around which a pivot is performed. If
during any iteration a value exceeds —lpepsl in absolute value, it is a
possible candidate for entering the basis. Default = 1073,

scalar. The algorithm will not divide by a number smaller than this.
Default = 1078.

scalar. This is used to determine how often to refactor the basis.
Roughly, if |Az. — b|, where z. is the current value of z, is greater than
—lpeps3 in any element in any iteration, the basis is refactored
immediately. If | Az — b| never exceeds —lpeps3, then the basis is
refactored when either the eta file gets too large for available memory or
when scanning the file becomes too time-consuming. Default = 1075,

scalar. Tolerance used to determine whether a solution achieved at the
end of Phase I is feasible. If the sum of artificial variables at the end of
Phase 1 does not exceed —lpfstol, then the solution at that point is
considered feasible. Default = 10713,

scalar, the maximum number of iterations the simplex algorithm iterates
during either phase. Default = 300.

scalar. If 1, simplex attempts to solve the minimization problem. If 0,
the maximization problem is solved.

Default = 0.

string, single character, the variable name to be used for output
purposes. Default = “X”.

2x1 vector, the tie breaking rules used to choose the entering and leaving
variables. _lprule[1] specifies the tie breaking rule for the entering
variable and can have the following values:

1 Smallest subscript rule.
2 Largest coefficient rule.
3 Largest increase rule.
4

A random selection is made.

—lprule[2] specifies the tie breaking rule for the leaving variable and can
have the following values:

1 Smallest subscript rule.

2 Lexicographic rule. This rule is very time-consuming and
memory-intensive.

27

simplex

P
@D
—h
@D
=
@D
>
Q
@D

simplex 3. LINEAR PROGRAMMING REFERENCE

3 A random selection is made.

The rule used to choose the entering variable can have an effect on the
number of iterations required before the algorithm finds an optimal
solution. Unfortunately, no general rules can be given about which rule
to use. Using the smallest subscript rule for the leaving variable
guarantees that off-optimal cycling does not occur. This rule, however,
may force the algorithm to go through more iterations than might

otherwise be necessary.
Default = { 2,1 }.

—lpsoltn scalar, the number of optimal solutions that simplex should attempt to
find. Default = 1.

—lpstflg scalar. If 1, only a feasible solution is returned. If 2, simplex continues to
Phase IT and attempt to find an optimal solution. Default = 2.

—lpstrtx (N+M)x1 or (N+M)x2 vector. If _lpstrtx is (N+M)x1, then it is used to
initialize Phase I. The first N elements are the values of the original
variables and the last M elements are the values of the slack variables. If
—lpstrtx is (N+M)x2, the first column should contain an z with which to
initialize the algorithm, and the elements of the second column should be
set to 1 if the corresponding first column element is basic, 0 if not. In
both cases, the initial £ must be feasible with respect to either [and u or
to —Ipxcnst. It need not be feasible with respect to the constraint
equations. Default = 0.

—lpxcnst scalar, or Nx1 vector. This global may be used as an alternative to
setting input arguments / and u in the case that the variables are to be
nonnegative, nonpositive, or free. Values for this global are:

-1 Corresponding variable is nonpositive.
0 Corresponding variable is unrestricted (or free).

1 Corresponding variable is nonnegative.

If _lIpxcnst is a scalar, it is assumed that all variables have the same
restrictions. If this global has been set to a value other than its default, [
and v are ignored. In this case, set

l =u = 0. Default = —2.

——altnam Nx1 character vector, alternate variable names to be used for printout
purposes. These names are used in the iterations printout and in the
final report. By default, the iterations report uses numbers to indicate
variables and the final solution report uses —lpname.

28

3. LINEAR PROGRAMMING REFERENCE simplex

——header

——output

——title

string. This is used by the printout portion of simplex to display
information about the date, time, version of module, etc. The string can
contain one or more of the following characters:

“t” print title (see —_title)

“1? bracket title with lines

“d” print date and time

“yv” print version number of module

“f” print file name being analyzed (NOT USED BY simplex)
Example:
__header = "t1ld";
Default = “tldvf”.

scalar.

0 Nothing is written.
1 Serial ASCII output format suitable for disk files or printers.

2 (NOTE: DOS version only) output is suitable for screen only.
ANSI.SYS must be active.

If simplex is terminated during execution (Ctrl-C is pressed, for example)
and —_output = 2, the screen may remain in reverse video. To restore
the screen to its original settings, run the command:

P
@D
—h
@D
=
@D
>
Q
@D

scrnrst;

This clears the screen.

Default = 2.

string, message printed at the top of the screen and printed out by Ipprt
and lpview. By default, no title is printed.

Global Output

—lIpax

—lpbasis

—lpdivar

—lpitnum

Mx1 vector, the value of each constraint upon termination. That is,
—lpax = az, where z is the solution upon termination of simplex.

Mx1 vector, the indices of the variables in the final basis. Normally, the
indices returned in —lIpbasis are in the range [1, (M + N)]. Occasionally,
however, artificial variables may persist in the basis. In this case, indices
are in the range [1, (2% M + N)].

Mx1 vector, the dual variables.

2x1 vector, the number of iterations required by each phase of simplex.
The first and second elements correspond to the number of iterations
required by Phase I and Phase II, respectively.

29

simplex

—lpqual

—lIpstate

—lpuniq

—Ipx

= Remarks

3. LINEAR PROGRAMMING REFERENCE

scalar, reports the quality of the final solution. Quality is judged to be:

1
2
3
4

POOR

FAIR

GOOD
EXCELLENT

Mx1 vector containing the state of each constraint upon termination of
simplex. The states are:

-4
-3
-2
-1

0
1
2
3

Equality constraint has been violated below.
Equality constraint has been violated above.
Constraint violates its lower bound.
Constraint violates its upper bound.
Constraint strictly between its two bounds.
Constraint is at its lower bound.

Constraint is at its upper bound.

Equality constraint is satisfied.

scalar, if 1, the optimal solution x is unique. If 0, the solution is not
unique. Set —lIpsoltn equal to the number of optimal solutions that
simplex should attempt to find.

(NxM)xP matrix, or scalar. If _lIpsoltn is greater than 1, this global is an
(N+M)xP matrix containing P optimal solutions. Otherwise, —lpx is set
to zero.

By default, simplex solves the problem:

maximize:

subject to:

n

§ :ijj

Jj=1

Zaijxj S bl (’L =]., 2, m)

z; >0 (j=1,2,...n)

Please note that simplex cannot handle free constraints. Do not set b; = +1e200 for

any .

= Example

30

3. LINEAR PROGRAMMING REFERENCE simplex

library simplex;
#include simplex.ext;

lpset;

a=1{1-433,
13-11,
1232,
13-2113;

o’
1]

{2, -2,3, -3}
c=4{3,1, 4, 2 };

title = "THE PRIMAL PROBLEM";

_lpxcnst = { 0, 0, 1, 1 };

{ x, optp,retcp } = lpview(simplex(a,b,c,0,0));

lpset;

__title = "THE DUAL PROBLEM";
_lpcnst = { 3, 3, 2, 2 };
_lpmin = 1;

{ y, optd, retcd } = lpview(simplex(a’,c,b,0,1e200));

P
@D
—h
@D
=
@D
>
Q
@D

= Source

simplex.src

31

simplex 3. LINEAR PROGRAMMING REFERENCE

32

Index

accuracy, 16

——_altnam, 10
ANSI.SYS, 24
ASCII files, 8

C

constraints, 5, 7
constraints, equality, 10
constraints, free, 9
constraints, types, 9

D

DOS, 2, 3
dual variables, 7

H

——header, 10
I

Installation, 1

L

LIBRARY, 6

library, simplex, 6
linear programming, 5
—lpax, 29

—lpbasis, 29

—lpcnst, 9, 26
—lpcstol, 10, 16, 27
—lpdlvar, 29

—lpepsl, 10, 16, 27
—lpeps2, 10, 16, 27

—lpeps3, 10, 16, 27
—lpfstol, 10, 16, 27
—lpitnum, 29
—lIpmaxit, 10, 27
—lpmin, 9, 27
—lpname, 10, 21, 23, 27
Ipprt, 11, 20
—lpqual, 30
—lprule, 10, 27
Ipset, 6, 22
—lpsoltn, 10, 28
—lpstate, 30
—lpstflg, 10, 28
—lpstrtx, 10, 28
—lpuniq, 10, 30
Ipview, 23

—lpx, 30

—lpxcnst, 9, 28

M

maximization, 9
minimization, 9

O

objective function, 7
optimization, 5
——output, 10, 29

R

return code, 16

S

scrarst, 24, 29

INDEX

simplex, 5, 7, 25
simplex.ext, 6
start values, 15

T

tie breaking rule, 27
—_title, 10
tolerances, 16

U
UNIX, 1, 3
\Y%

variables, free, 10

34

