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Installation

Chapter 1

Installation

1.1 UNIX

If you are unfamiliar with UNIX, see your system administrator or system
documentation for information on the system commands referred to below. The device
names given are probably correct for your system.

1. Use cd to make the directory containing GAUSS the current working
directory.

2. Use tar to extract the files.

tar xvf device name

If this software came on diskettes, repeat the tar command for each
diskette.

The following device names are suggestions. See your system administrator. If you are
using Solaris 2.x, see Section 1.1.1.

Operating System 3.5-inch diskette 1/4-inch tape DAT tape

Solaris 1.x SPARC /dev/rfd0 /dev/rst8

Solaris 2.x SPARC /dev/rfd0a (vol. mgt. off) /dev/rst12 /dev/rmt/1l

Solaris 2.x SPARC /vol/dev/aliases/floppy0 /dev/rst12 /dev/rmt/1l

Solaris 2.x x86 /dev/rfd0c (vol. mgt. off) /dev/rmt/1l

Solaris 2.x x86 /vol/dev/aliases/floppy0 /dev/rmt/1l

HP-UX /dev/rfloppy/c20Ad1s0 /dev/rmt/0m

IBM AIX /dev/rfd0 /dev/rmt.0

SGI IRIX /dev/rdsk/fds0d2.3.5hi
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1. INSTALLATION

1.1.1 Solaris 2.x Volume Management

If Solaris 2.x volume management is running, insert the floppy disk and type

volcheck

to signal the system to mount the floppy.

The floppy device names for Solaris 2.x change when the volume manager is turned off
and on. To turn off volume management, become the superuser and type

/etc/init.d/volmgt off

To turn on volume management, become the superuser and type

/etc/init.d/volmgt on

1.2 DOS

1. Place the diskette in a floppy drive.

2. Log onto the root directory of the diskette drive. For example:

A:<enter>

cd\<enter>

3. Type: ginstall source drive target path

source drive Drive containing files to install
with colon included

For example: A:

target path Main drive and subdirectory to install
to without a final \

For example: C:\GAUSS

A directory structure will be created if it does not already exist and the files
will be copied over.

target path\src source code files
target path\lib library files
target path\examples example files

2
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1. INSTALLATION

4. The screen output option used may require that the DOS screen driver
ANSI.SYS be installed on your system. If ANSI.SYS is not already installed
on your system, you can put the command like this one in your
CONFIG.SYS file:

DEVICE=C:\DOS\ANSI.SYS

(This particular statement assumes that the file ANSI.SYS is on the
subdirectory DOS; modify as necessary to indicate the location of your copy
of ANSI.SYS.)

1.3 Differences Between the UNIX and DOS Versions

• In the DOS version, when the global output = 2, information may be written
to the screen using commands requiring the ANSI.SYS screen driver. These are
not available in the current UNIX version, and therefore setting output = 2
may have the same effect as setting output = 1.

• If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press Enter after the keystroke in the
UNIX version.

• On the Intel math coprocessors used by the DOS machines, intermediate
calculations have 80-bit precision, while on the current UNIX machines, all
calculations are in 64-bit precision. For this reason, GAUSS programs executed
under UNIX may produce slightly different results, due to differences in
roundoff, from those executed under DOS.
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Optimization

written by

Ronald Schoenberg

This module contains the procedure OPTMUM, which solves the problem:

minimize: f(x)

where f : Rn → R. It is assumed that f has first and second derivatives.

2.1 Getting Started

GAUSS 3.1.0+ is required to use these routines.

2.1.1 README Files

The file README.opt contains any last minute information on this module. Please
read it before using the procedures in this module.

2.1.2 Setup

In order to use the procedures in the OPTIMIZATION Module the OPTMUM library
must be active. This is done by including optmum in the LIBRARY statement at the
top of your program or command file:
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2. OPTIMIZATION

library optmum,quantal,pgraph;

This enables GAUSS to find the procedure OPTMUM and other procedures used by
OPTMUM. If you plan to make any right hand references to the global variables
(which are described in a later section), you will also need the statement:

#include optmum.ext;

Finally, to reset global variables in succeeding executions of the command file the
following instruction can be used:

optset;

This could be included with the above statements without harm and would insure the
proper definition of the global variables for all executions of the command file.

The version number of each module is stored in a global variable. For OPTIMIZATION
this global is:

op ver 3×1 matrix, the first element contains the major version number of the
OPTMIMIZATION Module, the second element the minor version
number, and the third element the revision number.

If you call for technical support, you may be asked for the version number of your copy
of the OPTIMIZATION Module.

2.2 Algorithms

OPTMUM is a procedure for the minimization of a user-provided function with respect
to parameters. It is assumed that the derivatives with respect to the parameters exist
and are continuous. If the procedures to compute the derivatives analytically are not
supplied by the user, OPTMUM calls procedures to compute them numerically. The
user is required to supply a procedure for computing the function.

Six algorithms are available in OPTMUM for minimization. These algorithms, as well
as the step length methods, may be modified during execution of OPTMUM.

OPTMUM minimizes functions iteratively and requires initial values for the unknown
coefficients for the first iteration. At each iteration a direction, d, which is a NP×1
vector where NP is the number of coefficients, and a step length, α, are computed.
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Direction

The direction, d, is a vector of quantities to be added to the present estimate of the
coefficients. Intuitively, the term refers to the fact that these quantities measure where
the coefficients are going in this iteration. It is computed as the solution to the equation

Hd = −g

where g is an NP×1 gradient vector, that is, a vector of the first derivatives of the
function with respect to the coefficients, and where H is an NP×NP symmetric matrix
H.

Commonly, as well as in previous versions of OPTMUM, the direction is computed as

d = H−1g

Directly inverting H, however, is a numerically risky procedure, and the present version
of OPTMUM avoids inverting matrices altogether. Instead a solve function is called
which results in greater numerical stability and accuracy.

H is calculated in different ways depending on the type of algorithm selected by the
user, or it can be set to a conformable identity matrix. For best results H should be
proportional to the matrix of the second derivatives of the function with respect to
pairs of the coefficients, i.e., the Hessian matrix, or an estimate of the Hessian.

The Newton Algorithm

In this method H is the Hessian:

H =
∂f

∂x∂xt

By default H is computed numerically. If a function to compute the Hessian is
provided by the user, then that function is called. If the user has provided a function to
compute the gradient, then the Hessian is computed as the gradient of the gradient.

After H has been computed

Hd = −g

is solved for d.

7



2. OPTIMIZATION

The Secant Algorithms

The calculation of the Hessian is generally a very large computational problem. The
secant methods (sometimes called quasi-Newton methods) were developed to avoid this.
Starting with an initial estimate of the Hessian, or a conformable identity matrix, an
update is calculated that requires far less computation. The update at each iteration
adds more “information” to the estimate of the Hessian, improving its ability to project
the direction of the descent. Thus after several iterations the secant algorithm should
do nearly as well as the Newton iteration with much less computation.

Commonly, as well as in the previous versions of OPTMUM, an estimate of the inverse
of the Hessian is updated on each iteration. This is a good strategy for reducing
computation but is less favorable numerically. This version of OPTMUM instead
updates a Cholesky factorization of the estimate of the Hessian (not its inverse). This
method has superior numerical properties (Gill and Murray, 1972). The direction is
then computed by applying a solve to the factorization and the gradient.

There are two basic types of secant methods, the BFGS (Broyden, Fletcher, Goldfarb,
and Shanno), and the DFP (Davidon, Fletcher, and Powell). They are both rank two
updates, that is, they are analogous to adding two rows of new data to a previously
computed moment matrix. The Cholesky factorizations of the estimate of the Hessian
is updated using the GAUSS functions CHOLUP and CHOLDN.

For given C, the Cholesky factorizatoin of the estimate of the Hessian,

C ′Cd = −g

is solved for d using GAUSS’s CHOLSOL function.

2.2.1 The Steepest Descent Method (STEEP)

In the steepest descent method H is set to the identity matrix. This reduces
computational and memory requirements, and if the problem is large the reduction is
considerable. In regions far from the minimum it can be more efficient than other
descent methods which have a tendency to get confused when the starting point is
poor. It descends quite inefficiently, however, compared to the Newton and secant
methods when closer to the minimum. For that reason, the default switching method
begins with steepest descent and switches to the BFGS secant method.

2.2.2 Newton’s Method (NEWTON)

Newton’s method makes the most demands on the model of all the methods. The
method succeeds only when everything is well behaved. The tradeoff is that the
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method converge in fewer iterations than other methods. NEWTON uses both the first
and second derivatives and thus the Hessian must be computed on each iteration. If the
Hessian is being computed numerically, there is likely to be very little gain over DFP or
BFGS because while the latter may take many more iterations, the total time to
converge is less.

The numerically-computed gradient requires NP functions calls where NP is the
number of parameters, and the numerically-computed Hessian requires NP2 function
calls. If the number of parameters is large, or the function calculation time-consuming,
the Newton method becomes prohibitively computationally expensive. The
computational expense can be significantly reduced, however, if you provide a function
to compute the gradient. This reduces the calculation of the gradient to one function
call. Moreover, for the numerical calculation of the Hessian OPTMUM uses the
gradient function – in effect computing the Hessian as the gradient of the gradient –
and thus reduces the number of function calls to NP for the Hessian.

2.2.3 Secant Methods (BFGS, DFP, scaled BFGS)

BFGS is the method of Broyden, Fletcher, Goldfarb, and Shanno, and DFP is the
method of Davidon, Fletcher, and Powell. These methods are complementary
(Luenberger 1984, page 268). BFGS and DFP are like the NEWTON method in that
they use both first and second derivative information. However, in DFP and BFGS the
Hessian is approximated, reducing considerably the computational requirements.
Because they do not explicitly calculate the second derivatives they are sometimes
called quasi-Newton methods. The use of an approximation produces gains in two ways:
first, it is less sensitive to the condition of the model and data, and second, it performs
better in all ways than the STEEPEST DESCENT method, and while it takes more
iterations than NEWTON it can be expected to converge in less overall time (unless
analytical second derivatives are available in which case it might be a toss-up).

The Scaled BFGS is another version of the BFGS update method in which the formula
for the computation of the update has been modified to make it scale-free.

The secant methods are commonly implemented as updates of the inverse of the
Hessian. This is not the best method numerically (Gill and Murray, 1972). This version
of OPTMUM, following Gill and Murray (1972), updates the Cholesky factorization of
the Hessian instead, using the GAUSS functions CHOLUP and CHOLDN. The new
direction is then computed using CHOLSOL, a Cholesky solve, as applied to the
updated Cholesky factorization of the Hessian and the gradient.

2.2.4 Polak-Ribiere-type Conjugate Gradient (PRCG)

The conjugate gradient method is an improvement on the steepest descent method
without the increase in memory and computational requirements of the secant methods.
Only the gradient is stored, and the calculation of the new direction is different:

d`+1 = −g`+1 + β`d`

9



2. OPTIMIZATION

where ` indicates `-th iteration, d is the direction, g is the gradient. The conjugate
gradient method used in OPTMUM is a variation called the Polak-Ribiere method
where

β` =
(g`+1 − g`)′g`+1

g′`g`

The Newton and secant methods require the storage on the order of Hessian in
memory, i.e., 8NP 2 bytes of memory, where NP is the number of parameters. For a
very large problem this can be prohibitive. For example, 200 parameters requires 3.2
megabytes of memory, and this doesn’t count the copies of the Hessian that may be
generated by the program. For large problems, then, the PRCG and STEEP methods
may be the only alternative. As described above, STEEP can be very inefficient in the
region of the minimum, and therefore the PRCG is the method of choice in these cases.

2.3 Line Search

Given a direction vector d, the updated estimate of the coefficients is computed

x+ = x+ αd

where α is a constant, usually called the step length that increases the descent of the
function given the direction. OPTMUM includes a variety of methods for computing
α. The value of the function to be minimized as a function of α is

F (x+ αd)

Given x and d, this is a function of a single variable α. Line search methods attempt to
find a value for α that decreases F . STEPBT is a polynomial fitting method, BRENT
and HALF are iterative search methods. A fourth method called ONE forces a step
length of 1.

The default line search method is STEPBT. If this, or any selected method, fails, then
BRENT is tried. If BRENT fails, then HALF is tried. If all of the line search methods
fail, then a random search is tried.

2.3.1 STEPBT

STEPBT is an implementation of a similarly named algorithm described in Dennis and
Schnabel (1983). It first attempts to fit a quadratic function to F (x+ αd) and
computes an α that minimizes the quadratic. If that fails it attempts to fit a cubic
function. The cubic function is more likely to accurately portray the F which is not
likely to be very quadratic, but is, however, more costly to compute. STEPBT is the
default line search method because it generally produces the best results for the least
cost in computational resources.
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2.3.2 BRENT

This method is a variation on the golden section method due to Brent (1972). In this
method, the function is evaluated at a sequence of test values for α. These test values
are determined by extrapolation and interpolation using the constant,
(
√

5− 1)/2 = .6180.... This constant is the inverse of the so-called “golden ratio”
((
√

5 + 1)/2 = 1.6180... and is why the method is called a golden section method. This
method is generally more efficient than STEPBT but requires significantly more
function evaluations.

2.3.3 HALF

This method first computes F (x+ d), i.e., set α = 1. If F (x+ d) < F (x) then the step
length is set to 1. If not, then it tries F (x+ .5d). The attempted step length is divided
by one half each time the function fails to decrease, and exits with the current value
when it does decrease. This method usually requires the fewest function evaluations (it
often only requires one), but it is the least efficient in that it very likely fails to find the
step length that decreases F the most.

2.3.4 Random Search

If the line search fails, i.e., no α is found such that F (x+ αd) < F (x), then a random
search for a random direction that decreases the function. The radius of the random
search is fixed by the global variable, opmrteps (default = .01), times a measure of
the magnitude of the gradient. OPTMUM makes opmxtry attempts to find a
direction that decreases the function, and if all of them fail, the direction with the
smallest value for F is selected.

The function should never decrease, but this assumes a well-defined problem. In
practice, many functions are not so well-defined, and it often is the case that
convergence is more likely achieved by a direction that puts the function somewhere
else on the hyper-surface even if it is at a higher point on the surface. Another reason
for permitting an increase in the function here is that the only alternative is to halt the
minimization altogether even though it is not at the minimum, and so one might as
well retreat to another starting point. If the function repeatedly increases, then you
would do well to consider improving either the specification of the problem or the
starting point.

2.4 Calling OPTMUM Recursively

The procedure provided by the user for computing the function to be minimized can
itself call OPTMUM. In fact the number of nested levels is limited only by the amount
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2. OPTIMIZATION

of workspace memory. Each level contains its own set of global variables. Thus nested
copies can have their own set of attributes and optimization methods.

It is important to call OPTSET for all nested copies, and generally if you wish the
outer copy of OPTMUM to retain control over the keyboard, you need to set the global
variable opkey to zero for all the nested copies.

2.5 Using OPTMUM Directly

When OPTMUM is called, it directly references all the necessary globals and passes its
arguments and the values of the globals to a function called OPTMUM. When
OPTMUM returns, OPTMUM then sets the output globals to the values returned

by OPTMUM and returns its arguments directly to the user. OPTMUM makes no
global references to matrices or strings, and all procedures it references have names
that begin with an underscore “ ”.

OPTMUM can be used directly in situations where you do not want any of the global
matrices and strings in your program. If OPTMUM, OPTPRT and OPTSET are not
referenced, the global matrices and strings in optmum.dec is not included in your
program.

The documentation for OPTMUM, the globals it references, and the code itself should
be sufficient documentation for using OPTMUM.

2.6 Hints on Optimization

The critical elements in optimization are scaling, starting point, and the condition of
the model.

When the data are scaled, the starting point reasonably close to the solution, and the
data and model well-conditioned, the iterations converges quickly and without difficulty.

For best results therefore you want to prepare the problem so that model is
well-specified, the data scaled, and that a good starting point is available.

2.6.1 Scaling

For best performance the Hessian matrix should be “balanced”, i.e., the sums of the
columns (or rows) should be roughly equal. In most cases the diagonal elements
determined these sums. If some diagonal elements are very large and/or very small
with respect to others, OPTMUM has difficulty converging. How to scale the diagonal
elements of the Hessian may not be obvious, but it may suffice to ensure that the
constants (or “data”) used in the model are about the same magnitude. 90% of the
technical support calls complaining about OPTMUM failing to converge are solved by
simply scaling the problem.
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2.6.2 Condition

The specification of the model can be measured by the condition of the Hessian. The
solution of the problem is found by searching for parameter values for which the
gradient is zero. If, however, the gradient of the gradient (i.e., the Hessian) is very
small for a particular parameter, then OPTMUM has difficulty deciding on the optimal
value since a large region of the function appears virtually flat to OPTMUM. When
the Hessian has very small elements the inverse of the Hessian has very large elements
and the search direction gets buried in the large numbers.

Poor condition can be caused by bad scaling. It can also be caused by a poor
specification of the model or by bad data. Bad model and bad data are two sides of the
same coin. If the problem is highly nonlinear it is important that data be available to
describe the features of the curve described by each of the parameters. For example,
one of the parameters of the Weibull function describes the shape of the curve as it
approaches the upper asymptote. If data are not available on that portion of the curve
then that parameter is poorly estimated. The gradient of the function with respect to
that parameter is very flat, elements of the Hessian associated with that parameter is
very small, and the inverse of the Hessian contains very large numbers. In this case it is
necessary to respecify the model in a way that excludes that parameter.

2.6.3 Starting Point

When the model is not particularly well-defined, the starting point can be critical.
When the optimization doesn’t seem to be working, try different starting points. A
closed form solution may exist for a simpler problem with the same parameters. For
example, ordinary least squares estimates may be used for nonlinear least squares
problems, or nonlinear regressions like probit or logit. There are no general methods for
computing start values and it may be necessary to attempt the estimation from a
variety of starting points.

2.6.4 Managing the Algorithms and Step Length Methods

A lack of a good starting point may be overcome to some extent by managing the
algorithms, step length methods, and computation of the Hessian. This is done with
the use of the global variables opstmth (start method) and opmdmth (middle
method). The first of these globals determines the starting algorithm and step length
method. When the number of iterations exceeds opditer or when the function fails to
change by opdfct percent or if Alt-T is pressed during the iterations, the algorithm
and/or step length method are switched by OPTMUM according to the specification in
opmdmth.

The tradeoff among algorithms and step length methods is between speed and demands
on the starting point and condition of the model. The less demanding methods are
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generally time consuming and computationally intensive, whereas the quicker methods
(either in terms of time or number of iterations to convergence) are more sensitive to
conditioning and quality of starting point.

The least demanding algorithm is steepest descent (STEEP). The secant methods,
BFGS, BFGS-SC, and DFP are more demanding than STEEP, and NEWTON is the
most demanding. The least demanding step length method is step length set to 1.
More demanding is STEPBT, and the most demanding is BRENT. For bad starting
points and ill-conditioned models, the following setup might be useful:

_opstmth = "steep one";

_opmdmth = "bfgs brent";

or

_opstmth = "bfgs brent";

_opmdmth = "newton stepbt";

Either of these would start out the iterations without strong demands on the condition
and starting point, and then switch to more efficient methods that make greater
demands after the function has been moved closer to the minimum.

The complete set of available strings for opstmth and opmdmth are described in
the OPTMUM reference section on global variables.

2.6.5 Managing the Computation of the Hessian

Convergence using the secant methods (BFGS, BFGS-SC, and DFP) can be
considerably accelerated by starting the iterations with a computed Hessian. However,
if the starting point is bad, the iterations can be sent into nether regions from which
OPTMUM may never emerge. To prevent this character strings can be added to
opstmth and opmdmth to control the computation of the Hessian. For example,

the following

_opstmth = "bfgs stepbt nohess";

_opmdmth = "hess";

forces OPTMUM to start the iterations with the identity matrix in place of the
Hessian, and then compute the Hessian after opditer iterations or the function fails to
change by opdfct percent. The setting for opstmth is the default setting and thus if
the default settings haven’t been changed, only the string opmdmth is necessary. The
alternative

_opmdmth = "inthess";

causes OPTMUM to compute the Hessian every opditer iterations.
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2.6.6 Diagnosis

When the optimization is not proceeding well, it is sometimes useful to examine the
function, gradient, Hessian and/or coefficients during the iterations. Previous versions
of OPTMUM saved the current coefficients in a global, but this interfered with the
recursive operation of OPTMUM, so the global was removed. For meaningful diagnosis
you would want more than the coefficients anyway. Thus, we now recommend the
method described in optutil.src (search for “DIAGNOSTIC”).

This commented section contains code that will save the function, gradient, Hessian
and/or coefficients as globals, and other code that will print them to the screen. Saving
these as globals is useful when your run is crashing during the iterations because the
globals will contain the most recent values before the crash. On the other hand, it is
sometimes more useful to observe one or more of them during the iterations, in which
case the PRINT statements will be more helpful. To use this code, simply uncomment
the desired lines.

2.7 Function

You must supply a procedure for computing the objective function to be minimized.
OPTMUM always minimizes. If you wish to maximize a function, minimize the
negative of the function to be maximized.

This procedure has one input argument, an NP × 1 vector of coefficients. It returns a
scalar, the function evaluated at the NP coefficients.

Occasionally your function may fail due to illegal calculations - such as an overflow. Or
your function may not fail when it fact it should - such as taking the logarithm of a
negative number, which is a legal calculation in GAUSS but which is not usually
desired. In either of these cases, you may want to recover the value of the coefficients at
that point but you may not want OPTMUM to continue the iterations. You can
control this be having your procedure return a missing value when there is any
condition which you wish to define as failure. This allows OPTMUM to return the
state of the iterations at the point of failure. If your function attempts an illegal
calculation and you have not tested for it, OPTMUM ends with an error message and
the state of the iterations at that point is lost.

2.8 Gradient

2.8.1 User-Supplied Analytical Gradient

To increase accuracy and reduce time, the user may supply a procedure for computing
the gradient. In practice, unfortunately, most time spent on writing the gradient
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procedure is spent in debugging. The user is urged to first check the procedure against
numerical derivatives. Put the function and gradient procedures into their own
command file along with a call to GRADFD:

The user-supplied procedure has one input argument, an NP × 1 vector of coefficients.
It returns a 1 × NP row vector of gradients of the function with respect to the NP
coefficients.

library optmum;

optset;

c0 = { 2, 4 };

x = rndu(100,1);

y = model(c0);

print "analytical gradient ";

print grd(c0);

print;

print "numerical gradient ";

print gradfd(&fct,c0);

proc model(c);

retp(c[1]*exp(-c[2]*x));

endp;

proc fct(c);

local dev;

dev = y - model(c);

retp(dev’*dev);

endp;

proc grd(c);

local g;

g = exp(-c[2]*x);

g = g~(-c[1]*x.*g);

retp(-2*(y - model(c))’*g);

endp;

2.8.2 User-Supplied Numerical Gradient

You may substitute your own numerical gradient procedure for the one used by
OPTMUM by default. This is done by setting the OPTMUM global, opusrgd to a
pointer to the procedure.

Included in the OPTMUM library of procedures are functions for computing numerical
derivatives: GRADCD, numerical derivatives using central differences, GRADFD,
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numerical derivatives using forward differences, and GRADRE, which applies the
Richardson Extrapolation method to the forward difference method.

GRADRE can come very close to analytical derivatives. It is considerably more
time-consuming, however, than using analytical derivatives. The results of GRADRE
are controlled by three global variables, grnum, grstp, and grsca. The default
settings of these variables, for a reasonably well-defined problem, produces convergence
with moderate speed. If the problem is difficult and doesn’t converge then try setting
grnum to 20, grsca to 0.4, and grstp to 0.5. This slows down the computation of

the derivatives by a factor of 3 but increases the accuracy to near that of analytical
derivatives.

To use any of these procedures put

#include gradient.ext;

at the top of your command file, and

_opusrgd = &gradre;

somewhere in the command file after the called to OPTSET and before the call to
OPTMUM.

You may use one of your own procedures for computing numerical derivatives. This
procedure has two arguments, the pointer to the function being optimized and an NP
× 1 vector of coefficients. It returns a 1 × NP row vector of the derivatives of the
function with respect to the NP coefficients. Then simply add

_opusrgd = &yourgrd;

where yourgrd is the name of your procedure.

2.9 Hessian

The calculation time for the numerical computation of the Hessian is a quadratic
function of the size of the matrix. For large matrices the calculation time can be very
significant. This time can be reduced to a linear function of size, if a procedure for the
calculation of analytical first derivatives is available. When such a procedure is
available, OPTMUM automatically uses it to compute the numerical Hessian.

2.9.1 User-Supplied Analytical Hessian

The Hessian is computed on each iteration in the Newton-Raphson algorithm, at the
start of the BFGS, Scaled BFGS, and DFP algorithms if opshess = 0, when Alt-I is
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pressed during iterations, opstmth = “hess”, after opditer iterations or when the
function has failed to change by opdfct percent or when Alt-T is pressed if
opmdmth = “hess”, All of these computations may be speeded up by the user by

providing a procedure for computing analytical second derivatives. This procedure has
one argument, the NP×1 vector of parameters, and returns a NP×NP symmetric
matrix of second derivatives of the objection function with respect to the parameters.
The pointer to this procedure is stored in the global variable ophsprc.

2.9.2 User-Supplied Numerical Hessian

You may substitute your own numerical Hessian procedure for the one used by
OPTMUM by default. This is done by setting the OPTMUM global, opusrhs to a
pointer to the procedure. This procedure has two input arguments, a pointer to the
function being minimized and an NP × 1 vector of coefficients. It returns an NP × NP
matrix containing the second derivatives of the function evaluated at the input
coefficient vector.

2.10 Run-Time Switches

If the user presses Alt-H during the iterations, a help table is printed to the screen
which describes the run-time switches. By this method, important global variables may
be modified during the iterations.

Alt-G Toggle opgdmd
Alt-V Revise opgtol
Alt-F Revise opdfct
Alt-P Revise opditer
Alt-O Toggle output
Alt-M Maximum Backstep
Alt-I Compute Hessian
Alt-E Edit Parameter Vector
Alt-C Force Exit
Alt-A Change Algorithm
Alt-J Change Step Length Method
Alt-T Force change to mid-method
Alt-H Help Table

The algorithm may be switched during the iterations either by pressing Alt-A, or by
pressing one of the following:

Alt-1 Steepest Descent (STEEP)
Alt-2 Broyden-Fletcher-Goldfarb-Shanno (BFGS)
Alt-3 Scaled BFGS (BFGS-SC)
Alt-4 Davidon-Fletcher-Powell (DFP)
Alt-5 Newton-Raphson (NEWTON) or (NR)
Alt-6 Polak-Ribiere Conjugate Gradient (PRCG)
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The line search method may be switched during the iterations either by pressing Alt-S,
or by pressing one of the following:

Shift-1 no search (1.0 or 1 or ONE)
Shift-2 cubic or quadratic method (STEPBT)
Shift-4 Brent’s method (BRENT)
Shift-4 halving method (HALF)

2.11 Error Handling

2.11.1 Return Codes

The fourth argument in the return from OPTMUM contains a scalar number that
contains information about the status of the iterations upon exiting OPTMUM. The
following table describes their meanings:

0 normal convergence
1 forced exit
2 maximum iterations exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 step length calculation failed
7 function cannot be evaluated at

initial parameter values
8 number of elements in the gradient function is

inconsistent with the number of starting values
9 the gradient function returned a column

vector rather than the required row vector
20 Hessian failed to invert

2.11.2 Error Trapping

Setting the global output = 0 turns off all printing to the screen. Error codes,
however, still is printed to the screen unless error trapping is also turned on. Setting
the trap flag to 4 causes OPTMUM to not send the messages to the screen:

trap 4;

Whatever the setting of the trap flag, OPTMUM discontinues computations and return
with an error code. The trap flag in this case only affects whether messages are printed
to the screen or not. This is an issue when the OPTMUM program is embedded in a
larger program, and you want the larger program to handle the errors.
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2.12 Example

The example OPT1.E is taken from D.G. Luenberger (1984) Linear and Nonlinear
Programming, Addison-Wesley, page 219. The function to be optimized is a quadratic
function:

f(x) = 0.5(b− x)′Q(b− x)

where a is a vector of known coefficients and Q is a symmetric matrix of known
coefficients. For computational purposes this equation is restated:

f(x) = 0.5x′Qx− x′b

From Luenberger we set

Q =

.78 −.02 −.12 −.14
−.02 .86 −.04 .06
−.12 −.04 .72 −.08
−.14 .06 −.08 .74

and

b′ = .76 .08 1.12 .68

First, we do the setup:

library optmum;

optset;

The procedure to compute the function is

proc qfct(x);

retp(.5*x’*Q*x-x’b);

endp;

Next a vector of starting values is defined,

x0 = { 1, 1, 1, 1 };

and finally a call to OPTMUM:

{ x,f,g,retcode } = optmum(&qfct,x0);

The estimated coefficients are returned in x , the value of the function at the minimum
is returned in f and the gradient is returned in g (you may check this to ensure that
minimum has actually been reached).
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Library

optmum

Purpose

Minimizes a user-provided function with respect to a set of parameters.

Format

{ x ,f ,g ,retcode } = OPTMUM(&fct ,x0 );

Input

x0 NP×1 vector, start values or the name of a proc that takes no input
arguments and returns an NP×1 vector of start values.

&fct pointer to a procedure that computes the function to be minimized.
This procedure must have one input argument, an NP×1 vector of
parameter values, and one output argument, a scalar value of the
function evaluated at the input vector of parameter values.

Output

x NP×1 vector, parameter estimates.

f scalar, value of function at minimum.

g NP×1 vector, gradient evaluated at x .

retcode scalar, return code. If normal convergence is achieved then retcode = 0,
otherwise a positive integer is returned indicating the reason for the
abnormal termination:

1 forced exit.

2 maximum iterations exceeded.

3 function calculation failed.

4 gradient calculation failed.

5 Hessian calculation failed.

6 step length calculation failed.

7 function cannot be evaluated at initial parameter values.

8 number of elements in the gradient function is inconsistent with the
number of starting values.
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9 the gradient function returned a column vector rather than the
required row vector.

20 Hessian failed to invert.

Globals

The globals variables used by OPTMUM can be organized in the following categories
according to which aspect of the optimization they affect:

Optimization and Steplengths opshess, opalgr, opdelta, opstmth, opdfct,
opditer, opmxtry, opmdmth, opmbkst, opstep, opextrp,
oprteps, opintrp, opusrch.

Gradient opgdprc, opgrdmd, ophsprc, opusrgd, opusrhs.

Terminations Conditions opmiter, opgtol.

Output Globals opitdta, opfhess, opkey.

Printout output, opparnm, title.

Please refer to this list if you need to know the name of the globals in affecting
particular aspects of your problem. Then see the list below for a complete description
of each global. Below, these globals are listed alphabetically.

opalgr scalar, selects optimization method:

1 STEEP - steepest descent

2 BFGS - Broyden, Fletcher, Goldfarb, Shanno method

3 BFGS-SC

4 DFP - scale free Davidon, Fletcher, Powell method

5 NEWTON - Newton-Raphson method

6 PRCG - Polak-Ribiere Conjugate Gradient method

Default = 2.

opdelta scalar. At each iteration during the NEWTON method the eigenvalues
of the Hessian are inspected, and if any of them are less than or equal to
opdelta, the Hessian is sufficiently augmented to generate a Hessian

with eigenvalues greater than or equal to opdelta. Default = 0.1.

opdfct scalar. If the function fails to improved by the percentage opdfct,
OPTMUM switches to the algorithm and/or steplength specified in
opmdmth. Default = 0.01.
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opditer scalar integer. After opditer iterations, OPTMUM switches to the
algorithm and/or steplength specified in opmdmth. Default = 20.

opextrp scalar, extrapolation constant for the BRENT line search method.
Default = 2.

opfhess NP×NP matrix. Contains last Hessian calculated by OPTMUM. If a
Hessian is never calculated, then this global is set to a scalar missing
value.

opgdprc pointer to a procedure that computes the gradient of the function with
respect to the parameters.

For example, the instruction:

opgdprc = &gradproc;

stores the pointer to a procedure with the name GRADPROC in
opgdprc. The user-provided procedure has a single input argument, an

NP × 1 vector of parameter values, and a single output argument, a 1 ×
NP row vector of gradients of the function with respect to the
parameters evaluated at the vector of parameter values. For example,
suppose the procedure is named GRADPROC and the function is a
quadratic function with one parameter:

y = x2 + 2x+ 1

then

proc gradproc(x);

retp(2*x+2);

endp;

By default, OPTMUM uses a numerical gradient.

opgdmd scalar, selects numerical gradient method.

0 Central difference method.

1 Forward difference method.

2 Forward difference method with Richardson Extrapolation.

Default = 0.

opgtol scalar, or NP×1 vector, tolerance for gradient of estimated coefficients.
When this criterion has been satisfied OPTMUM exits the iterations.
Default = 10−4.
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ophsprc scalar, pointer to a procedure that computes the Hessian, i.e. the matrix
of second order partial derivatives of the function with respect to the
parameters.

For example, the instruction:

ophsprc = &hessproc;

stores the pointer of a procedure with the name HESSPROC in the
global variable ophsprc. The procedure that is provided by the user
must have single input argument, the NP × 1 vector of parameter values,
and a single output argument, the NP × NP symmetric matrix of second
order derivatives of the function evaluated at the parameter values.

By default, OPTMUM calculates the Hessian numerically.

opitdta 3×1 matrix, the first element contains the elapsed time in minutes of the
iterations and the second element contains the total number of
iterations. The third element contains a character variable indicating the
type of inverse of Hessian that was computed:

NOCOV not computed
NOTPD not positive definite
HESS computed from Hessian
SECANT estimated from secant update

opintrp scalar, interpolation constant for the BRENT line search method.
Default = 0.25.

opkey scalar, controls keyboard trapping, that is, the run-time switches and
help table. If zero, keyboard trapping is turned off. This option is useful
when nested copies of OPTMUM are being called. Turning off the
keyboard trapping of the nested copies reserves control for the outer
copy of OPTMUM. Default = 1.

opmxtry scalar, maximum number of tries to compute a satisfactory step length.
Default = 100.

opmdmth string, used to specify an algorithm and/or step length and/or
computation of Hessian to which OPTMUM switches to when either
opditer or opdfct are satisfied, or Alt-T is pressed. The following

character strings may be included in opmdmth:

Algorithm choice:

“STEEP”

“BFGS”

“BFGS SC”

“DFP”
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“NEWTON” (or “NR”)

“PRCG”

Step length choice:

“ONE” (or “1” or “‘1.0”)

“STEPBT”

“BRENT”

“HALF”

Hessian return choice:

“HESS”

“NOHESS”.

For example:

_opmdmth = "steep brent nohess";

The character strings for the algorithms and step lengths causes
OPTMUM to switch to the specified algorithm and or step length
method. The string “HESS” causes the Hessian to be computed, which is
the default, and “NOHESS” prevents the Hessian from being computed.

Default = “HESS”;

opmiter scalar, maximum number of iterations. Default = 10000.

opmbkst scalar, maximum number of backsteps taken to find step length. Default
= 10.

opparnm NP×1 character vector of parameter labels. By default, no labels is used
for the output.

oprteps scalar. If set to nonzero positive real number and if the selected line
search method fails, then a random search is tried with radius equal to
the value of this global times the truncated log to the base 10 of the
gradient. Default = .01.

opshess scalar, or NP×NP matrix, the starting Hessian for BFGS, Scaled BFGS,
DFP, and NEWTON. Possible scalar values are:

0 begin with identity matrix.

1 compute starting Hessian

Default = 0. If set to a matrix, this matrix is used for the starting
Hessian. Default = 0.
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opstep scalar, selects method for computing step length.

1 step length = 1.

2 cubic or quadratic step length method (STEPBT)

3 Brent’s step length method (BRENT)

4 step halving (HALF)

Default = 2.

Usually opstep = 2 is best. If the optimization bogs down, try setting
opstep = 1 or 3. opstep = 3 generates slow iterations but faster

convergence and opstep = 1 or 4 generates fast iterations but slower
convergence.

When any of these line search methods fails, a random search is tried
with radius oprteps times the truncated log to the base 10 of the
gradient. If opusrch is set to 1 OPTMUM enters an interactive line
search mode.

opstmth string, used to specify an algorithm and/or step length and/or
computation of Hessian with which OPTMUM begins the iterations.
The following character strings may be included in opstmth:

Algorithm choice:

“STEEP”

“BFGS”

“BFGS SC”

“DFP”

“NEWTON” (or “NR”)

“PRCG”

Step length choice:

“ONE” (or “1” or “1.0”)

“STEPBT”

“BRENT”

“HALF”

Hessian choice:

“HESS”

“NOHESS”.
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The character strings for the algorithms and step lengths causes
OPTMUM to begin with the specified algorithm and or step length
method. The string “HESS” causes the Hessian to be computed and
inverted at the start of the iterations,

The default setting is opstmth = “”. The default settings for opalgr,
opstep, and opshess are equivalent to opstmth = “BFGS

STEPBT HESS”.

opusrch scalar. If 1, and if the selected line search method fails, then OPTMUM
enters an interactive line search mode. Default = 0.

opusrgd scalar, pointer to user-supplied procedure for computing a numerical
gradient. This procedure has two input arguments, a pointer to the
procedure computing the function to be minimized and an NP × 1
vector of coefficients. It has one output argument, a 1 × NP row vector
of derivatives of the function with respect to the NP coefficients.

opusrhs scalar, pointer to the user-supplied procedure for computing a numerical
Hessian. This procedure has two input arguments, a pointer to the
procedure computing the function to be minimized and an NP × 1 vector
of coefficients. It has one output argument, an NP × NP matrix of the
second derivatives of the function with respect to the NP coefficients.

output scalar, determines printing of intermediate results.

0 nothing is written.

1 serial ASCII output format suitable for disk files or printers.

2 (NOTE: DOS version only) output is suitable for screen only.
ANSI.SYS must be active.

Default = 2.

Remarks

OPTMUM can be called recursively.

Source

optmum.src

30



Reference

3. OPTIMIZATION REFERENCE OPTSET

Library

optmum

Purpose

Resets OPTMUM global variables to default values.

Format

OPTSET;

Input

None

Output

None

Remarks

Putting this instruction at the top of all command files that invoke OPTMUM is
generally good practice. This prevents globals from being inappropriately defined when
a command file is run several times or when a command file is run after another
command file is executed that calls OPTMUM.

OPTSET calls GAUSSET.

Source

optmum.src
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Library

optmum

Purpose

Formats and prints the output from a call to OPTMUM.

Format

{ x ,f ,g ,retcode } = OPTPRT(x ,f ,g ,retcode);

Input

x NP×1 vector, parameter estimates.

f scalar, value of function at minimum.

g NP×1 vector, gradient evaluated at x .

retcode scalar, return code.

Output

Same as Input.

Globals

title string, title of run. By default, no title is printed.

Remarks

The call to OPTMUM can be nested in the call to OPTPRT:

{ x,f,g,retcode } = optprt(optmum(&fct,x0));

This output is suitable for a printer or disk file.

Source

optmum.src

32



Reference

3. OPTIMIZATION REFERENCE GRADFD

Library

optmum

Purpose

Computes the gradient vector or matrix (Jacobian) of a vector-valued function that has
been defined in a procedure. Single-sided (forward difference) gradients are computed.

Format

d = GRADFD(&f ,x0 );

Input

&f procedure pointer to a vector-valued function:

f : RK → RN

It is acceptable for f(x) to have been defined in terms of global
arguments in addition to x , and thus f can return an N×1 vector:

proc f(x);

retp( exp(x*b) );

endp;

x0 NP×1 vector, point at which to compute gradient.

Output

g N×NP matrix, gradients of f with respect to the variable x at x0 .

Globals

grdh scalar, determines increment size for numerical gradient. By default, the
increment size is automatically computed.

Remarks

GRADFD returns a ROW for every row that is returned by f . For instance, if f returns
a 1×1 result, then GRADFD returns a 1×NP row vector. This allows the same function
to be used where N is the number of rows in the result returned by f . Thus, for
instance, GRADFD can be used to compute the Jacobian matrix of a set of equations.

To use GRADFD with OPTMUM, put

#include gradient.ext;
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at the top of the command file, and

_opusrgd = &gradfd;

somewhere in the command file after the call to OPTSET and before the call to
OPTMUM. For example,

library optmum;

#include optmum.ext;

#include gradient.ext;

optset;

start = { -1, 1 };

proc fct(x);

local y1,y2;

y1 = x[2] - x[1]*x[1];

y2 = 1 - x[1];

retp (1e2*y1*y1 + y2*y2);

endp;

_opusrgd = &gradfd;

{ x,fmin,g,retcode } = optprt(optmum(&fct,start));

OPTMUM uses the central difference method when opgdmd = 1, thus using
GRADFD as it is written is redundant. Its use would be advantageous, however, if you
were to modify GRADFD for a special purpose.

Source

gradient.src
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Library

optmum

Purpose

Computes the gradient vector or matrix (Jacobian) of a vector-valued function that has
been defined in a procedure. Central difference gradients are computed.

Format

d = GRADCD(&f ,x0 );

Input

&f procedure pointer to a vector-valued function:

f : RNP → RN

It is acceptable for f(x) to have been defined in terms of global
arguments in addition to x , and thus f can return an N×1 vector:

proc f(x);

retp( exp(x*b) );

endp;

x0 NP×1 vector, points at which to compute gradient.

Output

g N×NP matrix, gradients of f with respect to the variable x at x0 .

Globals

grdh scalar, determines increment size for numerical gradient. By default, the
increment size is automatically computed.

Remarks

GRADCD returns a ROW for every row that is returned by f . For instance, if f returns
a 1×1 result, then GRADCD returns a 1×NP row vector. This allows the same function
to be used where N is the number of rows in the result returned by f . Thus, for
instance, GRADCD can be used to compute the Jacobian matrix of a set of equations.

To use GRADCD with OPTMUM, put

#include gradient.ext;
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at the top of the command file, and

_opusrgd = &gradcd;

somewhere in the command file after the call to OPTSET and before the call to
OPTMUM. For example,

library optmum;

#include optmum.ext;

#include gradient.ext;

optset;

start = { -1, 1 };

proc fct(x);

local y1,y2;

y1 = x[2] - x[1]*x[1];

y2 = 1 - x[1];

retp (1e2*y1*y1 + y2*y2);

endp;

_opusrgd = &gradcd;

{ x,fmin,g,retcode } = optprt(optmum(&fct,start));

OPTMUM uses the central difference method when opgdmd = 1, thus using
GRADCD as it is written is redundant. Its use would be advantageous, however, if you
were to modify GRADCD for a special purpose.

Source

gradient.src
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Library

optmum

Purpose

Computes the gradient vector or matrix (Jacobian) of a vector-valued function that has
been defined in a procedure. Single-sided (forward difference) gradients are computed,
using Richardson Extrapolation.

Format

d = GRADRE(&f ,x0 );

Input

&f procedure pointer to a vector-valued function:

f : RNP → RN

It is acceptable for f(x) to have been defined in terms of global
arguments in addition to x , and thus f can return an N×1 vector:

proc f(x);

retp( exp(x*b) );

endp;

x0 NP×1 vector, points at which to compute gradient.

Output

g N×NP matrix, gradients of f with respect to the variable x at x0 .

Globals

grnum integer, determines the number of iterations algorithm produces. Beyond
a certain point, increasing grnum does not improve accuracy of
result; on the contrary, round error swamps accuracy and results become
significantly worse.

grsca scalar, between 0 and 1. By reducing grsca, algorithm may arrive at
an acceptable result sooner, but this may not be as accurate as a result
achieved with larger grsca and which might take longer to compute.
Generally, an grsca much smaller than 0.05 does not improve results
significantly.
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grstp scalar, should be less than 1. The best results seemed to be obtained
most efficiently when grstp is between 0.4 and 0.8. Changing

grstp and grsca may have positive effects on results of algorithm.

Remarks

The settings for the global variables, for a reasonably well-defined problem, produces
convergence with moderate speed. If the problem is difficult and doesn’t converge then
try setting grnum to 20, grsca to 0.4, and grstp to 0.5. This slows down the
computation of the derivatives by a factor of 3 but increases the accuracy to near that
of analytical derivatives.

GRADRE returns a ROW for every row that is returned by f . For instance, if f returns
a 1×1 result, then GRADRE returns a 1×NP row vector. This allows the same function
to be used where N is the number of rows in the result returned by f . Thus, for
instance, GRADRE can be used to compute the Jacobian matrix of a set of equations.

The algorithm, Richardson Extrapolation (see Numerical Analysis, by Lee W. Johnson
and R. Dean Riess, page 319) is an iterative process which updates a derivative based
on values calculated in a previous iteration. This is slower than GRADP, but can, in
general, return values that are accurate to about 8 digits of precision. The algorithm
runs through n iterations. grnum is a global whose default is 25.

#include gradient.ext;

proc myfunc(x);

retp( x.*2 .* exp( x.*x./3));

endp;

x0 = { 2.5, 3.0, 3.5 };

y = gradre(&myfunc,x0);

print y;

82.98901642 0.00000000 0.00000000

0.00000000 281.19752454 0.00000000

0.00000000 0.00000000 1087.95412226

To use GRADRE with OPTMUM, put

#include gradient.ext;

at the top of the command file, and

_opusrgd = &gradre;

somewhere in the command file after the call to OPTSET and before the call to
OPTMUM. For example,
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library optmum;

#include optmum.ext;

#include gradient.ext;

optset;

start = { -1, 1 };

proc fct(x);

local y1,y2;

y1 = x[2] - x[1]*x[1];

y2 = 1 - x[1];

retp (1e2*y1*y1 + y2*y2);

endp;

_opusrgd = &gradre;

{ x,fmin,g,retcode } = optprt(optmum(&fct,start));

Source

gradient.src
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