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Abstract

This paper examines long-term dependence in times between trades on �nancial mar-
kets. The autocorrelation functions of several intertrade duration series show a slow,
hyperbolic rate of decay typical for long memory processes. For example, a shock to
times between trades of the Alcatel stock on the Paris Stock Exchange (SBF Paris
Bourse) may persist in the transactions time for a long period of 1000 or 2000 ticks.
With an average duration of 52 seconds between transactions this may amount to
sixteen or thirty two hours in calendar time. This paper introduces a fractionally in-
tegrated autoregressive conditional duration (FIACD) model for intertrade duration
series. It also examines transformed duration processes representing times between
consecutive returns to states of null, positive or negative returns. This approach cap-
tures the relationship between the duration persistence and return dynamics. The
times elapsed between returns to various states feature very similar autocorrelation
patterns and do not possess the long memory property. The persistence in durations
is also determined by the times spent within speci�c states of returns. The average
visiting time is state dependent, features intraday variation and may be considered
as an instantaneous measure of state persistence. The long memory patterns are ex-
amined in data on the Alcatel and IBM stocks traded on the SBF Paris Bourse and
NYSE.
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1 Introduction

The trade intensity on �nancial markets 
uctuates within each day. It remains still unclear to

what extent these movements are determined by past events rather than due to pure randomness.

Potentially, any sudden acceleration or slowdown of trading activity may either have a temporary

or permanent impact on future trades. This depends on the range of temporal dependence charac-

terizing the trade intensity, or equivalently on the persistence in times between trades, called the

intertrade durations. In high frequency duration data the notions of memory and shock persistence

remain relatively little explored and require a particular interpretation. For example, a shock to

times between trades of the Alcatel stock on the Paris Stock Exchange (SBF Paris Bourse) may

persist in the transactions time for a long period of 1000 or 2000 ticks, i.e. have an impact on 1000

or 2000 future times to trade. This is due to a very slow, hyperbolic decay rate of the autocorrela-

tion function of the duration series, typical for long memory processes. With an average duration

of 52 seconds between trades, this amounts to sixteen or thirty two hours in the calendar time.

Hence, in high frequency data the long range of temporal dependence may span several trading

days and needs to be accounted for in models and forecasts of market activity.

In the �nancial literature, the long-term dependence and shock persistence have attracted a

considerable interest in the context of return and volatility dynamics. This issue was �rst related

to mean reversion in asset prices. Indeed, the long memory with range of temporal dependence

amounting to several years has been reported in various studies based in general on daily and

monthly data, and concerning stock returns [see, for example, Greene and Fielitz (1977), Aydogan

and Booth (1988), Lo (1991), Jacobsen (1996)], exchange rates [see, for example, Booth, Kaen and

Koros (1982) and Baillie and Bollerslev (1994)], and interest rates [see Shea (1991), Backus and Zin

(1993), Crato and Rothman (1994)]. More recently, several papers drew attention to long memory

in the volatility of �nancial assets sampled at daily or higher frequencies [see, for example, Taylor

(1986), Ding, Granger and Engle (1993) and Dacorogna et. al. (1993)]. To accommodate high

persistence in the conditional variances Baillie, Bollerslev and Mikkelsen proposed a fractionally

integrated GARCH model [see, Baillie, Bollerslev and Mikkelsen, (1996)]. It was further investi-

gated by Bollerslev and Mikkelsen (1996), McCurdy and Michaud (1996) and Comte and Renault

(1996), this last work discussing the long memory of volatility in the context of continuous time

processes 1.

The observed intertrade durations are determined by the speed of trading, and reveal informa-

tion on the traders behaviour and their decision making. On the other hand, information on the

empirical moments of durations, their dynamics and intraday variation may be considered as an

1Baillie (1996) provides an updated survey of literature on long memory processes.
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important input for strategic trading. The research on predictable patterns in duration dynamics

is quite recent. Early evidence on periodicities and duration clustering entailed by a short range

temporal dependence is discussed in Engle and Russell (1996). The persistence range for various

duration transforms is covered in Gourieroux, Jasiak (1998). The paper by Gourieroux, Jasiak and

Lefol (1996) emphasizes the role of time to trade as a major market liquidity factor. This issue is

essentially related to the tradeo� between fast trading, which implies a price change, and a slow

sequential execution of the order to minimize the price impact of a transaction. Such problems

often arise in block trading. The time also matters to a great extent in the limit order executions

or allocations on markets characterized by di�erent speeds of activity (trade intensity). In this

context, despite a relatively long expected time to trade, some markets may be preferred for their

lower variability of waiting times to trade, or otherwise less risk regarding the time of trade.

Empirically, the evidence for long range of time dependence in intertrade durations is revealed

by a highly persistent pattern of the autocorrelations displaying a slow, hyperbolic rate of decay.

As argued before, this feature needs to be accommodated in estimation and forecasting of market

activity. The aforementioned recent work of Engle and Russell (1996) introduced a class of ARMA-

type models called Autoregressive Conditional Duration (ACD) models for duration data. These

models account for short serial dependence in expected durations and thus impose an exponential

decline pattern on the autocorrelation function. In empirical applications of ACD models to high

frequency intertrade durations the estimated coe�cients on lagged variables sum up nearly to one.

Such evidence indicates a potential misspeci�cation that arises when an exponential decay pattern

is �tted to a process showing an hyperbolic rate of decay. This would suggest that a more 
exible

structure allowing for longer term dependencies might improve the �t. This also is the motivation

of the present paper for introducing a class of fractionally integrated ACD models (FIACD) to

capture the long-term dependencies in the duration series.

The paper is organized as follows. In section 2 we introduce the FIACD model and discuss its

properties. In section 3 the long memory fractional model is applied to the Alcatel and IBM data

2. Further insights into the nature of long memory in the trade intensity are described in section

4 where durations are examined separately in di�erent market regimes. Three basic market states

of positive, null and negative returns are distinguished and series of durations are transformed

into times between consecutive returns to these states. Besides the persistence in the return-to-

state times, the average amount of time spent in each state arises as a complementary measure of

persistence. Consequently, we study the visiting times spent by the trading process in the states of

positive, null and negative returns. In particular we compare their intraday dynamics, and discuss

information revealed by their varying means and variances. Section 5 concludes the paper.

2The series of IBM durations were also studied by Engle and Russell (1996).
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2 LongMemory Autoregressive Conditional Duration Model

There exist several de�nitions of long-term dependence 3. For example, we say that the process

has long memory if the sum of absolute values of its autocorrelations is non�nite. The short

and long memory process can easily be distinguished in terms of the decay properties of the

autocorrelation function. A stationary and invertible autoregressive moving average (ARMA)

process has an exponentially decaying autocorrelation function (ACF) while fractionally integrated

processes featuring long memory have ACF's decaying at a hyperbolic rate. Examples of such

processes are ARFIMA models (Granger (1980) and Granger and Joyeux(1980)) for persistence in

the conditional means, or FIGARCH (Baillie, Bollerslev, Mikkelsen (1996)) representing persistence

in the conditional variances.

A slow decay rate characterizes the ACF of the two series of intertrade durations considered

in this study which are: a) the IBM stock in November 1993, source: ISSM (Institute for the

Study of Security Markets), and b) the Alcatel stock in July and August 1996, source: records

of the Paris Stock Exchange (SBF Paris Bourse). The top panels of Figures 2.1 - 2.2 display the

�rst 1000 autocorrelations of the data, corresponding to roughly 7 hours on the IBM market, and

15 hours on the Alcatel market. This means that the current intertrade duration is signi�cantly

related to the lagged durations up to and beyond the order 1000, although it spans a relatively

short calendar time. However since the range of temporal dependence exceeds one day, this long

memory property of high frequency duration data is relevant for both the intra- and interday trade

dynamics. Hence, the approach requires large sets of high frequency data not necessarily covering

long spans in calendar time.

Figure 2.1: Autocorrelations of Times Between Trades, IBM.

Figure 2.2: Autocorrelations of Times Between Trades, Alcatel.

2.1 The Fractionally Integrated ACD Model

This subsection extends the standard ACD model to include long range durations dependence. In

the time series literature, the long memory adapted GARCH models are called fractionally inte-

grated (FIGARCH) processes. Therefore by analogy this process is called FIACD, i.e. Fractionally

Integrated ACD models.

Consider �rst the ACD model based on the exponential distribution. Let N be the number of

events observed at random times. The N events are indexed by i = 1; : : : N from the �rst observed

event to the last. Let ti be the time at which the ith event occurs. Then Xi = ti� ti�1 is the time

3see for details section 2.2 in the survey by Baillie (1996).
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between the (i � 1)th event and the ith event and Xi is called the ith duration. The ACD(p; q)

model proposed by Engle and Russell has a probability distribution function satisfying:

'(Xi;  i; �) =
1

 i
f

�
Xi

 i

�
; (2.1)

 i = w + �(L)Xi + �(L) i; (2.2)

where: f is a given p.d.f. independent of i, with unitary mean, L denotes the lag operator, and � is

the parameter vector characterizing the polynomials �(L) = �1L+�2L
2+ : : :+�qL

q and �(L) =

�1L+ �2L
2 + : : :+ �pL

p. We denote by  i the conditional expectation (and also the conditional

standard deviation up to a scalar) of Xi given the past. The coe�cients �j ; j = 1; :::; q, �j ; j =

1; ::::; p are assumed to be nonnegative to ensure the positivity of  i. This speci�cation implies

that the e�ect of past durations on the current conditional expected value decays exponentially

with the lag length. Indeed, the ACD(p; q) process may be rewritten as an ARMA(m; p) process

in Xi, where m = max(p; q), and:

[1� �(L)� �(L)]Xi = w + [1� �(L)]vi;

or equivalently,

[1� �(L)]Xi = w + [1� �(L)]vi; (2.3)

where �(L) = �(L) + �(L) = �1L + �2L + : : :, and vi = Xi �  i is the linear innovation of the

duration process. The stationarity and invertibility conditions require that the roots of [1��(L)�

�(L)] = 1� �(L) and [1� �(L)], respectively, lie outside the unit circle. Equivalently since �j ; �j

are nonnegative we need
�Pq

j=1 �j +
Pp
j=1 �j

�
=
Pm
j=1 �j < 1. The corresponding fractionally

integrated process is obtained by introducing the fractional di�erencing operator:

[1� �(L)](1� L)dXi = w + [1� �(L)]vi: (2.4)

The fractional di�erencing operator (1�L)d is de�ned by its expansion which can be expressed in

terms of the hypergeometric function H ,

(1� L)d = H(�d; 1; 1; L) =

1X
k=0

�(k � d)�(k + 1)�1�(�d)�1Lk (2.5)

=
1X
k=0

�kL
k; say;
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where � denotes the gamma function and 0 < d < 1: For any � > 0 the gamma function is de�ned

by:

�(�) =

Z 1

0

exp(�x)x��1dx;

In particular, for an integer �, say � = n,

�(n) = (n� 1)!:

Let us assume that all the roots of [1 � �(L)] and [1 � �(L)] lie outside the unit circle. By

substituting Xi �  i for vi in equation (2.4) we obtain the FIACD(p; d; q) model:

[1� �(L)] i = w + [1� �(L)� [1� �(L)](1� L)d]Xi (2.6)

= w + �(L)Xi; (2.7)

where �(L) = �1L + �2L
2 + : : :. In order to guarantee the positive sign of expected durations

all coe�cients in the last equation have to be nonnegative, i.e. �k � 0 for k = 1; 2 : : : This

representation is comparable to the FIGARCH(p; d; q) model of Baillie, Bollerslev and Mikkelsen

(1996).

2.2 Stationarity, Ergodicity and Impulse Responses

This subsection covers the stationarity and ergodicity of the basic model as well as the impulse

response functions. In this context, the results for FIACD can be compared to the properties and

shock persistence of the Integrated ACD process (i.e. the FIACD with d = 1), called IACD, and the

covariance stationary ACD processes. For 0 < d � 1, the hypergeometric function evaluated at L =

1 equals 0, i.e. H(�d; 1; 1; 1) = 0. This means that the �rst unconditional moment of Xi is in�nite

and the FIACD process is not weakly stationary, a feature it shares with the class of integrated

processes IACD. However, as shown by Bougerol and Picard (1992), the autoregressive models with

nonnegative i.i.d. coe�cients including the integrated processes are strictly stationary and ergodic.

This result implies, for example, the stationarity and ergodicity of the integrated and fractionally

integrated GARCH processes. By the same argument, the high order lag coe�cients in the in�nite

autoregressive representation of any FIACD model may be shown to be dominated in an absolute

value sense by the corresponding coe�cients of the integrated IACD process. By an extension of

the proof for the integrated ACD process presented in the Appendix 1, the FIACD(p; d; q) class

of processes is strictly stationary and ergodic for 0 � d � 1.

The persistence of shocks to the FIACD process can be studied in the context of the impulse

response analysis. The impulse response function measures the time pro�le of the e�ect of a shock
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on the behaviour of the series [see, Koop, Pesaran and Potter (1996)]. The traditional impulse

response function is designed to provide an answer to the question:"What is the e�ect of a shock

of a given size hitting the system at time t on the state of the system at time t + n, given that

no other shocks hit the system". In the linear framework, the impulse response functions satisfy

several regularity conditions, like: a) the symmetry with respect to positive and negative shocks

of the same size, b) the linearity, i.e. a shock of size 2 has exactly twice the e�ect of a shock of

size 1, and c) the history independence property, which implies that the past does not a�ect the

response. As an illustration consider a moving average representation of a second order stationary

linear process : Xi = c + A(L)vi = c + a0vi + a1vi�1 + a2vi�2 + ::::. An impact of a shock

at time 0 evolves in time at a rate determined by the convergent sequence of moving average

coe�cients. Alternatively, if shocks are added to the system repeatedly at each point of time i,

their impact becomes permanent and the impulse response weights become: b0 = a0, b1 = a0+ a1,

b2 = a0 + a1 + a2, ....The relation between the moving average coe�cients and the cumulative

impulse response weights can be written as: (1� L)ai = bi, implying B(L) = (1� L)�1A(L).

In the nonlinear framework, the impulse responses are much more complex, and in general

violate the aformentioned conditions 4. Various approaches to the impulse response analysis in

nonlinear models have been proposed by Gallant, Rossi and Tauchen (1993), Koop, Pesaran and

Potter (1996) and Gourieroux and Jasiak (1999). In the present paper we follow the approach

developped in Gourieroux and Jasiak (1999). The impulse response is based on the Volterra

decomposition [see, Gourieroux and Jasiak (1999), property 5], where:

Yt = at(�t; �t�1; :::; �1; �0); (2.8)

and (�t) is a gaussian white noise with unitary variance, and �0 denotes the history of the process up

to time 0. Since the distribution of �t is symmetric, the shocks � and �� have the same in�nitesimal

occurrence.

Following Gallant, Rossi and Tauchen (1993), the analysis is conditioned on the history of the

process before the occurrence of shocks. Accordingly, for shocks hitting the process at date 1,

past values of the process and the innovations are known, i.e. �0 is �xed. The analysis consists

in �nding, at date 0, the e�ect of a sequence of deterministic shocks �1; �2; :::; �t; ::: occurring at

future dates on the future pro�le of the process. These e�ects have to be measured with respect

to a benchmark, i.e. the unperturbed path. The benchmark is random, since future innovations

are unknown. We denote by: �s1; �
s
2; :::; �

s
t a future path of innovations, where �s1; �

s
2; :::; �

s
t are IIN

(0,1) conditional on �0. The random benchmark is:

4The impulse response analysis for the GARCH model is discussed in Engle, Ito and Lin (1990)
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Y st (�0) = at(�
s
t ; �

s
t�1; :::; �

s
1; �0); (2.9)

whereas the pro�le subject to shocks is:

Y st (�; �0) = at(�
s
t + �t; �

s
t�1 + �t�1; :::; �

s
1 + �1; �0); (2.10)

where � = (�1; :::; �t; :::).

The entire e�ect of the sequence of shocks is summarized by the joint path distribution of:

[Y st (�0); Y
s
t (�; �0); t � 1]:

Consider now nonlinear innovations �i = g�1
�
Xi

 i

�
, where g = ��1 � F and F is the c.d.f. of

durations Xi. The ACD and FIACD models admit a representation Xi =  ig(�i), where

 i = ! + � i�1 + �g(�i�1) i�1;

for the ACD(1,1) models, and

 i = ! + � i�1 + �(L)g(�i) i; (2.11)

for the FIACD(1, d, 1)5. Consequently, the impulse responses are de�ned by the joint path distri-

bution of:

[Xs
i (�0); X

s
i (�; �0); i � 1]: (2.12)

For a stationary ACD(1,1) model with a negative Liapunov exponent, Gourieroux, Jasiak(1999)

show that e�ects of temporary shocks vanish asymptotically in average and path- by- path. For

nonstationary ACD processes, the shocks have explosive e�ects. The FIACD models are expected

to show a behaviour similar to that of a stationary ACD model.

2.3 Inference

Before discussing statistical inference, it is necessary to complete the de�nition of the basic FIACD

model by explaining how f , i.e. the baseline duration p.d.f., is selected. Two approaches can be

followed. In the �rst one, the p.d.f. may be chosen from a given parametric family, leading to a

fully parametric model for the duration process. In this approach, parameters can be estimated

by maximum likelihood. In the second approach the p.d.f. remains unspeci�ed except for the

constraint of unitary expectation, yielding a semi-parametric model, which requires appropriate

estimation methods.
5The �rst terms of the �(L) polynomial are: �1 = (����1+�); �2 = (��2+��1); �k = (��k +��k�1), where

�k denote the terms of the expansions of (1 � L)d.
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i) Parametric Model

It is often assumed that the baseline f is an exponential distribution. In this case, the joint

log-likelihood function is:

L(�) = �
NX
i=1

log( i)�
NX
i=1

Xi

 i
;

where � = (w; �; �; d)0.

As pointed out by Engle and Russell, alternatively a Weibull distribution can be considered:

'(Xi;  i; �) = 


�
�(1 + 1=
)

 i

�

X
�1
i exp

�
�

�
Xi�(1 + 1=
)

 i

�
�
; 
 � 0;

which encompasses the exponential for 
 = 0. In such a case the log-likelihood function becomes:

L(�) =
NX
i=1

�
log

�



Xi

�
+ 
 log

�
�(1 + 1=
)Xi

 i

�
�

�
�(1 + 1=
)Xi

 i

�
�
;

and has to be maximized with respect to all parameters including 
.

In the empirical work, however, duration data usually feature departures from either exponential

or Weibull distributions. For this reason it may be preferable to leave the baseline p.d.f. f

unspeci�ed.

ii) Semi-parametric models.

In the semi-parametric framework, we only specify the form of the conditional mean  i. Various

estimation methods of the parameter � = (!; �; �; d)0 can be proposed, especially the pseudo-

maximum likelihood method. The idea is to select a priori a p.d.f. f0 and to maximize the

associated misspeci�ed log-likelihood function:

L(�; f0) = �

NX
i=1

log i +

NX
i=1

log f0

�
Xi

 i

�
:

It is known that this procedure provides consistent estimators for an appropriate choice of the

misspeci�ed p.d.f. f0. In particular, we can specify f0 as either the standard normal distribution,

which leads to the ordinary least squares criterion:

min
�

NX
i=1

(Xi �  i)
2;

[This method is also called Quasi-Maximum Likelihood, henceforth QML], or select for f0 the

exponential distribution [see, Gourieroux, Monfort, Trognon (1984)]. Then the objective criterion

is:
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�
NX
i=1

log i �
NX
i=1

Xi

 i
:

This second approach seems more relevant in an application to duration data, where the exponential

distribution �ts better a duration distribution than the gaussian one. The asymptotic properties

of QML estimators of the FIACD(p; d; q) model with d 2 (0; 1) can be obtained by extending the

proof of consistency and normality of the QML estimators developped by Lee and Hansen (1994)

for the Integrated GARCH(1,1) process and a gaussian, misspeci�ed p.d.f.. Under regularity

conditions, the QML estimator of � is consistent and has a normal limiting distribution.

T 1=2(�̂T � �)) N
�
0; J�1 I J�1]

	
;

where:

J = E0

�
�
@2 log lt(�)

@�@�0

�

and

I = E0

�
@ log lt(�)

@�

@ log lt(�)

@�0

�

where E0 indicates that the expectation is taken with respect to the true distribution.

The optimizations are in practice performed numerically, and require at each iteration the com-

putation of the conditional expectation  i evaluated at the corresponding � value. Therefore these

optimizations will not only provide the estimator �̂T of the parameter, but also the approximated

conditional expectations  ̂i, (say). These predictions can be compared with the observed dura-

tions. More precisely we can compute the corrected durations, also called the generalized residuals,

ûi =
xi
 ̂i
, and then consider the form of their empirical distribution to obtain information on the

underlying baseline f .

3 Application to intertrade durations for the IBM and Al-

catel stocks.

In the empirical application, the FIACD model was �tted to two data sets of times between trades

on the Alcatel and IBM stocks introduced in section 2.

These two stocks are actively traded �ve days per week for seven hours daily although the

Alcatel data also include observations on orders collected before the market opening (the so-called

pre-opening period). The times between the market closures and the next day openings as well

as the weekend gaps were omitted. In the Alcatel data, the observations corresponding to the
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market openings have been deleted since the matching procedures are di�erent for the opening

and for the intraday period. Moreover some trades may occur simultaneously, in particular when

a large order is split. Such simultaneous trades have been aggregated. As a consequence of these

two data adjustments, we retain in the Alcatel series strictly positive durations only. There is an

advantage of considering such sample, which allows us to show that the long memory property is

not due to the occurrence of runs of zero durations. In the IBM sample there are relatively few

simultaneous trades recorded at the opening, while most of these trades are recorded during the

trading day and correspond to zero returns. We removed from the sample only observations on

simultaneously occurring zero durations and returns, what reduced the sample size by more then

50%. This suggests that simultaneously occurring trades represent a signi�cant feature of this

stock dynamics. Indeed, if all zero durations were removed, the sample size would decrease by

75% and the sample mean would double.

After these adjustments the two sets of data comprise 23704 observations on IBM and 20502

observations on Alcatel. The IBM stocks are traded on average every 19.32 sec. with a standard

deviation 21.51, while Alcatel has a slower rate of trading activity with a mean duration 52.56 sec.

and standard deviation 83.66.

All duration data under study display strong seasonal patterns. The periodic components can

easily be detected in the intraday means. Table 3.1 shows the hourly averages of durations over

the daily trading cycles de�ned in local times of New York and Paris.

Table 3.1: Hourly Means and Std. Dev. of Durations

IBM Alcatel

Time mean st.dev. mean st.dev.

09� 10 15.6699 23.7194 { {
10� 11 16.7597 18.4828 42.4058 54.5180
11� 12 18.3727 19.8592 48.6615 61.1579
12� 13 21.7982 21.9646 82.5951 111.4793
13� 14 24.9141 27.7905 129.7182 170.3298
14� 15 20.4415 20.4922 63.8132 94.4518
15� 16 18.0713 18.8944 44.3188 68.7299
16� 17 { { 32.6070 53.1288

There is a high intraday variation in the Alcatel data due to a pronounced lunch time trough

in trades. Prior to estimation the data were adjusted for periodic e�ects. The intraday periodic

patterns were removed by computing the deterministic means conditioned on the time of the day

and dividing each observation by this value [see Engle and Russell (1998)]. The seasonally adjusted

sets of data comprise: a) 23704 observations on IBM durations adjusted for intraday seasonality
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with mean 0.99 and standard deviation 1.11 ; b) 20502 observations on Alcatel with mean 0.99

and standard deviation 1.43 . Clearly the seasonal adjustment procedure is more successful in the

IBM data compared to Alcatel, where we still observe a signi�cant overdispersion.

The persistence in the intertrade times is re
ected by the slow decay rate of autocorrelations.

The top panels of Figures 2.1 - 2.2 display the autocorrelations for unadjusted data up to the lag

1000. More detailed data are provided in the �rst two columns of Table 3.2 where twenty �rst

autocorrelations are reported, supplemented by the value of the Liung-Box statistics for the entire

samples.

Table 3.2: Autocorrelation Functions

Durations FIACD

Lags IBM Alcatel IBM Alcatel

1 .0193 .2410 3.6e-03 -.0090
2 .0777 .2185 7.7e-03 .0031
3 .0988 .1988 3.4e-03 -.0124
4 .0962 .2126 -3.3e-03 .0083
5 .0930 .1999 -1.2e-03 -.0097
6 .0897 .1794 -6.9e-03 -.0231
7 .0836 .1705 1.0e-03 -.0064
8 .0841 .1767 -1.3e-03 -.0168
9 .0804 .1712 -9.9e-03 -.0051
10 .0859 .1737 6.5e-03 -.0038
11 .0805 .1743 -7.9e-03 -.0112
12 .0840 .1646 -7.2e-03 -.0079
13 .0730 .1542 -2.0e-03 -.0048
14 .0812 .1528 3.3e-03 -.0109
15 .0748 .1574 -1.0e-03 .0004
16 .0767 .1580 -7.2e-03 .0060
17 .0751 .1492 9.8e-03 -.0033
18 .0831 .1575 -2.6e-03 .0164
19 .0756 .1458 -6.9e-03 .0010
20 .0644 .1301 -3.7e-03 .0024

Ljung-Box 5364. 12767. 23.35 40.36

An argument often put forward against the long memory in return volatility is that it is spuri-

ously created by breaks in intraday trend. To show that the seasonal adjustment does not remove

the long range dependence, we plot in the bottom panels of Figures 2.1 and 2.2 the autocorrelation

functions of the adjusted data.

The estimation of the Fractionally Integrated ACD involves approximation of a polynomial

of in�nite order and requires conditioning of the model on the pre - sample values of durations.

The sample is augmented by the unconditional sample mean. The truncation point chosen to

approximate the in�nite autoregressive polynomial �(L) in equation (2.8) was set equal to 1000.
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This approach imparts an approximation bias and has an impact on the estimated parameter

values [for a discussion see Baillie, Bollerslev, Mikkelsen, (1996)]. Given the large sizes of samples

under study this e�ect should be attenuated despite the long range dependencies.

For comparison we also report estimates for the ACD(1,1) model. We do not discuss the

ACD(2,2) or WACD(2,2) model based on the Weibull likelihood function, as all of these models

produce sums of � and � parameters in (2.2) close to one (Engle, Russell (1998))

The estimated parameters of the ACD(1,1) model and of the FIACD(1; d; 1) and FIACD(1; d; 0)

model are reported in the Table 3.3.

Table 3.3: Estimation of the FIACD model

IBM Alcatel
Parameters Est. S.D. Est. S.D.

ACD(1; 1)
! 0.0028 0.0055 0.0037 0.0003
� 0.0128 0.0064 0.0689 0.0016
� 0.9843 0.0089 0.9294 0.0015

FIACD(1; d; 1)
! 0.0850 0.0100 0.0229 0.0031
� 0.5401 0.0244 0.5753 0.0261
� 0.2591 0.0191 0.2938 0.0219
d 0.2770 0.0144 0.4304 0.0170

FIACD(1; d; 0)
! 0.3795 0.1947 1.0068 0.4426
� 0.0508 0.1124 0.3242 0.0375
� - - - -
d 0.1273 0.0666 0.4624 0.0353

All fractional parameters of the FIACD(1; d; 1) model are signi�cant, what reveals the per-

sistence phenomenon and suggests misspeci�cation of the ACD(1,1). As for the FIACD(1; d; 0)

model, we �nd that the parameter � in the IBM sample is not signi�cant, while further diagnostics

show that this speci�cation does not signi�canly reduce the serial correlation in the Alcatel sample

and hence has to be rejected.

The adequacy of the FIACD(1; d; 1) model may be veri�ed in various ways. We plot in Figure

3.1 the duration series along with the residuals ûi =
Xi

 ̂i
, i varying.

Figure 3.1. Sample paths of durations and residuals

We observe that the dynamics of the Alcatel series is not homogenous over the entire sampling

period. Clearly, there are more extreme durations occurring in the second part of the data, cor-

responding to the month of August. This variation is not perfectly accommodated by the model.
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In both data sets, the corrected duration (residuals) feature considerably less autocorrelation than

the durations themselves. Their autocorrelation function is given in Figure 3.2:

Figure 3.2: Autocorrelation of residuals

The values of the �rst twenty autocorrelations, along with the value of Liung Box statistics for

the residuals appear in the last two columns of Table 3.2 above. We accept the null hypothesis

that the residuals of the FIACD(1; d; 1) model �tted to the IBM and Alcatel data are white noise

at signi�cance levels of 5% and 10 % respectively.

Finally we give in Figure 3.3, a kernel estimator of the baseline density function f .

Figure 3.3: Estimated density functions.

A simple test can be performed to verify whether the underlying dustribution is Weibull. In

this case, the density of the noise term v could be written:

f(v) = 
a�
v
�1 exp
h
�
�v
a

�
i
:

The test is based on the pattern of the survivor function:

S(v) =

Z 1

v

f(u)du = exp
h
�
�v
a

�
i
;

which satis�es the relation:

log[� logS(v)] = 
 log v + 
log
1

a
:

The test consists on verifying whether this relationship is approximately satis�ed by the estimated

survivor functions, at values corresponding to the residuals of the FIACD(1; d; 1) model. The

Figure 3.4 displays the estimated survivor functions for the IBM and Alcatel data. The Table 3.4

below presents the estimated coe�cients of the regression of log[� log Ŝ(v̂j)] on log v̂j for j = 1; ::::.

Table 3.4: Estimation of the survivor function

IBM Alcatel
Parameters Est. S.D. Est. S.D.

const 0.3993 0.0269 0.3085 0.0292

 0.6312 0.0107 0.7078 0.0131

The estimated coe�cients are statistically signi�cant. Both 
's take values di�erent from 1, and

as such do not support the hypothesis of the exponential distribution of residuals. The parameters

a can be computed from the constants. They take values 0.53 and 0.64 for IBM and Alcatel
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respectively, while we would expect them to be 1 if the intensity parameter was indeed unitary.

Finally a and 
 substituted into the formula of the unconditional mean: � = a�(1 + 1=
) yield

0.81 and 0.75, so that again we �nd evidence against the exponential distribution with intensity 1.

However we need to remember that the accuracy of these results strongly depends on the precision

of the approximated empirical density function used to compute survivor function and the number

of x-coordinates retained for the density estimation. The density was estimated at 500 points,

what represents only 2% of datapoints and was performed using a standard S+ routine. For this

reason we need to interpret the regression outcomes with caution.

Finally, we investigate the dissipation of shocks in both samples. The impulse responses are

given by the joint path distributions of X̂i(�) = g(�i(�)) ̂i(�) for i = T + 1; T + 2; T + 3; T + 4,

i.e. the distributions of out of sample, simulated durations subject to shocks, conditioned on the

history of the process. The shocks to the system occurr only at i = T + 1, i.e. � = (�T+1; 0; 0; 0).

We consider a positive shock of size 1.0, a negative shock of size -1.0, as well as the unperturbed

baseline pro�le. The values of  ̂i(�) are evaluated by solving recursively equation (2.11), and used

in the next step to compute X̂i(�). The results are based on 10 000 replications. The distributions

of impulse responses are plotted in Figures 3.5a and 3.5b for IBM and Alcatel, respectively.

Figure 3.5a: Impulse responses, IBM

Figure 3.5b: Impulse responses, Alcatel

The shock e�ects can be assessed by comparing the perturbed paths to the unperturbed

one. The mean deviations from baseline are �0:788;+1:5167; +0:0032;�0:0062;�0:0205;+0:0396;

�0:0360;+0:0692 over four horizons in the IBM sample and �0:2399;+0:4596; �0:0353;+0:0679;

�0:0252; 0:0481; �0:0249;+0:0475 over four horizons in the Alcatel sample. We �nd that mean

deviations from baseline are not symmetric and decline very slowly with horizon.

The distributions of future duration paths can be compared using their empirical moments.

The Table 3.5 below shows the means and variances of the impulse response distributions.
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Table 3.5: Means and variances of impulse responses

IBM Alcatel
Shocks mean var mean var

horizon 1

negative 0.4438 0.4063 0.1366 0.0380
baseline 1.2320 1.5798 0.3765 0.1477
positive 2.7488 4.4049 0.8362 0.4109

horizon 2

negative 1.2740 1.6390 0.7061 0.4982
baseline 1.2707 1.6303 0.7415 0.5527
positive 1.2645 1.6140 0.8094 0.6673

horizon 3

negative 1.2394 1.4711 0.6763 0.4874
baseline 1.2599 1.5214 0.7015 0.5289
positive 1.2996 1.6217 0.7497 0.6127

horizon 4

negative 1.2296 1.5096 0.6591 0.4644
baseline 1.2656 1.6051 0.6841 0.5039
positive 1.3349 1.7978 0.7316 0.5837

4 Duration Persistence in Varying Market Regimes

It may be interesting to study if the persistence found in intertrade durations also character-

izes some other duration processes deduced from the trading data, and in particular obtained by

endogenously aggregating a number of intertrade durations. As an illustration and a potential

contribution to technical analysis, where the analysts are often concerned with sequences of up-

ward and downward price jumps, we distinguish three basic regimes of the market, corresponding

to positive, null and negative intertrade returns, respectively.

Under the simplifying assumption of independent price movements of equal size, this approach

can be illustrated by a trinomial tree, where we distinguish transitions to the state of positive

returns, identi�ed as price upswings, transitions to the state of negative returns, i.e. price down-

swings, and transitions to the stable state of 0 returns. Moreover, the process is allowed to remain

in each of these states, producing a series of durations of visiting times. The probability that the

movement is an upswing conditional on the occurrence of a price movement is denoted by p, the

probability that a movement is a downswing is 1 � p, while the probability of remaining in the

state 0 is �. Hence if we consider the state 0 as the initial state, the process makes a transition to

the up state u with probability p(1��), it makes a transition to the down state d with probability

(1� p)(1� �), and it remains in 0 with probability �.
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In this simpli�ed framework we can analytically derive the densities of durations. Consider �rst

the durations of returns to the up states denoted Duu. We have:

P [Duu = n] = P [last move was up]P [before (n-1) moves were not]

= p(1� �)[1� p(1� �)]n�1 � G(p(1� �)); n > 1;

where G denotes the geometric distribution, the discrete time counterpart of the exponential dis-

tribution. For the return durations to falling prices, denoted Ddd, we �nd that:

P [Ddd = n] = (1� p)(1� �)[1� (1� p)(1� �)]n�1 � G((1� p)(1� �)):

Accordingly the durations of returns to 0, denoted D00 satisfy:

D00 � G(�);

while the durations of visiting times in 0 are:

�D0 � G(1� �):

Similarly,the visiting times in the u state are:

�Du � G(1� p(1� �));

and the durations spent in the d state are:

�Dd � G[1� (1� p)(1� �)]:

Hence, the expected value of a price movement at trade n after n� 1 trades not involving any

price changes is:

EY =
1

p

We also can summarize the expected durations of returns to various states and the durations of

the visiting times:

E(Duu) =
1

p(1� �)
; E(Ddd) =

1

(1� p)(1� �)
; E(D00) =

1

�
;

E �Du =
1

1� p(1� �)
; E �Dd =

1

1� (1� p)(1� �)
; E �D0 =

1

1� �
;

The empirical results presented later in this section allow us to test the validity of this model.

Implicitely we also verify the hypothesis of independence of price movements, based on the evidence

from the duration behavior. In this section only the IBM data were examined.
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4.1 Return-to-state Times

For each regime, we consider the return-to-state times, which measure durations between consecu-

tive positive (null or negative) returns. Such return-to-state times are obtained from an aggregation

of intertrade durations over a random number of trades depending on the price evolution.

At this point it might also be interesting to distinguish states determined by seller or buyer

initiated trades [see Darolles, Gourieroux, LeFol (1998)], and therefore examine a six state regimes.

This analysis would require however more detailed data.

Empirical results show that the average time to return to a positive or a negative state di�er

very little. The fact that traders expect to wait almost the same time to return to these states can

be interpreted as a market e�ciency condition, whenever the positive and negative price movements

have about the same size and their occurrences are independent.

To examine this issue, let us consider a simple model representing only the transition durations

between the up and down states, and disregarding the visiting times and the presence of the 0

return state. This framework requires some additional assumptions. Let us assume that at each

trade, two possible price movements are possible and denote by u the upswing and by d the

downswing. Under the assumption A.1:

A.1. The upward and downward movements are independent,

the probability of u is p, while the probability of d is (1 � p). We �nd that the price forecast h

trades ahead is:

pt+h = pt + hd+ (u� d)B(h; p);

where B(:; :) denotes the binomial distribution.

By imposing an additional assumption:

A.2 The movements are of equal size : d = �u,

The prices follow a random walk if p = 1
2 , since Etpt+h = pt � hu + 2uh2 = pt. In fact we

have 8378 returns to positive returns and 8304 returns to negative returns indicating almost equal

probabilitites of a return to state and a move out of state. In this framework, the durations between

two successive states are geometrically distributed with parameter p for upswings and 1 � p for

downswings. The means of return durations are equal only if p = 1� p, so that p = 1
2 . Hence the

empirical �ndings in Table 4.1 below con�rm the hypothesis of a random walk price process.
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Table 4.1: Means and St.Dev. of IBM Return Times

ret > 0 ret < 0 ret = 0

mean 54.1346 54.6929 65.2266

st.dev. 56.3897 56.8361 56.85664

We can also verify whether the data satisfy the more complex model presented at the beginning

of this section. We have 1
p(1��) � 54, 1

(1�p)(1��) � 54, while 1
� � 65. Hence by substituting p = 1

2

in the �rst formula we �nd that (1��) = 1
108 , what suggest that the simple model is too restrictive.

The series of return-to-state times feature as well a very similar pattern of autocorrelations

displayed in Figure 4.1.

Figure 4.1: Autocorrelations of return times

We observe a short range of persistence of the return-to- state durations while the entire series

features long memory. The autocorrelation patterns are amazingly similar indicating that shocks

to times between consecutive price increases dissipate at the same rate as shocks to times between

price decreases. The Figure 4.2 shows the density functions of return times. We note that the

return times to negative returns quite often admit extreme values, as indicated by the long tail of

the distribution.

Figure 4.2: Densities of return times

4.2 State Visiting Times

A natural nonparametric measure of persistence is the expected time to remain in a given state.

Let us again isolate the states of positive, negative or null returns and examine for how long they

are expected to last. The Table 4.2 shows that on average the time to remain in the negative return

state is very close to the time spent in the positive return state, since the di�erence is negligible.

Table 4.2: Means and St.Dev. of Visiting Times, IBM

ret > 0 ret < 0 ret = 0

mean 14.0679 13.9782 55.9958

st.dev. 21.3203 22.2584 46.5364

There is also a close accordance of the number of visits to the positive returns (7700) and

negative (7669) states.

The Figure 4.3 below shows the amazing resemblance of the empirical densities of visiting times

in the states of positive and negative returns.
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Figure 4.3: Densities of Visiting Times.

Note however that there is some intraday variation in the expected state visiting times and

their variances. Indeed, a trader may optimize in terms of maximizing the expected amount of

time he makes money and keep trading IBM between 1:00 and 2:00 p.m. or eventually minimize

the variance and hence chose to make transactions in the morning between 10 and 11 a.m..

Table 4.2: Hourly Means and Variances of Visiting Times, IBM

ret < 0 ret > 0

hour mean st.dev. mean st.dev

09{10 10.0077 21.8004 11.8036 26.1404
10{11 11.7762 19.5450 11.4661 17.2447
11{12 12.9509 19.7635 12.6744 18.9946
12{13 17.0056 23.0073 17.0085 22.8214
13{14 18.6678 30.4269 20.1929 26.6540
14{15 14.7436 21.7993 15.3199 21.5434
15{16 13.5446 19.9151 12.1284 17.3751

The temporal dependence of the return durations represents the memory of the inter-state

transitions. On the other hand the memory of the visiting states corresponds to the persistence of

states, themselves. There is potentially a relationship between these two types of persistence and

their outcome which is the persistence of the entire series of unconditional durations.

5 Conclusions

This paper presented empirical evidence for the presence of long memory, and proposed a fraction-

ally integrated model for high frequency duration data. Although the empirical part of this work

involved only a speci�c series of intertrade durations, there also exist other potential applications,

especially in �nance, insurance and computer science.

The paper also investigated transformed duration series obtained by aggregation of times be-

tween returns to a given stock price-based state of the market and times spent within these states.

Almost identical autocorrelation patterns were found in the return-to-state durations which also

feature quite long ranges of temporal dependencies but do not possess the long memory property.

This approach also revealed the expected time to revisit a given state and its variation. We

found that the expected times to return to positive and negative states are almost equal.

A very close accordance was also found in values of the expected state visiting times. Given

that the probabilities of visits in these states are also similar, there are potentially conclusions on

regularities in times to trade on �nancial markets. In general, the analysis of durations provides



THIS VERSION: March 14, 1999 20

insights on some, yet unexplored issues, like the e�ciency of the speed of trading and its relationship

to the arbitrage opportunities.
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Appendix

Stationarity and Ergodicity Properties of ACD and FIACD Models

This Appendix presents the conditions for stationarity and ergodicity of ACD and FIACD

models. As noted in section 2.2 the FIACD(p; d; q) process is strictly stationary and ergodic for

0 � d � 1 if strict stationarity and ergodicity for an integrated ACD process, (henceforth IACD).

can be demonstrated. The demonstration relies on the proof by Bougerol and Picard (1992) of strict

stationarity for autoregressive models with nonnegative i.i.d. coe�cients, including the integrated

processes. This result is adapted to ACD processes with parameters lying outside the second-order

stationarity region. By the theory of products of random matrices it is shown that the necessary

and su�cient condition for stationarity is the negativity of an associated Lyapunov exponent (see

Bougerol and Picard (1992)).

Let k � k denote any norm on Rm. We de�ne an operator norm on the set M(m) of m �m

matrices by:

kM k= sup fkMX k = k X k; X �Rm; X 6= 0g

for any M in M(m). The top Lyapunov exponent associated to a sequence fAn; n �Zg of i.i.d.

random matrices


 = inf
n�0

�
E

�
1

n+ 1
log k A0 A�1 : : : A�n k

�
:

�

If the exponent 
 exists and is �nite, we know that 
 � E(log k A0 k) with equality when m = 1,

and by the subadditive ergodic theorem [see Kingman (1973), Theorem 6] we have almost surely


 = lim
n!1

1

n
log k A0A�1 : : : A�n k : (A:1)

Suppose that p; q � 2 for notational convenience, by adding some �i or �i equal to 0 if needed.

For any n �Z , let �n = Xn

 n
and

�n = (�1 + �1 �n; �2; : : : ; �p�1) � R
p�1

�n = (�n; 0; : : : ; 0) � R
p�1

� = (�2; : : : ; �q�1) � R
p�2

We next de�ne the (p+ q � 1)� (p+ q � 1) matrix An:
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An =

2
664

�n �p � �q
Ip�1 0 0 0
�n 0 0 0
0 0 Iq�2 0

3
775 (A:2)

where Ip�1 and Iq�2 are the identity matrices of sizes p � 1 and q � 2, respectively. Since the

random variables f�n; n �Zg are independent with baseline distribution f , the random matrices

fAn; n �Zg are i.i.d. Since f , which can either be the exponential or Weibull distribution, has

a �nite variance, all the coe�cients of these matrices are square integrable. This implies that

E(max(log k A0 k; 0)) is �nite. Thus, the top Lyapunov exponent 
 of the sequence fAn; n �Zg

is well de�ned.

Theorem A.1. When w > 0, the ACD eq (2.2) has a strictly stationary solution if and only if the

top Lyapunov exponent 
 associated with the matrices fAn; n �Zg is strictly negative. Moreover,

this stationary solution is ergodic. It is the only strictly stationary solution when the �n's are

given.

When p = q = 1 we have 
 = E(log(�1 + �1�n)). By analogy to the Bougerol and Picard proof of

strict stationarity of GARCH processes, we relate the ACD process to the following multivariate

model: Let M+(m)[resp(R+)m] be the set of m�m matrices (resp m-dimensional vectors) with

nonnegative coe�cients.

De�nition A generalized autoregressive equation with nonnegative i.i.d. coe�cients is:

Yn+1 = An+1 Yn +Bn+1 ; n �Z

where f(An; Bn); n �Zg is a given sequence of independent, identically distributed random vari-

ables with values in (M+(m)� (R+)m and Yn in Rm.

We will now prove Theorem A.1 by showing that a necessary and su�cient condition for

existence of a strictly stationary, nonnegative solution of this equation is the strict negativity

of the top Lyapunov exponent associated with the sequence fAn; n �Zg.

Lemma A.1. Let fAn; n �Zg be a sequence of i.i.d. random matrices such that

E(max(log k A0 k; 0)) is �nite. If almost surely

lim
n!1

k A0 A�1 : : : A�n k= 0;

then the top Lyapunov exponent associated with this sequence is strictly negative.

Proof: See Bougerol and Picard (1990), Bougerol (1987).
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We consider an ACD(p; q) process as de�ned in eq. (2.1 { 2.2). Let �n =
Xn

 n
. The distribution

of �n conditional on the history Fn�1 is f . Therefore, �n is independent of Fn�1. Since �n is

Fn{measurable, the random variables f�n; n �Zg are independent with distribution f .

Let B = (�; 0; : : : 0)0 � Rp+q�1

and

Yn = ( n+1; : : : ;  n�p+2; Xn; : : : ; Xn�q+2) (A:4)

then Xn is a solution of (2.1 { 2.2) if and only if Yn is a solution of

Yn+1 = An+1Yn +B n � Z (A:5)

where the An matrices are de�ned in (A.2).

Proof of Theorem A.1. We suppose that there exists a strictly stationary solution fXn; n �Zg of

equation (2.2). Consider the process fYn; n �Zg de�ned by (A.4). For n > 0, using (A.5), we have

Y0 = A0 Y�1 +B

= A0 A�1 Y�2 +B +A0 B

= A0 A�1 : : : A�n Y�n�1 +B +
n�1X
k=0

A0 : : : A�k B

All the coe�cients of An, Yn and B are nonnegative. Thus for n > 0

n�1X
k=0

A0 : : : A�k B � Y0

This shows that the series

n�1X
k=0

A0 : : : A�k B converges a.s. Hence, A0 : : : A�nB converges a.s. to

zero when n ! +1. This result is proven by Bougerol and Picard [see Bougerol, Picard (1992)].

The next step is to use Lemma A.1 to conclude that the top Lyapunov exponent associated with

matrices An is strictly negative.

We �rst suppose that the exponent 
 is strictly negative. Then (A.1) implies that the series

1X
k=0

An An�1 : : : An�k B

converges a.s. for any n. We de�ne a sequence fYn; n �Zg by

Yn = B +

1X
k=0

AnAn�1 : : : An�k B:
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This sequence is a nonnegative solution of (A.5). Let  n = Y 1
n�1 where Y

1
n�1 is the �rst component

of the vector Yn�1. Then Xn =  n �n is a solution of the ACD model in (2.2). The process of

f(An; �n); n �Zg is strictly stationary and ergodic, and we can writeXn = G(�n; An; An�1; An�2 : : :)

for some measurable function G independent of n0. Therefore, fXn; n �Zg is a strictly stationary

and ergodic process, solution of (2.1 { 2.2).

Assume that (Zn) is another strictly stationary solution of (6). Hence, for n > 0

k Y0 � Z0 k = k A0 : : : A�n(Y�n�1 � Z�n�1) k

� k A0 : : : A�n k k Y�n�1 � Z�n�1 k :

Since k A0 : : : A�n k converges to 0 a.s. and the law of (Y�n�1 � Z�n�1) is independent of n

imply that Y0 � Z0 converges to 0 in probability. This means that Y0 = Z0. Hence, (2.2) has a

unique solution, one the �n's are given.

Let us prove now the existence and uniqueness of a strict stationary solution of integrated ACD.

Corollary A.1. Suppose that the support of f is not bounded, f(f0g) = 0 and that all the

coe�cients �i and �i are positive. Then if

pX
i=1

�i +

qX
j=1

�j = 1, the ACD de�ned in (2.2) has a

unique stationary solution.

Proof. Following Bougerol and Picard (1992) we run recursions on q and expand the determinant

with respect to the last column. We can see that

Det(z Im �E(A1)) = zp+q�1

0
@1�

qX
j=1

�j z
�j �

pX
i=1

�i z
�i

1
A

From the inequality j a� b j � j(j a j � j b j)j we have in the case where j z j > 1

jDet(z Im �E(A1)j > 1�

qX
j=1

�i �

pX
i=1

�i (A:6)

Since the right-hand side is zero and since Det(Im � E A1)) = 0, this equation implies that the

spectral radius � of the matrix E(A1) is 1. Also, almost surely, all the coe�cients of the matrix

A2 A1 are positive and A1 has no zero column or zero row. Since A1 is not a.s. bounded, these

properties imply by Kester and Spritzer (1984, Theorem 2) that the top Lyapunov exponent 


satis�es 
 < log �. Consequently, 
 < 0 and the corollary follows from Theorem A.1.
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Figure 2.1: Autocorrelations of Times between Trades, IBM



THIS VERSION: March 14, 1999 26

Index

A
C

F

0 200 400 600 800 1000

0.
0

0.
10

0.
20

seasonally
adjusted

Index

A
C

F

0 200 400 600 800 1000

0.
05

0.
10

0.
15

Figure 2.2: Autocorrelations of Times between Trades, 
ALCATEL



THIS VERSION: March 14, 1999 27

IBM

0 5000 10000 15000 20000

0
10

0
30

0
50

0

IBM residuals

0 5000 10000 15000 20000

0
5

10
15

20
25

Alcatel

0 5000 10000 15000 20000

0
50

0
10

00
15

00

Alcatel residuals

0 5000 10000 15000 20000

0
10

20
30

40

Figure 3.1: Sample paths of durations and residuals



THIS VERSION: March 14, 1999 28

IBM

Index

z$
ac

f[-
1,

  ,
  ]

0 20 40 60 80 100

-0
.0

1
0.

01

Alcatel

Index

z1
$a

cf
[-

1,
  ,

  ]

0 20 40 60 80 100

-0
.0

2
0.

0
0.

02

Figure 3.2: Autocorrelation of residuals



THIS VERSION: March 14, 1999 29

de
ns

ity

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

IBM

de
ns

ity

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

Alcatel
Figure 3.3: Estimated density functions



THIS VERSION: March 14, 1999 30

v

S
(v

)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IBM

v

S
(v

)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Alcatel
Figure 3.4: Estimated survivor functions



THIS VERSION: March 14, 1999 31

horizon 1

0 5 10 15

0.
0

0.
5

1.
0

1.
5

horizon 2

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

horizon 3

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

horizon 4

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 3.5a: Impulse responses, IBM 
 ___baseline, - - - negative, .....positive



THIS VERSION: March 14, 1999 32

horizon 1

0 1 2 3

0
1

2
3

4
5

6

horizon 2

0 2 4 6

0.
0

0.
5

1.
0

1.
5

horizon 3

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

horizon 4

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

Figure 3.5b: Impulse responses, Alcatel 

 ___baseline, - - - negative, .....positive



THIS VERSION: March 14, 1999 33

a) RET>0, IBM

Index

A
C

F

0 200 400 600 800 1000

0.
0

0.
05

0.
10

0.
15

b) RET<0, IBM

Index

A
C

F

0 200 400 600 800 1000

0.
0

0.
05

0.
10

c) RET = 0, IBM

Index

A
C

F

0 200 400 600 800 1000

-0
.0

20
0

0.
0

0.
02

00
0.

04
00

Figure 4.1: Autocorrelations of Return Times



THIS VERSION: March 14, 1999 34

returns > 0

de
ns

ity

0 200 400 600 800 1000 1200

0.
0

0.
01

0
0.

02
0

0.
03

0

returns < 0

de
ns

ity

0 200 400 600 800 1000 1200

0.
0

0.
01

0
0.

02
0

0.
03

0

returns = 0

de
ns

ity

0 200 400 600 800 1000 1200

0.
0

0.
01

0
0.

02
0

0.
03

0

Figure 4.2: Densities of Return Times



THIS VERSION: March 14, 1999 35

returns > 0

de
ns

ity

0 200 400 600 800

0.
0

0.
02

0.
04

0.
06

returns < 0

de
ns

ity

0 200 400 600 800

0.
0

0.
02

0.
04

0.
06

returns = 0

de
ns

ity

0 200 400 600 800

0.
0

0.
02

0.
04

0.
06

Figure 4.3: Densities of Visiting Times



THIS VERSION: March 14, 1999 36

References

[1] Akonom, J. and C. Gouri�eroux (1988) "A Functional Limit Theorem for Fractional Processes"

CREST Discussion Paper no. 8801.

[2] Aydogan, K. and G.G. Booth (1988) \Are There Long Cycles in Common Stock Returns?"

Southern Economic Journal, 55, 141 { 149.

[3] Backus, D.K. and S.E. Zin (1993) \Long Memory In
ation Uncertainty: Evidence from the

Term Structure of Interest Rates," Journal of Money, Credit and Banking, 44, 681 { 700.

[4] Baillie, R.T. (1996) \Long Memory Processes and Fractional Integration in Econometrics,"

Journal of Econometrics, 73, 5 { 59.

[5] Baillie, R.T. and T. Bollerslev (1991) \Intra Daily and Inter Market Volatility in Foreign

Exchange Rates," Review of Economic Studies, 58, 565 { 585.

[6] Baillie, R.T. Bollerslev, T. and H.O. Mikkelsen (1996) \Fractionally Integrated Generalized

Autoregressive Conditional Heteroskedasticity," Journal of Econometrics, 74, 3 { 30.

[7] Beran, J. (1992) \Statistical Methods for Data with Long-Range Dependence," Statistical Sci-

ence, 7, 404 { 416.

[8] Bollerslev, T. and H. O. Mikkelsen (1996) \Modeling and Pricing Long Memory in Stock Market

Volatility," Journal of Econometrics, 73, 151 { 184.

[9] Booth, G.G., F.R. Kaen and P.E. Koveos (1987) \R/S Analysis of Foreign Exchange Rates

under Two International Money Regimes," Journal of Monetary Economics, 10, 407 { 415.

[10] Bougerol, P. (1987) \Tightness of Products of Random Matrices and Stability of Linear

Stochastic Systems," Annals of Probability, 15, 40 { 74.

[11] Bougerol, P. and N. Picard (1990) \Strict Stationarity of Generalized Autoregressive Pro-

cesses," Annals of Probability.

[12] Bougerol, P. and N. Picard (1992) \Stationarity of GARCH Processes," Journal of Econo-

metrics, 52, 115 { 127.

[13] Cheung, Y.W. and K.S. Lai (1993) "A Fractional Cointegration Analysis of Purchasing Power

Parity", Journal of Business and Economic Statistics, 11, 102-112.

[14] Comte, F. and E. Renault (1996) \Long Memory Continuous Time Models," Journal of Econo-

metrics, 73, 101 { 150.



THIS VERSION: March 14, 1999 37

[15] Crato, N. and P. Rothman (1994) \Fractional Integration Analysis of Long-Run Behavior for

US Macroeconomic Time Series," Economic Letters, 45, 287 { 291.

[16] Dacorogna, M.M., U.A. Muller, R.J. Nagler, R.B. Olsen and O.V. Pictet (1993) \A Geograph-

ical Model for the Daily and Weekly Seasonal Volatility in the Foreign Exchange Market,"

Journal of International Money and Finance, 12, 413 { 438.

[17] Darolles, S., C. Gourieroux and G. LeFol (1998) "Intraday Transaction Price Dynamics", D.P.

CREST.

[18] Ding, Z., C.W.J. Granger and R.F. Engle (1993) \A Long Memory Property of Stock Returns

and a New Model," Journal of Empirical Finance, 1, 83 { 106.

[19] Engle, R. and T. Bollerslev (1986) "Modelling the Persistence of Conditional Variances",

Econometric Reviews, 5, 1-50.

[20] Engle, R., Ito, T., and W.L. Lin (1990) "Meteor Showers or Heat Waves? Heteroskedastic

Intra-Daily Volatility in the Foreign Exchange Market," Econometrica, 58 , 525-542.

[21] Engle, R. and G.G.J. Lee (1993) "A Permanent and Transitory Component Model of Stock

Return Volatility", manuscript, University of California, San Diego.

[22] Engle, R. and J.R. Russell (1998) \The Autoregressive Conditional Duration Model," Econo-

metrica, 66, 1127-1163.

[23] Galbraith, J.W. and V. Zinde-Walsh (1997) "Time-Domain Methods for the Estimation of

Fractionally-Integrated Time Series Models", Working Paper, McGill University.

[24] Gallant,A.R., Rossi, P.E. , and G. Tauchen (1993) "Nonlinear Dynamic Structures", Econo-

metrica, 61, 871-907.

[25] Geweke, J. and S. Porter-Hudak (1983) "The Estimation and Application of Long Memory

Time Series Models", Journal of Time Series Analysis, 4, 221-238.

[26] Goncalves, E. (1987) "Une G�en�eralisation des Processus ARMA", Annales d'Economie et de

Statistique, 5, 110-145.

[27] Goncalves, E. and C. Gouri�eroux (1988) "Agr�egation de Processus Autor�egressifs d'ordre 1",

Annales d'Economie et de Statistique, 12, 128-149.

[28] Gouri�eroux, C. and J. Jasiak (1998) "Nonlinear Autocorrelograms; an Application to Inter-

trade Durations", D.P. CREST 9841.



THIS VERSION: March 14, 1999 38

[29] Gouri�eroux, C. and J. Jasiak (1999) "Nonlinear Innovations and Impulse Re-

sponses",manuscript, York University.

[30] Gouri�eroux, C., J. Jasiak and G. LeFol (1996) \Intraday Market Activity", Journal of Finan-

cial Markets, forthcoming.

[31] Gouri�eroux, C. and A. Monfort (1997), " Time Series and Dynamic Models", Cambridge

University Press.

[32] Gouri�eroux, C., A. Monfort and A. Trognon (1984), " Pseudo-Maximum Likelihood Methods:

Theory", Econometrica, 52, 681-700.

[33] Granger, C.W.J. (1980) "Long Memory Relationships and the Aggregation of Dynamic Mod-

els", Journal of Econometrics , 14, 227-238.

[34] Granger, C.W.J. and R. Joyeux (1980). "An Introduction to Long Memory Time Series Models

and Fractional Di�erencing", Journal of Time Series Analysis, 1, 15-39.

[35] Greene, M. and B. Fielitz (1977) \Long-Term Dependence in Common Stock Returns," Jour-

nal of Financial Economics, 4, 339 { 349.

[36] Harvey, C.R. and R.D. Huang (1991) \Volatility in the Foreign Currency Futures Market,"

Review of Financial Studies, 4, 543 { 569.

[37] Hurst, H.E. (1951) \Long-Term Storage Capacity of Reservoirs," Proceedings of the Institute

of Civil Engineers, 116, 770 { 799.

[38] Jacobsen, B. (1996) \Long Term Dependence in Stock Returns," Journal of Empirical Finance,

3, 393 { 420.

[39] Kester, M. and F. Spitzer (1984) \Convergence in Distribution of Products of Random Ma-

trices," Zeitschrift f�ur Wahrscheinlichkeits Theorie und Verwandte Gebiete, 67, 363 { 386.

[40] Kingman, J.F.C. (1973) \Subadditive Ergodic Theory," Annals of Probability, 1, 883 { 909.

[41] Koop, G., Pesaran, M.H., and S. Potter (1996) "Impulse Response Analysis in Nonlinear

Multivariate Models", Journal of Econometrics, 74, 119-149.

[42] Lee, S.W. and B.E. Hansen (1994) "Asymptotic Theory for the GARCH(1,1) Quasi Maximum

Likelihood Estimator", Econometric Theory, 10, 29-52.

[43] Lin, Jin-Lung (1991) "Generalized Integrated Process and the Aggregation of Dynamic Time

Series", Academia Economic Papers, 19, 207-226.



THIS VERSION: March 14, 1999 39

[44] Lo, A.W. (1991) \Long Term Memory in Stock Market Prices," Econometrica, 59, 1279 {

1313.

[45] McCurdy, T.H. and P.K. Michaud (1996) "Capturing Long Memory in the Volatility of Eq-

uity Returns: a Fractionally Integrated Asymmetric Power ARCH Model", Working Paper

University of Toronto.

[46] Shea, G.S. (1991) \Uncertainty and Implied Variance Bounds in Long Memory Models of

Interest Rate Term Structure," Empirical Economics, 16, 287 { 312.

[47] Taylor, S. (1986) Modeling �nancial time series, (Wiley, Chichester).

[48] Wood, R., T. McInish and J.K. Ord (1985) \An Investigation of Transaction Data for NYSE

Stocks," Journal of Finance, 40, 723 { 739.


