
Nonlinear Equations

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software described in
this document is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.
The purchaser may make one copy of the software for backup purposes. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose other than the
purchaser’s personal use without the written permission of Aptech Systems, Inc.
c©Copyright 1988-1997 by Aptech Systems, Inc., Maple Valley, WA.
All Rights Reserved.

GAUSS, GAUSS Engine, GAUSSi, GAUSS Light, GAUSS-386 and GAUSS-386i are
trademarks of Aptech Systems, Inc. All other trademarks are the properties of their
respective owners.

Documentation Version: January 15, 2001

Contents

1 Installation 1

1.1 UNIX . 1

1.1.1 Solaris 2.x Volume Management 2

1.2 DOS . 2

1.3 Differences Between the UNIX and DOS Versions 3

2 Nonlinear Equations 5

2.1 Introduction . 5

2.2 Getting Started . 5

2.2.1 README Files . 5

2.2.2 Setup . 5

2.3 About the NLSYS Procedure . 6

2.4 Solution Method . 7

2.5 Using NLSYS Directly . 8

2.6 An Example . 8

2.6.1 Setting Up the System . 8

2.6.2 Starting Values . 9

2.6.3 Global Parameters . 9

2.6.4 The Complete Example . 10

2.7 References . 11

3 Nonlinear Equations Reference 13

NLSET . 14

NLSYS . 15

NLPRT . 20

Index 23

ii

Installation

Chapter 1

Installation

1.1 UNIX

If you are unfamiliar with UNIX, see your system administrator or system
documentation for information on the system commands referred to below. The device
names given are probably correct for your system.

1. Use cd to make the directory containing GAUSS the current working
directory.

2. Use tar to extract the files.

tar xvf device name

If this software came on diskettes, repeat the tar command for each
diskette.

The following device names are suggestions. See your system administrator. If you are
using Solaris 2.x, see Section 1.1.1.

Operating System 3.5-inch diskette 1/4-inch tape DAT tape

Solaris 1.x SPARC /dev/rfd0 /dev/rst8

Solaris 2.x SPARC /dev/rfd0a (vol. mgt. off) /dev/rst12 /dev/rmt/1l

Solaris 2.x SPARC /vol/dev/aliases/floppy0 /dev/rst12 /dev/rmt/1l

Solaris 2.x x86 /dev/rfd0c (vol. mgt. off) /dev/rmt/1l

Solaris 2.x x86 /vol/dev/aliases/floppy0 /dev/rmt/1l

HP-UX /dev/rfloppy/c20Ad1s0 /dev/rmt/0m

IBM AIX /dev/rfd0 /dev/rmt.0

SGI IRIX /dev/rdsk/fds0d2.3.5hi

1

1. INSTALLATION

1.1.1 Solaris 2.x Volume Management

If Solaris 2.x volume management is running, insert the floppy disk and type

volcheck

to signal the system to mount the floppy.

The floppy device names for Solaris 2.x change when the volume manager is turned off
and on. To turn off volume management, become the superuser and type

/etc/init.d/volmgt off

To turn on volume management, become the superuser and type

/etc/init.d/volmgt on

1.2 DOS

1. Place the diskette in a floppy drive.

2. Log onto the root directory of the diskette drive. For example:

A:<enter>

cd\<enter>

3. Type: ginstall source drive target path

source drive Drive containing files to install
with colon included

For example: A:

target path Main drive and subdirectory to install
to without a final \

For example: C:\GAUSS

A directory structure will be created if it does not already exist and the files
will be copied over.

target path\src source code files
target path\lib library files
target path\examples example files

2

Installation

1. INSTALLATION

4. The screen output option used may require that the DOS screen driver
ANSI.SYS be installed on your system. If ANSI.SYS is not already installed
on your system, you can put the command like this one in your
CONFIG.SYS file:

DEVICE=C:\DOS\ANSI.SYS

(This particular statement assumes that the file ANSI.SYS is on the
subdirectory DOS; modify as necessary to indicate the location of your copy
of ANSI.SYS.)

1.3 Differences Between the UNIX and DOS Versions

• In the DOS version, when the global output = 2, information may be written
to the screen using commands requiring the ANSI.SYS screen driver. These are
not available in the current UNIX version, and therefore setting output = 2
may have the same effect as setting output = 1.

• If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press Enter after the keystroke in the
UNIX version.

• On the Intel math coprocessors used by the DOS machines, intermediate
calculations have 80-bit precision, while on the current UNIX machines, all
calculations are in 64-bit precision. For this reason, GAUSS programs executed
under UNIX may produce slightly different results, due to differences in
roundoff, from those executed under DOS.

3

1. INSTALLATION

4

Nonlinear Equations

Chapter 2

Nonlinear Equations

2.1 Introduction

This module contains the procedure NLSYS which solves the system:

F (x) = 0

where F is a general nonlinear system of equations, F : Rn → Rn. F must have first
and second derivatives, although these need not be supplied analytically.

2.2 Getting Started

GAUSS 3.1.0+ is required to use these routines.

2.2.1 README Files

The file README.nle contains any last minute information on this module. Please read
it before using the procedures in this module.

2.2.2 Setup

In order to use the procedures in the NONLINEAR EQUATIONS Module, the NLSYS
library must be active. This is done by including nlsys in the LIBRARY statement at
the top of your program:

5

2. NONLINEAR EQUATIONS

library nlsys,simplex,pgraph;

This enables GAUSS to find the NONLINEAR EQUATIONS procedures. If you plan
to make any right-hand references to the global variables (described under the NLSYS
function definition in Chapter 3), you will also need the statement:

#include nlsys.ext;

Finally, to reset global variables in succeeding executions of the program the following
instruction can be used:

nlset;

This could be included with the above statements without harm and would insure the
proper definition of the global variables for all executions of the program.

The version number of each module is stored in a global variable. For NONLINEAR
EQUATIONS , this global is:

nl ver 3×1 matrix, the first element contains the major version number, the
second element the minor version number, and the third element the
revision number.

If you call for technical support, you may be asked for the version of your copy of this
module.

2.3 About the NLSYS Procedure

To call NLSYS, all that is needed is the statement

{ x, fvc, jc, tcode } = NLSYS(&f,x0);

where &f is a pointer to the procedure describing the system of equations (a discussion
on how to set up this procedure follows), and x0 is a vector of start values. The output
arguments are, respectively, the final solution (x), the value of the system of equations
at the final solution (fvc), the final Jacobian (jc), and a return code (tcode).

It is assumed that the function passed to NLSYS is continuous and differentiable. This
ensures that the matrix of first partial derivatives of the equations, the Jacobian
matrix, exists, even though it may not be possible to calculate it analytically. The
Jacobian matrix may be defined as

Ji,j =
∂Fi
∂xj

6

Nonlinear Equations

2. NONLINEAR EQUATIONS

The Fi’s must be independent; otherwise, the system will be underdetermined, the
equation F = 0 will have an infinite number of solutions and the method will fail.
Independence of the Fi’s, however, is not a sufficient condition to ensure that the
solution found by NLSYS will be unique; for many problems, a number of solutions
exist. For example, F (x) could be the two equation system

x1 + x2 − 3 = 0

x1
2 + x2

2 − 9 = 0

which has roots at x1 = 3, x2 = 0 and x1 = 0, x2 = 3.

In this case, the particular solution located by NLSYS generally will be the solution
closest to the starting values x0.

Specific tolerance levels may be set to define the accuracy of your equations and,
therefore, the accuracy of the solution.

2.4 Solution Method

The program NLSYS uses a quasi-Newton method for finding the zeros of a system of
nonlinear equations, if an analytic Jacobian of the system is not supplied by the user.
To approximate the Jacobian, you may chose one of two methods: (1) Broyden’s secant
update of the approximation of the Jacobian, or (2) a forward difference method.
Should Broyden’s technique fail, the algorithm reverts to the forward difference
estimate of the Jacobian and recalculates the step. You may also supply a function to
compute the Jacobian analytically which speeds up the solution significantly, especially
for large problems.

To provide a globalizing strategy for failures of Newton steps, the user may chose one of
two algorithms. The first, a line-search algorithm, uses a backtracking strategy to
search in the Newton direction for a step-length which minimizes the local quadratic
model of the system. The second, the hookstep algorithm, uses a predetermined
step-length, which is at most the Newton step-length, and searches for a direction
which minimizes the local quadratic model. Refer to Dennis and Schnabel for a
complete discussion of these methods.

The global variables nlchpf, nlalgr, nlstjc, and nlajac are used to specify which
method should be used to calculate the Jacobian, a starting Jacobian, if one is desired,
and which search strategy should be used.

To initialize the process, the user must supply starting values, and optionally, a starting
Jacobian.

7

2. NONLINEAR EQUATIONS

2.5 Using NLSYS Directly

When NLSYS is called, it directly references all the necessary globals and passes its
arguments and the values of the globals to a function called NLSYS. When NLSYS
returns, NLSYS then sets the output globals to the values returned by NLSYS and
returns its arguments directly to the user. NLSYS makes no global references to
matrices or strings, and all procedures it references have names that begin with an
underscore “ ”.

NLSYS can be used directly in situations where you do not want any of the global
matrices and strings in your program. If NLSYS, NLPRT and NLSET are not
referenced, the global matrices and strings in nlsys.dec will not be included in your
program.

The documentation for NLSYS, the globals it references, and the code itself should be
sufficient documentation for using NLSYS.

2.6 An Example

To illustrate the use of NLSYS, we will solve Example 5.5 of Carnahan et.al. in the
following sections. The completed program is given in the example file nl4.e.

2.6.1 Setting Up the System

A GAUSS procedure which defines the system of equations F must be defined. There
are no special name requirements for this procedure and global references and functions
called through the language interface may be used to define the equations. The
procedure must however, accept only the Nx1 vector x = (x1, x2, ...xn) as an argument,
and return the Nx1 vector representing F (x) = (f1, f2, f3...fn).

The system of equations

1

2
x1 + x2 +

1

2
x3 −

x6

x7
= 0

x3 + x4 + 2x5 −
2

x7
= 0

x1 + x2 + x5 −
1

x7
= 0

−28837x1 − 139009x2− 78213x3 + 18927x4+

+8427x5 +
13492

x7
− 10690

x6

x7
= 0

x1 + x2 + x3 + x4 + x5 − 1 = 0

P 2x1x
3
4 − 1.7837× 105x3x5 = 0

x1x3 − 2.6058x2x4 = 0

8

Nonlinear Equations

2. NONLINEAR EQUATIONS

which is given by Carnahan et.al. represent a methane–oxygen reaction. The task is to
solve for the variables x∗ = (x1...xn).

Here is one method for placing this system in a procedure:

proc fsys(x);

local f1,f2,f3,f4,f5,f6,f7,P;

P = 20;

f1 = 0.5*x[1] + x[2] + 0.5*x[3] - x[6]/x[7];

f2 = x[3] + x[4] + 2*x[5] - 2/x[7];

f3 = x[1] + x[2] + x[5] - 1/x[7];

f4 = -28837*x[1] - 139009*x[2] - 78213*x3 + 18927*x[4] +

8427*x[5] + 13492/x[7] - 10690*x[6]/x[7];

f5 = x[1] + x[2] + x[3] + x[4] + x[5] - 1;

f6 = (P^2)*x[1]*x[4]^3 - 1.7837*1e5*x[3]*x[5];

f7 = x[1]*x[3] - 2.6058*x[2]*x[4];

retp(f1|f2|f3|f4|f5|f6|f7);

endp;

In this case, one would pass a pointer to the procedure FSYS to NLSYS.

2.6.2 Starting Values

Starting values for x0 are required. These values should be chosen to be as close as
possible to the solution. This should be a column vector.

x0 = { 0.5, 0, 0, 0.5, 0, 0.5, 2.0 };

2.6.3 Global Parameters

Optional parameters may be specified which set the convergence, scaling and global
returns. These can be specified as follows:

_nlalgr = 2;

__altnam = { co, co2, h2o, h2, ch4, o2/ch4, total };

__title = "Chemical Equilibrium Problem";

__output = 1;

See the NLSYS function definition in Chapter 3 for a complete listing of these options.

9

2. NONLINEAR EQUATIONS

2.6.4 The Complete Example

Here is a complete example illustrating the use of NLSYS and the printing procedure
NLPRT.

library nlsys;

#include nlsys.ext;

nlset;

proc fsys(x);

local f1,f2,f3,f4,f5,f6,f7,P;

P = 20;

f1 = 0.5*x[1] + x[2] + 0.5*x[3] - x[6]/x[7];

f2 = x[3] + x[4] + 2*x[5] - 2/x[7];

f3 = x[1] + x[2] + x[5] - 1/x[7];

f4 = -28837*x[1] - 139009*x[2] - 78213*x3 + 18927*x[4] +

8427*x[5] + 13492/x[7] - 10690*x[6]/x[7];

f5 = x[1] + x[2] + x[3] + x[4] + x[5] - 1;

f6 = (P^2)*x[1]*x[4]^3 - 1.7837*1e5*x[3]*x[5];

f7 = x[1]*x[3] - 2.6058*x[2]*x[4];

retp(f1|f2|f3|f4|f5|f6|f7);

endp;

x0 = { 0.5, 0, 0, 0.5, 0, 0.5, 2.0 };

_nlalgr = 2;

__altnam = { co, co2, h2o, h2, ch4, o2/ch4, total };

__title = "Chemical Equilibrium Problem";

__output = 1;

output file = nl4.out reset;

{ x,f,j,tcode } = nlprt(nlsys(&fsys,x0));

output off;

The procedure LPPRT nested around the call to NLSYS prints the results to the
current output device: in this case, the screen and the output file nl4.out. The
alternative names set in altnam will be used to label the variables.

Here is the output produced by NLPRT:

--

Chemical Equilibrium Problem

==

NLSYS: Version 2.01 (R1) 8/08/90 11:32 am

==

Number of iterations required: 6

||F(x)|| at final solution: 5.9710634e-09

10

Nonlinear Equations

2. NONLINEAR EQUATIONS

Algorithm used: HOOK STEP

Jacobian calculated using: FORWARD DIFFERENCE

--

Termination Code = 1:

Norm of the scaled function value is less than _nlfvtol;

Xp given is an approximate root of F(x) (unless _nlfvtol

is too large).

--

--

VARIABLE START ROOTS F(ROOTS)

--

CO 0.50000 0.32287084 2.1804787e-13

CO2 0.00000 0.0092235435 -1.6312507e-12

H2O 0.00000 0.046017091 -8.4510177e-13

H2 0.50000 0.61817168 9.9998942e-09

CH4 0.00000 0.003716851 -7.571721e-14

O2/CH4 0.50000 0.5767154 -6.8443029e-11

TOTAL 2.00000 2.9778635 2.5942616e-13

--

2.7 References

Agresti, A. 1984. Analysis of Ordinal Categorical Data. New York:Wiley.

Dennis and Schnabel 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. New Jersey:Prentice-Hall.

Gill, Murray and Wright 1981, Practical Optimization. New York: Academic Press.

Carnahan, Luther and Wilkes 1969, Applied Numerical Methods. New York: Wiley.

11

2. NONLINEAR EQUATIONS

12

Reference

Chapter 3

Nonlinear Equations Reference

13

NLSET 3. NONLINEAR EQUATIONS REFERENCE

Purpose

Resets NONLINEAR EQUATIONS global variables to default values.

Library

NLSYS

Format

NLSET;

Input

None

Output

None

Remarks

Putting this instruction at the top of all programs that invoke NLSYS is generally good
practice. This will prevent globals from being inappropriately defined when a program
is run either several times or after another program that also calls NLSYS.

NLSET calls GAUSSET.

Source

nlsys.src

14

Reference

3. NONLINEAR EQUATIONS REFERENCE NLSYS

Purpose

Solves a system of nonlinear equations.

Library

NLSYS

Format

{ xp,fvc,jc,tcode } = NLSYS(&F ,x0);

Input

x0 Nx1 vector of the starting values for the equation solution algorithm.
There should be as many elements in this vector as equations to be
solved.

&F A pointer to a procedure which computes the value at x of the equations
to be solved. This procedure should return an Nx1 column vector
containing the result for each equation. For example:

Equation 1: x2
1 + x2

2 − 2 = 0
Equation 2: ex1−1 + x3

2 − 2 = 0

proc G(x);

local g1,g2 ;

g1 = x[1]^2 + x[2]^2 - 2;

g2 = exp(x[1]-1) + x[2]^3 - 2;

retp(g1|g2);

endp;

Output

xp Nx1 vector which represents a solution to the problem F (xp) = 0. Check
tcode to confirm that the algorithm converged to a proper solution.

fvc Nx1 vector, the final function results, F (xp).

jc NxN matrix, the final Jacobian results.

tcode scalar, the termination code. 1 is successful. Others may represent
failure.

1 Norm of the scaled function value is less than nlfvtol; the xp given
is an approximate root of F (x) (unless nlfvtol is too large).

15

NLSYS 3. NONLINEAR EQUATIONS REFERENCE

2 The scaled distance between the last two steps is less than the
step-tolerance (nlstol). xp may be an approximate root of F (x),
but it is also possible that the algorithm is making very slow progress
and is not near a root, or the step-tolerance (nlstol) is too large.

3 The last global step failed to decrease ‖ F (x) ‖2 sufficiently; either
xp is close to a root of F and no more accuracy is possible, an
incorrectly coded analytic Jacobian is being used, the secant
approximation to the Jacobian is inaccurate, or the step-tolerance
(nlstol) is too large.

4 Iteration limit exceeded.

5 Five consecutive steps of maximum step length have been taken.
This probably means that NLSYS is approaching asymptotically a
finite value from above.

6 xp may be an approximate local minimizer of ‖ F (x) ‖2 that is not a
root of F (x) (or nlmtol is too small). To find a root of F (x),
NLSYS should be restarted from a different region.

Global Input

nlalgr scalar, indicates which search-direction/step-length algorithm should be
used.

1 Use line search

2 Use hook step—a locally constrained search strategy.

The line-search uses a Newton direction, and then determines a step
length. The Hook step uses a predetermined step length, and then finds
an optimal search direction.

If using the hook step, it is best to set nlchpf = 1, or to supply an
analytic Jacobian (see nlajac). This particular strategy is sensitive to
accuracy of the Hessian being used. If the secant update is being used,
the Hessian may fail to invert.

Default = 1.

nlajac pointer to a procedure which computes the analytic Jacobian. By
default, NLSYS will compute the Jacobian numerically.

nlchpf scalar, flag to control the method of Jacobian approximation:

0 use Broyden’s secant approximations

1 use finite difference Jacobians

16

Reference

3. NONLINEAR EQUATIONS REFERENCE NLSYS

Use 0 if the function being evaluated is expensive and not sensitive.

Neither of these methods will be used if an analytic Jacobian has been
supplied.

Default = 1.

nlfdig scalar, the number of reliable digits in F(x). This is used to compute eta,
which is used to specify the relative noise in F (x). eta is computed as
follows:

eta = max(macheps, 10− nlfdig)

Default = 14.

nlfvtol scalar, the tolerance of the scalar function f = 1
2 ‖ F (x) ‖2 required to

terminate algorithm. That is, |f(x)| must be less than nlfvtol before
the algorithm can terminate successfully. Default = macheps1/3.

nlmaxit scalar, the maximum number of iterations. Default = 100.

nlmtol scalar, the value used to test if the algorithm is stuck at a local
minimizer. The algorithm stops if the maximum component of the scaled
gradient is ≤ nlmtol.

Default = macheps2/3.

nlstol scalar, the step tolerance. Default = macheps2/3.

nltypf Nx1 vector of the typical F (x) values at a point not near a root, used for
scaling. This becomes important when the magnitudes of the
components of F (x) are expected to be very different. By default,
function values are not scaled.

nltypx Nx1 vector of the typical magnitude of x , used for scaling. This becomes
important when the magnitudes of the components of x are expected to
be very different. By default, variable values are not scaled.

nlstjc NxN matrix, may be set by user to initial Jacobian of F (x) with respect
to coefficients, if one is available. By default, NLSYS will compute the
initial Jacobian using a forward difference method.

altnam Nx1 character vector of alternate names to be used by the printed
output. By default, the names X1, X2, X3... or X01, X02, X03...
(depending on how vpad is set) will be used.

header string. This is used by printing portion of NLSYS to display information
about the date, time, version of module, etc. The string can contain one
or more of the following characters:

17

NLSYS 3. NONLINEAR EQUATIONS REFERENCE

t print title (see title)
l bracket title with lines
d print date and time
v print procedure name and version number
f print file name being analyzed (NOT USED BY NLSYS)

Example:

__header = "tld";

Default = “tldvf”.

output scalar. If nonzero, output produced during iterations is sent to the screen
and/or output device such as a printer or output file.

title string, a custom title to be printed at the top of the iterations report. By
default, no title will be printed.

vpad scalar. If altnam = 0, the variable names used during printout are
automatically created by NLSYS. Two types of names can be created:

0 Variable names automatically created by NLSYS are not padded to
give them equal length. For example, X1, X2 ... X10, X11....

1 Variable names created by the procedure are padded with zeros to
give them an equal number of characters. For example, X01, X02 ...
X10, X11....

Default = 1.

18

Reference

3. NONLINEAR EQUATIONS REFERENCE NLSYS

Global Output

nlitnum scalar, the number of iterations required by NLSYS to arrive at the final
solution.

Remarks

This solves a system of nonlinear equations using a quasi-Newton algorithm with
Broyden’s secant update method. The algorithm uses a line-search algorithm or a
model trust region approach (hookstep) as a globalizing strategy. Numeric derivatives
are calculated by default; however, analytic derivatives may be substituted if available.

Example

This example illustrates the difficulty of solving certain classes of problems. Try various
starting values to get some of the roots of these equations. Certain starting values will
not converge to a root.

The equations to be solved are:

1

2
sin(x1x2)−

x2

4π
− x1

2
= 0

(
1− 1

4π

)
(e2x1−1 − 1) +

x2

π
− 2x1 = 0

A number of roots can be found—here are a few:

x1 x2
0.5000 3.1416
0.2994 2.8369
-0.2606 0.6225

Here is the code for the above example:

library nlsys;

nlset;

proc F(x);

local f1,f2;

f1 = 0.5*sin(x[1]*x[2]) - x[2]/(4*pi) - x[1]/2;

f2 = (1 - 1/(4*pi))*(exp(2*x[1] - 1) - 1) + x[2]/pi - 2*x[1];

retp(f1|f2);

endp;

x0 = { 0.2, 0.3 }; /* Starting Values */

output file = nl.out reset;

{ xp,fvc,jc,tcode } = nlprt(nlsys(&f,x0));

output off;

Source

nlsys.src

19

NLPRT 3. NONLINEAR EQUATIONS REFERENCE

Purpose

Prints a summary of results from NLSYS. This printout can be sent to an output file if
one is open.

Library

NLSYS

Format

NLPRT(x ,fvc,jc,tcode);

Input

xp An Nx1 vector which represents a solution to the problem F (xp) = 0.

fvc Nx1 vector, the final function results, F (xp).

jc NxN matrix, the final Jacobian results.

tcode scalar, the termination code returned from NLSYS.

Globals

altnam Kx1 character vector, alternate names for variables created by NLSYS.
These names are used with the display produced by NLPRT. For
example,

__altnam = { CO, CO2, H2O, H2, CH4, O2/CH4, Total };

By default, the names X1, X2, X3... or X01, X02, X03... (depending on
how vpad is set) will be used.

header string. This is used by NLPRT to display information about the date,
time, version of module, etc. The string can contain one or more of the
following characters:

t print title (see title)
l bracket title with lines
d print date and time
v print procedure name and version number
f print file name being analyzed (NOT USED BY NLSYS)

20

Reference

3. NONLINEAR EQUATIONS REFERENCE NLPRT

Example:

__header = "tld";

Default = “tldvf”.

title string, a custom title to be printed at the top of the iterations report. By
default, no title will be printed.

vpad scalar. If altnam = 0, the variable names used during printout are
automatically created by NLSYS. Two types of names can be created:

0 Variable names are not padded to give them equal length. For
example, X1, X2 ... X10, X11....

1 Variable names are padded with zeros to give them an equal number
of characters. For example, X01, X02 ... X10, X11....

Default = 1.

Remarks

The call to NLSYS can be nested inside the call to NLPRT. For example:

{ x,fvc,jc,tcode } = nlprt(nlsys(&f,x0));

NLPRT requires that the output globals used and returned by NLSYS still be in
memory. Either nest the call to NLSYS inside the call to LPPRT (the safest way), or
call NLPRT directly after the call to NLSYS.

Globals

nlajac, nlchpf, nlalgr, nlitnum, nl x0

Source

nlsys.src

21

NLPRT 3. NONLINEAR EQUATIONS REFERENCE

22

Index

Index

altnam, 20

C

Carnahan, 9
convergence, 9

D

derivatives, analytic, 19
derivatives, numeric, 19
derivatives, partial, 6
DOS, 2, 3

F

forward difference, 7

G

GAUSS, procedure, 8
global returns, 9

H

hookstep algorithm, 7

I

Installation, 1

J

Jacobian, 6

L

library, NLSYS, 5
line-search, 19

line-search algorithm, 7

N

nlajac, 16
nlalgr, 16
nlchpf, 16
nlfdig, 17
nlfvtol, 17
nlmaxit, 17
nlmtol, 17

NLPRT, 10, 20
NLSET, 14
nlstjc, 17
nlstol, 17

NLSYS, 6, 15
nltypf, 17
nltypx, 17

noise, 17

Q

quasi-Newton, 7, 19

S

scaling, 9, 17
secant, Broyden’s, 19
starting values, 9, 19

T

tolerance levels, 7

U

UNIX, 1, 3

