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Installation

Chapter 1

Installation

1.1 UNIX

If you are unfamiliar with UNIX, see your system administrator or system
documentation for information on the system commands referred to below. The device
names given are probably correct for your system.

1.1.1 Download

1. Copy the .tar.gz file to /tmp.

2. Unzip the file.

gunzip appxxx.tar.gz

3. cd to the GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss

4. Untar the file.

tar xvf /tmp/appxxx.tar

1.1.2 Floppy

1. Make a temporary directory.

mkdir /tmp/workdir
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1. INSTALLATION

2. cd to the temporary directory.

cd /tmp/workdir

3. Use tar to extract the files.

tar xvf device name

If this software came on diskettes, repeat the tar command for each diskette.

4. Read the README file.

more README

5. Run the install.sh script in the work directory.

./install.sh

The directory the files are install to should be the same as the install directory
of GAUSS or the GAUSS Engine.

6. Remove the temporary directory (optional).

The following device names are suggestions. See your system administrator. If you are
using Solaris 2.x, see Section 1.1.3.

Operating System 3.5-inch diskette 1/4-inch tape DAT tape

Solaris 1.x SPARC /dev/rfd0 /dev/rst8

Solaris 2.x SPARC /dev/rfd0a (vol. mgt. off) /dev/rst12 /dev/rmt/1l

Solaris 2.x SPARC /vol/dev/aliases/floppy0 /dev/rst12 /dev/rmt/1l

Solaris 2.x x86 /dev/rfd0c (vol. mgt. off) /dev/rmt/1l

Solaris 2.x x86 /vol/dev/aliases/floppy0 /dev/rmt/1l

HP-UX /dev/rfloppy/c20Ad1s0 /dev/rmt/0m

IBM AIX /dev/rfd0 /dev/rmt.0

SGI IRIX /dev/rdsk/fds0d2.3.5hi

1.1.3 Solaris 2.x Volume Management

If Solaris 2.x volume management is running, insert the floppy disk and type

volcheck

to signal the system to mount the floppy.

The floppy device names for Solaris 2.x change when the volume manager is turned off
and on. To turn off volume management, become the superuser and type

/etc/init.d/volmgt off

To turn on volume management, become the superuser and type

/etc/init.d/volmgt on

2
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1. INSTALLATION

1.2 Windows/NT/2000

1.2.1 Download

Unzip the .zip file into the GAUSS or GAUSS Engine installation directory.

1.2.2 Floppy

1. Place the diskette in a floppy drive.

2. Call up a DOS window

3. In the DOS window log onto the root directory of the diskette drive. For
example:

A:<enter>

cd\<enter>

4. Type: ginstall source drive target path

source drive Drive containing files to install
with colon included

For example: A:

target path Main drive and subdirectory to install
to without a final \

For example: C:\GAUSS

A directory structure will be created if it does not already exist and the files
will be copied over.

target path\src source code files
target path\lib library files
target path\examples example files

1.3 Differences Between the UNIX and Windows/NT/2000
Versions

• If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press Enter after the keystroke in the
UNIX version.

3



1. INSTALLATION

• On the Intel math coprocessors used by the Windows/NT/2000 machines,
intermediate calculations have 80-bit precision, while on the current UNIX
machines, all calculations are in 64-bit precision. For this reason, GAUSS
programs executed under UNIX may produce slightly different results, due to
differences in roundoff, from those executed under Windows/NT/2000.
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Chapter 2

Getting Started

GAUSS version 3.6.16 or greater and Run–Time Library version 3.6.3 or greater are
required to use these routines. See rtl ver in src/gauss.dec.

The Time Series version number is stored in one of the global variables:

ts ver 3×1 matrix, the first element contains the major version number, the second
element the minor version number, and the third element the revision number.

If you call for technical support, you may be asked for the version of your copy of Time
Series.

2.0.1 README Files

The file README.ts contains any last minute information on the Time Series
procedures. Please read it before using them.
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Chapter 3

VARMA

3.1 Introduction

The VARMA library in the TIME SERIES module contains procedures for estimating
and analyzing VARMA, VARMAX, ARMA, ARMAX and ECM models.

varmax is the main procedure for estimating VARMA, VARMAX, ARMA, and ARMAX models.
Linear and nonlinear equality and inequality constraints may be placed on the
parameter estimates, calling the sqpsolve procedure. varmax calls a number of
subordinate procedures that enable identification, estimation, diagnostic checking, and
forecasting. These are described in the sections below. varmax returns parameter
estimates, residuals, and various summary statistics.

ecm is the main procedure for dealing with ECM models. It calls a number of
subordinate procedures that enable the recovery and analysis of long-run and short-run
parameters and cointegrating vectors. ecm returns parameter estimates (including
cointegration coefficients), eigenvalues and eigenvectors (computed using full
information maximum likelihood), residuals, and summary statistics.

The varmax and ecm procedures use a full information maximum likelihood (FIML,
exact, unconditional) estimation procedure adapted from code developed by Jose
Alberto Mauricio of the Universidad Complutense de Madrid. The code was published
as Algorithm AS311 in Applied Statistics. It is also described in “Exact maximum
likelihood estimation of stationary vector ARMA models”, JASA, 90:282-291. The
estimation algorithm assumes that a covariance stationary process is passed to it.
Sample means are removed from all data prior to estimation. Further discussion of the
estimation method and requirements is contained in Section 3.5.

7



3. VARMA

The sqpsolve procedure in the GAUSS Run-Time Library links Mauricio’s FIML
(exact, unconditional) estimation to constraints. sqpsolve uses Newton’s method to
minimize the negative of a log-likelihood function subject to different types of
constraints.

The following procedures are in the VARMA library. In order to use these procedures
the VARMA library must be active. This is done by including varma in the library
statement at the top of your program, as given below. The first library command makes
the varma and pgraph libraries active. The second library command makes all the
libraries in the TIME SERIES module active.

library varma, pgraph;

library arima, autoreg, tscs, varma;

This enables GAUSS to find the procedures and global variables catalogued in these
libraries.

Note that library statements completely replace previous ones. It is therefore highly
recommended to have a single library statement in a program.

VARMA Library Procedures

armanames Generates AR and MA names
coeffprt Prints coefficient estimates and standard errors
corm Prints the correlation matrix of parameters
covm Prints the covariance matrix of parameters
ecm Estimates an Error Correction Model
identify Returns ACF, PACF (univariate), and portmanteau statistics
macf Returns an ACF matrix for multivariate models
nw Returns the Newey-West Covariance matrix
paramconfig Returns coefficient and standard error matrices
readdata Reads GAUSS data sets and matrices
revmatrix Reverses rows of a matrix, in block order
sumstat Returns summary statistics from the ecm and varmax procedures
unitroots Prints unit root and cointegration test results
varmaset Resets the varma global variables
varmax Estimates a VARMAX model.
vmadf Computes the Augmented Dickey Fuller statistic,

allowing for deterministic polynomial time trends of
an arbitrary order.

vmcadf Computes the Augmented Dickey Fuller statistic applied
to the residuals of a cointegrating regression, allowing
for deterministic polynomial time trends of an arbitrary order.

vmc sja Returns critical values for Johansen’s Maximum Eigenvalue statistic.
vmc sjt Returns critical values for Johansen’s Trace statistic.
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vmdetrend Returns residuals from regressing on a time trend polynomial
vmdiff Differences a time series matrix
vmforecast Forecasts VARMAX models
vmpp Performs Phillips-Perron unit root tests
vmptrend Creates a polynomial matrix of time trends of order p.
vmroots Finds characteristic roots of AR and MA equations
vmrztcrit Returns τ critical values for the Augmented Dickey-Fuller

statistic, derived from the residuals of a cointegrating
regression. Depends on p, the AR order in the fitted regression,
the number of observations, and the number of explanatory variables.

vmsj Calculates Johansen’s Trace and Maximum Eigenvalue test statistics.
vmztcrit Returns τ critical values for the Augmented Dickey-Fuller

test statistic, depending on the number of observations and
p, the AR order in the fitted regression.

3.1.1 VARMA Global Variables

The table below contains a list of the numerous VARMA library global variables. They
give the user considerable control over the model’s specification and estimation. A
more complete description of their use is in the following sections.

vm A matrix, linear equality constraint coefficients
vm adforder scalar, number of AR lags in the ADF test statistic
vm B matrix, linear equality constraint constants
vm Bounds matrix, upper and lower bounds on parameter estimates
vm C matrix, linear inequality constraint coefficients

vm D matrix, linear inequality constraint constants
vm DirTol scalar, convergence tolerance for the gradient
vm EqProc function, used to specify nonlinear equality constraints.
vm FeasibleTest scalar flag, test for parameter feasibility
vm Hessian matrix, the estimated Hessian from ecm or varmax.
vm IndEquations matrix, set zero restrictions on x coefficients
vm IneqProc function, used to specify nonlinear inequality constraints.
vm Lagrange vector, Lagrange coefficients for the constraints
vm lags scalar, lags over which the ACF and Diagnostics are defined.
vm MaxIters scalar, maximum number of iterations
vm NoDet scalar, controls the constant term in the Johansen tests.
vm NWtrunc scalar, the Newey-West truncation lag
vm Output scalar, determines the output to be printed
vm PrintIters scalar flag, to print each iteration’s information
vm RandRadius scalar, radius of random search if STEPBT line search fails.
vm scale vector, used to scale time series

9



3. VARMA

vm SetConstraints scalar flag, impose stationarity and invertibility
vm Start vector, set start values
vm TrustRadius scalar, max. amount of direction vector at each iteration.
vmcritl scalar, the significance level for ACF indicator matrices

3.1.2 Printing Output

Three global variables, output, vm output, and vm PrintIters determine the
output that is displayed from the ecm, varmax, sqpsolve, and subordinate procedures.

1. Set output = 0 to suppress all printing from the sqpsolve procedure.

2. Set vm PrintIters = 0 ( output is not equal to zero) to print an
Executing... message while starting values are calculated for each
dependent variable during the sqpsolve operation.

3. Set vm PrintIters > 0 ( output is not equal to zero) to print sqpsolve
iteration information. This information includes the value of the objective
function and the gradient at each estimated coefficient. It is useful in finding
where and why convergence might fail.

4. Set output > 0 to print sqpsolve results.

vm output is either a scalar or a 6× 1 vector. Set vm output = 0 to suppress all
printing from the ecm and varmax estimations. Set vm output > 0 to print all ecm
and varmax output. Define vm output as a 6× 1 vector to control the printing of
various parts of ecm and varmax output.

1. Set element [1] of vm output to a non-zero value to print the model’s
header

2. Set element [2] of vm output to a non-zero value to print a variety of
unitroot tests, and, if a multivariate model, cointegration tests from the
unitroots procedure.

3. Set element [3] of vm output to a non-zero value to print summary
statistics for each estimated equation

4. Set element [4] of vm output to a non-zero value to print the estimated
coefficients and their standard errors

5. Set element [5] of vm output to a non-zero value to print the roots of the
AR and MA characteristic equations

6. Set element [6] of vm output to a non-zero value to print the
autocorrelation function and portmanteau statistics

10
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3.2 VARMA Models

A stationary and centered (means-removed) VARMAX model may be written as:

Yt −
p∑

j=1

ΦjYt−j + βXt = εt −
q∑

i=1

Θjεt−i

for t = 1 · · ·T where Yt has dimension L × 1, εt is a zero mean covariance stationary
process that is normally distributed with positive definite covariance matrix Σ, and Xt

is a K × 1 vector of fixed explanatory variables. The Φ and Θ matrices have dimension
L× L. The β coefficients have dimension L×K.

Another way to write the same system is using the backshift operator, B:

Φp(B)Yt + βXt = Θ(B)εt (3.1)

where Φp(B) = Φ0 −Φ1B − ...− ΦpB
p and Θq(B) = Θ0 −Θ1B − ...−ΘqB

q are matrix
polynomials and Φ0 and Θ0 are nonsingular matrices of dimension L × L (often
assumed to be the identity matrices).

3.2.1 Stationarity and Invertibility

The VARMAX process is stationary if the roots of det(Φp(B)) are greater than one in
modulus. The VARMAX process is invertible if the roots of det(Θ(B)) are greater than
one in modulus. The vmroots procedure finds the AR and MA characteristic roots and
their moduli. The roots and their moduli are printed if vm output[5] is nonzero.

3.3 Unit Root and Cointegration Tests

.

Much applied research tests whether theoretically predicted relationships among
variables are confirmed in the real world. Other research involves forecasting, whether
from a naive time series model or using a structural model based on behavior. In all
cases it is important to work with stationary or cointegrated variables. Spurious
correlation may result if the relationships between nonstationary series are examined.
In addition, forecast variances for nonstationary series increase without bound.

Model building involves first testing for unit roots. The vmadf procedure performs
Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) unit root tests. The vmpp
procedure performs Phillips-Perron (PP) unit root tests.

11
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Cointegration tests follow, to ward off spurious estimated relationships. The vmcadf
procedure performs ADF cointegration tests. The vmsj procedure performs Johansen’s
Trace and Maximum Eigenvalue cointegration tests.

The COINT module, written by Sam Ouliaris and Peter C.B. Phillips and sold by
Aptech Systems, Inc., contains numerous other unit root and cointegration tests,
including Park-Choi (1988) G(p,q) and J(p,q) tests, the Stock and Watson (1988)
common trends test, and the Phillips-Ouliaris (1990) P(u) and P(z) tests. The COINT
module also contains numerous (time and frequency domain) methods for estimating
the cointegrating vector, ARMA models, various model selection criteria, spectral
density estimation, and long-run variance estimation.

3.3.1 Univariate Unit Root Tests

The unitroots procedure calls a variety of unit root and cointegration tests and prints
the results. The univariate unit root test statistics calculated are the Dickey-Fuller,
Augmented Dickey-Fuller (both called with the vmadf procedure) and Phillips-Perron
(called with vmpp) statistics.

DF and ADF Unit Root Tests

The vmadf procedure calculates Dickey-Fuller and Augmented Dickey-Fuller unit root
test statistics, returning the statistic, its τ statistic, and a 6× 1 vector of critical values.
Three specifications are typically analyzed, a random walk with drift and trend, a
random walk with drift, and a random walk:

∆Yt = α+ βt + (ρ − 1)Yt−1 +
∑

i=1,2,...

ρi∆Yt−i + εt (3.2)

∆Yt = α+ (ρ − 1)Yt−1 +
∑

i=1,2,...

ρi∆Yt−i + εt (3.3)

∆Yt = (ρ− 1)Yt−1 +
∑

i=1,2,...

ρi∆Yt−i + εt (3.4)

The time polynomial input argument to vmadf determines which of the above models
will be estimated.

The Dickey-Fuller test assumes independent and identically distributed errors. This
assumption precludes models with lagged dependent variables, (i.e. the lagged
dependent variable terms in specifications (3.2) to (3.4) are not estimated) since lags
induce dependency in the errors.

The Augmented Dickey-Fuller test eliminates serial correlation in the residuals by
including lagged dependent variables in the specification. The vm adforder global
variable sets the the number of AR terms to include in the Augmented Dickey-Fuller
test statistic calculations. The default is vm adforder = 2.
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Phillips-Perron Unit Root Tests

Phillips (1987) and Phillips and Perron (1988) test for unit roots by adjusting the OLS
estimate of an AR(1) coefficient for serial correlation in the OLS residuals. Three
specifications are considered, an AR(1) model without a drift, an AR(1) with a drift,
and an AR(1) model with a drift and linear trend:

Yt = ρYt−1 + εt (3.5)

Yt = α+ ρYt−1 + εt (3.6)

Yt = α+ δt+ ρYt−1 + εt (3.7)

The unit root null hypothesis is H0 : (ρ − 1) = 0.

Hamilton (1994, pp. 506-511) tests this hypothesis using two statistics that are analogs
of the Phillips and Perron (1988) Zα and Zt statistics. Hamilton’s statistics are based
on OLS estimation of (3.5) to (3.7). They allow an identical formula for each statistic
to be used for all three cases.

The vmpp procedure returns the Zt statistic as calculated by Hamilton and critical
values. Suppose any one of the above equations is estimated by OLS, returning ρ̂T and
σ̂
ρ̂T

(the OLS estimates of ρ and the standard error of ρ̂T respectively), tT =

(ρ− 1)/σ̂
ρ̂T

(the usual OLS t statistic for testing H0), ε̂t (the OLS residuals), and sT
(the estimated standard error of the regression).

Hamilton’s Zt statistic is:

Zt = (γ̂0/λ̂
2)

1
2 tT − {

1

2
(λ̂2 − γ̂0)/λ̂}{T (σ̂

ρ̂T
/sT )}

λ̂2 is an estimate of the asymptotic variance of the sample mean of εt. In the vmpp
procedure λ̂2 is estimated using the Newey-West (1987) estimator,

λ̂2 = γ̂0 + 2

q∑

j=1

[1− j/(q + 1)]γ̂j

where γ̂j = T−1
∑T
t=j+1 ε̂tε̂t−j are the sample autocovariances of εt.

A global variable, vm nwtrunc, sets the number of autocorrelations to use in
calculating the Newey-West correction (q in the above equation). The default setting,
vm nwtrunc = 0, causes GAUSS to use a truncation lag given by Newey and West,
q = 4(T/100)2/9.

Under the null hypothesis, the Zt statistics has the same asymptotic distribution as
Dickey-Fuller statistics.

13



3. VARMA

3.3.2 Cointegration Tests

Residual Based Cointegration Tests

Cointegration tests fit into two categories, those based on single-equation estimation
methods and those based on estimating systems of equations. Single equation tests
involve testing for a unit root in the residuals that result from regressing one series on
another. The Augmented Dickey-Fuller (ADF) test may be used for this purpose. The
vmcadf procedure implements the ADF test for cointegration. The vmrztcrit procedure
returns critical values for ADF cointegration tests.

System Based Cointegration Tests

Maddala and Kim (1998, p 211) note that single equation cointegration test results
depend on the variable used to normalize the cointegrating relationship. In addition,
the number of cointegrating relationships cannot be determined using single equation
tests. These problems are avoided using tests based on systems of equations. System
based cointegration tests examine the dimension of the cointegrating space across two
or more variables.

The vmsj procedure implements Johansen’s (1988) Trace and Maximum Eigenvalue
system-based cointegration tests, using an ECM model. See chapter 4 for further details.
The null hypothesis under the Trace test is that the cointegrating space has dimension
less than or equal to r. The alternative hypothesis is that there are more than r
cointegrating vectors. The null hypothesis under the Maximum Eigenvalue test is that
there are r + 1 cointegrating vectors versus the alternative that there are r
cointegrating vectors.

The vmsj procedure returns the Trace and Maximum Eigenvalue test statistics. The
vmc sjt procedure returns Trace critical values at the 1%, 5%, 10%, 90%, 95%, and
99% levels. The vmc sja procedure returns Maximum Eigenvalue critical values at the
1%, 5%, 10%, 90%, 95%, and 99% levels.

3.4 Identification

The first step in time series analysis is the identification of a stationary time series
process. The identify procedure returns a number of statistics that are useful in
identification. For univariate models, identify returns ACF and PACF functions and
Ljung-Box statistics. The ACF and PACF functions examine individual
autocorrelations across different lags while the Ljung-Box statistics summarize all
autocorrelations over a given number of lags. All are calculated across the number of
lags specified in vm lags. The default is vm lags = 12.
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The Ljung-Box statistics (see Ljung and Box (1978)) test:

H0 : ρ1 = ρ2 = ... = ρs = 0

where ρj is the population correlation between the ARMAX disturbances at time t and
the ARMAX disturbances at time t − j. The statistics are defined by:

Qs = T (T + 2)
s∑

j=1

[
r2
j

T − j

]
(3.8)

where rj is the sample correlation between the ARMAX residuals at time t and the
ARMAX residuals at time t− j. Under H0, Qs has a chi-squared distribution with (s -
the number of parameters estimated) degrees of freedom.

The sumstat procedure has two returns, a 2× L matrix containing the sum of squares
Y (SSyy) and the sum of squared errors for each dependent variable and a 4×L matrix
containing information criteria for each dependent variable, in the following order

row 1 The minimized log-likelihood value, F .

row 2 The Akaike Information Criterion (AIC) = 2 ∗ (F + the number of
estimated parameters).

row 3 The Schwarz Bayesian Information Criterion (BIC) = 2 ∗ F + (the number
of estimated parameters)∗ln(number of observations).

row 4 The Likelihood Ratio Statistic (LRS) = 2 ∗ F .

Identification information is printed if vm output[6] is nonzero. Summary statistics
are printed if vm output[3] is nonzero. For univariate model output (i.e.

vm output[6] is nonzero), identify flags, with * and ** symbols, ACF and PACF
values that are significant at the 5% and 1% levels (using Bartlett’s large sample
approximation for the standard errors, 1/

√
T .

3.4.1 Multivariate Identification

For multivariate processes, identify returns ACF matrices and a multivariate
portmanteau lack of fit statistic, Qs. PACF values, returned for univariate processes,
are not returned for multivariate models. sumstat returns sums of squares and the
information vector for multivariate models.
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Multivariate Portmanteau Statistic

A multivariate portmanteau statistic (see Hosking(1980), Poksitt and Tremayne (1982),
Li and McLeod (1981)) described in Reinsel (1993, p 133) is used to examine the
residual autocorrelation matrices en toto.

Let the residuals be εt. Define the residual covariance matrix as

Cε(l) =
1

T

T−1∑

1

εtε
′
t+l l = 0, ..., s

Cε(0) =
1

T

T−1∑

1

εtε
′
t

The residual autocorrelation matrix is

ρ̂t(l) ≡ V̂ −1/2
t Cε(l)V̂

−1/2
t = ρ̂ij(l)

Qs = T 2
s∑

l=1

(T − l)−1
k∑

i=1

k∑

j=1

Cij(l)rji(−l)

= T 2
s∑

l=1

(T − l)−1tr{Cε(l)Σ̂−1Cε(−l)Σ̂−1}

= T 2
s∑

l=1

(T − l)−1tr{ρ̂ε(l)ρ̂ε(0)−1ρ̂ε(−l)ρ̂ε(0)−1}

Under the null hypothesis:

H0 : Yt is an ARMA(p, q) process

H1 : not H0

and assuming that s is large, the Qs statistic has approximately a χ2(L2(s − p− q))
distribution.

Wei (1990) notes that without further information a VARMA process may not be
uniquely identified from its ACF function. Hannan (1969, 1970, 1976, and 1979)
describes additional restrictions needed to identify a VARMA process.

If vm output[3] is nonzero, ACF and indicator matrices are printed, together with
the portmanteau statistic. The indicator matrices contain + and - symbols, depending
whether the individual autocorrelations are significanly positive or negative at the level
specified in vmcritl, using Bartlett’s approximation, 1/

√
T , as the large sample

standard error of each autocorrelation. The macf procedure calculates the ACF
matrices.
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3.5 Estimation

varmax and ecm use a full information maximum likelihood (FIML, exact,
unconditional) estimation procedure adapted from code developed by Jose Alberto
Mauricio of the Universidad Complutense de Madrid. The code was published as
Algorithm AS311 in Applied Statistics. It is also described in “Exact maximum
likelihood estimation of stationary vector ARMA models”, JASA, 90:282-291. Sample
means are removed from all data prior to estimation and errors are assumed to be
distributed N (0,Σ).

Linear and non-linear constraints may be imposed on the coefficient estimates, invoking
the sqpsolve procedure. For example, setting vm SetConstraints to a nonzero value
enforces the stationarity required by the estimation procedure, by constraining the
roots of the characteristic equation

I − Φ1z − Φ2z
2 − · · · − Φpz

p

to be outside the unit circle (where Φi, i = 1, ..., p are the AR coefficient matrices).

As noted earlier, the vmroots procedure returns roots of the AR and MA characteristic
equations. The roots are printed if vm output[5] is nonzero.

If any estimated parameters are on a constraint boundary, the Lagrangeans associated
with these parameters will be nonzero. These Lagrangeans are stored in the global

vm Lagrange, a compact matrix created using vput. The vread procedure is used to
retrieve these estimates. Standard errors are generally not available for parameters on
constraint boundaries.

3.5.1 Quasi-Maximum Likelihood Covariance Matrix of Parameters

varmax and ecm compute a QML covariance matrix of the parameters when requested.
Let F be the log-likelihood function. Define B = (∂FA/∂θ)

′(∂FA/∂θ) evaluated at the
estimates. The covariance matrix of the parameters is Ω−1BΩ−1 where Ω is
(∂F 2

A/∂θ
′∂θ).

To request the QML covariance matrix, set vcType equal to one. The default, vctype =
0, is ML estimation of the covariance matrix.

3.5.2 Starting Values

The time that sqpsolve needs to reach a solution is often reduced significantly when
starting values are specified.The ecm and varmax procedures fit univariate ARMA
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models to generate starting values for each Y variable in the model, unless the user
supplies their own starting values in the vm start global variable. Starting values
must be specified by the user when the computed starting point fails or when there are
inequality constraints. The latter case requires a starting point which is feasible, i.e.
one that satisfies the inequality constraints.

Starting values are entered into vm start in a well-defined order:

1. The AR coefficient matrices, if any, stored row-wise.

2. The MA coefficient matrices, if any, stored row-wise.

3. The lower left nonredundant portion of the covariance matrix of the
residuals, if the model is multivariate, stored row-wise (for univariate models,
the log-likelihood function has the variance concentrated out of it).

4. The matrix of regression coefficients, if there are exogenous variables, stored
row-wise.

3.6 SQPSolve and Newton’s Method

ecm and varmax minimize a log-likelihood function. When constraints exist (see section
3.7 for a discussion of constraints and how to place them), sqpsolve uses Newton’s
method to minimize the log-likelihood function. This section provides a summary of
the sqpsolve method. The reader is referred to Han (1977) for further details.

Newton’s method minimizes functions iteratively. Each iteration involves evaluating the
function and determining the direction to move in the domain of the function that
results in the greatest increase in the function’s value. Given the direction, the
STEPBT line search method determines the step length that results in a lower
objective function. See Dennis and Schnabel (1983) for a discussion of the STEPBT
line search method.

Initial values for the unknown coefficients are required for the first iteration. These are
generated automatically by ecm or varmax if vm start is a missing value (the
default). They may also be set by the user in vm start, in the column vector order
given earlier:

1. The AR coefficient matrices, if any, stored row-wise.

2. The MA coefficient matrices, if any, stored row-wise.

3. The lower left nonredundant portion of the covariance matrix of the
residuals, if the model is multivariate, stored row-wise (for univariate models,
the log-likelihood function has the variance concentrated out of it).
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4. The matrix of regression coefficients, if there are exogenous variables, stored
row-wise.

Let F be the log-likelihood function. sqpsolve minimizes F within the context of a
standard nonlinear programming problem:

min F (θ)

subject to the linear constraints,

Aθ = B

Cθ ≥ D

the nonlinear constraints,

G(θ) = 0

H(θ) ≥ 0

and bounds,

θl ≤ θ ≤ θu

G(θ) and H(θ) are functions provided by the user and must be differentiable at least
once with respect to θ. F (θ) must have first and second derivatives with respect to the
parameters, and the matrix of second derivatives (the Hessian, Σ below) must be
positive semi-definite.

Without loss of generality, we assume that the linear constraints and bounds have been
incorporated into G and H. However, in practice, linear constraints are specified
separately from G and H because their Jacobians are known and easy to compute.
Bounds constraints are also more easily handled separately from the linear inequality
constraints.

Successive parameter values are defined by:

θt+1 = θt + ρd

where θt are the parameter values at time t, d, the direction, is an NP×1 vector (NP
is the number of coefficients) and ρ is the step length, a scalar that applies equally to
each element of d.

The direction, d, solves the quadratic program

minimize
1

2
d′Σ(θt)d+ Ψ(θt)d
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subject to Ġ(θt)d+ G(θt) = 0

Ḣ(θt)d+ H(θt) ≥ 0

where Σ is positive semi-definite. The Σ(θ) and Ψ(θ) matrices are given by:

Σ(θ) =
∂2F

∂θ∂θ′

Ψ(θ) =
∂F

∂θ

and the Jacobians are:

Ġ(θ) =
∂G(θ)

∂θ

Ḣ(θ) =
∂H(θ)

∂θ

sqpsolve computes the Hessian Σ), Ψ, various gradients, and the Jacobians, Ġ(θ), and
Ḣ(θ) using numerical methods.

Given θt and d, the STEPBT line search method finds the step length, ρ, by minimizing
the merit function:

m(θt + ρd) = F + max | κ |
∑

j

| gj(θt + ρd) | −max | λ |
∑

`

min(0, h`(θt + ρd))

as a scalar function of ρ, where gj is the j-th row of G, h` is the `-th row of H, κ is the
vector of Lagrangean coefficients of the equality constraints, and λ the Lagrangean
coefficients of the inequality constraints.

STEPBT first approximates m as a quadratic function, and computes ρ to minimize the
quadratic. If a feasible ρ does not exist, it attempts to fit a cubic function. If the cubic
function fails and vm RandRadius = 0, sqpsolve stops iterating, without a solution.

Set vm RandRadius > 0 to have sqpsolve enter a random search in case the cubic
loss function fitting fails. In a random search, sqpsolve chooses a random direction
from the current point, within the radius set by vm RandRadius. If the
vm RandRadius global is set to zero, a random search will not be attempted and the
iterations will terminate.

A poor starting point and an excessively large direction can often put the sqpsolve
iterations into an ill-defined regions, from which the iterations cannot escape. To avoid
this, a “trust region” can be defined to limit the direction (see Fletcher (1985)).

Setting vm TrustRadius imposes boundary constraints on the direction, relative to
the starting position of the iterations. The direction is constrained to be no greater
than vm TrustRadius in absolute value.

20



VARM
A

3. VARMA

3.7 Settings Constraints

General constraints may be placed on parameters of VARMA models. There are five
types of constraints: linear equality, linear inequality, nonlinear equality, nonlinear
inequality, and bounds. These are not exclusive categories (i.e. there are several ways
most constraints can be placed.) Below we give examples of specifying constrained
parameters.

3.7.1 Constraints and the Coefficient vector

Log-likelihood optimization is conducted by the sqpsolve function. sqpsolve “sees” all
parameters in the model as a single vector. This parameter vector must be used to
place constraints. It has the same order as the vm start vector, i.e.

1. The AR coefficient matrices, if any, stored row-wise.

2. The MA coefficient matrices, if any, stored row-wise.

3. The lower left nonredundant portion of the covariance matrix of the
residuals, if the model is multivariate, stored row-wise (for univariate models,
the log-likelihood function has the variance concentrated out of it).

4. The matrix of regression coefficients, if there are exogenous variables, stored
row-wise.

Some attention may have to be paid to the starting point when there are inequality
constraints placed on the parameters. In general, sqpsolve requires a starting point
that satisfies inequality constraints. You may need to provide starting values if the ones
computed by varmax do not satisfy the inequality constraints. It is not necessary for
starting points to satisfy equality constraints.

To force a starting point on sqpsolve, assign the selected vector of starting values to
the global vm start. For example, for an AR(1) model

_vm_start = { .5, 0, 0, .5, 1, 0, 1 };

3.7.2 Linear Equality Constraints

For computational convenience linear equality constraints are treated separately from
general nonlinear constraints. Let θ be the coefficient vector. Linear constraints are
described as:

Aθ = B
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To place a linear equality constraint, A is assigned to the global vm A and B is
assigned to global vm B. For example suppose we wish to constrain the first AR
coefficient matrix of a bivariate AR(2) model to equal zero. The coefficient vector looks
like this

φ111

φ121

φ211

φ221

φ112

φ122

φ212

φ222

σ11

σ21

σ22

Then in the command file we define the globals:

_vm_A = { 1 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 0 0 0 0 0 0 0,

0 0 1 0 0 0 0 0 0 0 0,

0 0 0 1 0 0 0 0 0 0 0 };

_vm_B = { 0, 0, 0, 0 };

This constrains the first four elements of the parameter vector to zero.

3.7.3 Linear Inequality Constraints

Linear inequality constraints are described as:

Cθ ≥ D
To place a linear inequality constraint, C is assigned to the global vm C and D is
assigned to global vm D. For example, suppose a bivariate AR(1) model is specified.
We wish to constrain the diagonal elements of the AR coefficient matrix to be greater
than the off diagonal elements. The coefficient vector looks like this:

φ11

φ12

φ21

φ22

σ11

σ21

σ22

In the command file we define the globals:
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_vm_C = { 1 -1 0 0 0 0 0

1 0 -1 0 0 0 0,

0 -1 0 1 0 0 0,

0 0 -1 1 0 0 0 };

_vm_D = { 0, 0, 0, 0 };

3.7.4 Nonlinear Equality Constraints

Nonlinear equality constraints are defined as

G(θ) = 0

i.e. values for θ are found such that G(θ) = 0.

Nonlinear constraints are placed by supplying a GAUSS procedure for G. sqpsolve
finds parameter estimates, θ̂ such that G(θ̂) = 0.

To place a nonlinear equality constraint, write a procedure taking the parameter vector
as an input argument and returning a vector. Each element of the return vector
represents a different constraint.

The following code, added to the command file, constrains the singular values of a
bivariate AR(2) model coefficient matrices to be equal:

proc eqp(b);

local phi1,phi2,s1,s2;

phi1 = reshape(b[1:4],2,2);

phi2 = reshape(b[5:8],2,2);

s1 = svd(phi1);

s2 = svd(phi2);

retp(s1-s2);

endp;

_vm_EqProc = &eqp;

3.7.5 Nonlinear Inequality Constraints

Nonlinear inequality constraints are defined as:

H(θ) ≥ 0
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Nonlinear inequality constraints are placed by providing a GAUSS procedure for H.
sqpsolve finds parameter estimates, θ̂ such that H(θ̂) ≥ 0.

To place a nonlinear inequality constraint, write a procedure taking the parameter
vector as an input argument and returning a vector. Each element of the return vector
represents a different constraint.

For example, for a bivariate AR(2) model, the following constrains the absolute value of
the eigenvalues of the first coefficient matrix to be greater than the eigenvalues of the
second coefficient matrix:

proc ineqp(b);

local phi1,phi2,l1,l2;

phi1 = reshape(b[1:4],2,2);

phi2 = reshape(b[5:8],2,2);

l1 = abs(eig(phi1));

l2 = abs(eig(phi2));

retp(l1-l2);

endp;

_vm_IneqProc = &ineqp;

3.7.6 Bounds Constraints

Bounds are a type of linear inequality constraint but are treated separately by sqpsolve
for computational convenience. To place bounds on parameters, lower and upper values
are entered into the global vm bounds. For example, to bound the coefficents of an
AR(1) model to be between -.5 and +.5 define

_vm_bounds = { -.5 .5,

-.5 .5,

-.5 .5,

-.5 .5,

-1e256 1e256,

-1e256 1e256,

-1e256 1e256 };

The first column of vm bounds corresponds to the lower boundaries and the second
column the upper boundaries. The first four rows correspond to the AR coefficients in
the parameter vector, and the last three rows to the elements of the covariance matrix
of the residuals which we choose not to constrain.
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3.8 SQPSolve and Managing Optimization

The critical elements in optimization are scaling, the starting point, and the condition
of the model. When the starting point is reasonably close to the solution and the model
is well-specified and reasonably scaled, the iterations converge quickly and without
difficulty.

3.8.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be roughly
equal (the vm Hessian global contains the estimated Hessian). sqpsolve has
difficulty converging when some diagonal elements contain numbers that are very large
and/or very small with respect to the others. It may not be obvious how to scale the
diagonal elements of the Hessian. However, ensuring that the data are of the same
magnitude may help.

The vm scale global variable, used to scale the data, is either a scalar or an L × 1 If
vm scale is a scalar, the data in all series are multiplied by the value. If vm scale

is an L× 1 vector, each series is multiplied by the corresponding element of
vm scale. The default scale value is 4/standard deviation of each series (found to be

best by experimentation).

3.8.2 Condition

A well-conditioned problem has a Hessian for which the columns are linearly
independent and the diagonal elements are roughly the same size, i.e. the data are
properly scaled. In this case, the condition number of the Hessian, the ratio of the
largest eigenvalue to the smallest eigenvalue, is close to unity. The condition number
will be large when the data are improperly scaled or the extent to which the Hessian
columns exhibit linear dependencies. Users may examine the estimated Hessian. It’s in
the vm Hessian global variable.

The sqpsolve solution is found by searching for parameter values for which the gradient
is zero. However, sqpsolve has difficulty determining optimal values when the Jacobian
of the gradient (i.e., the Hessian) is very small for a particular parameter, In this case,
a large region of the function appears virtually flat to sqpsolve. When the Hessian has
very small elements, the inverse of the Hessian has very large elements, and the search
direction gets buried in the large numbers.

Poor condition can be caused by bad scaling, poor model specification, or bad data.
Bad models and bad data are two sides of the same coin. If the problem is highly
nonlinear, it is important that data are available to describe the curve over all relevant
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regions. For example, one of the parameters of the Weibull function describes the shape
of the curve as it approaches the upper asymptote. If data are not available for that
portion of the curve, the corresponding parameter is poorly estimated. The gradient of
the function with respect to the parameter is very flat; elements of the Hessian
associated with that parameter are very small, and the inverse of the Hessian contains
very large numbers. In this case, if the underlying behavioral theory allows it, the
model should be respecified to exclude the parameter.

3.8.3 Starting Point

As noted in section 3.7.1, the ecm and varmax procedures fit univariate ARMA models
to generate starting values for each Y variable in the model, unless the user supplies
their own starting values in vm start. User-defined vm start values are required
when the automatically generated starting values fail or when there are inequality
constraints in the model. The latter case requires a starting point that satisfies the
inequality constraints.

The starting point can be critical in finding a solution to a model that is not
well-defined. Try different starting points when the optimization doesn’t seem to work.
If the underlying behavioral theory allows it, a simpler problem with the same
parameters might be specified. This could lead to a closed form solution. For example,
ordinary least squares estimates might be used for nonlinear least squares problems or
nonlinear regressions like probit or logit. There are no general methods for computing
start values, and it may be necessary to attempt the estimation from a variety of
starting points.

3.9 Diagnostic Checking

Identification and diagnostic checking go hand in hand. The earlier Identification
section discussed the ACF, PACF, portmanteau, and information criteria from the
identify and sumstat procedures.

3.10 Forecasting

The vmforecast procedure calculates t step ahead forecasts for a VARMAX model. Users
must specify the coefficients involved, the dependent variable data set, residuals from
the varmax estimation, the AR and MA orders, and the number of periods to forecast.
A t×K matrix of fixed explanatory variables, covering only the forecast horizon, is also
entered if beta coefficients were estimated.

vmforecast returns a t × (L + 1) matrix. The first column is the forecast horizon, i.e.
the t in T + t. Subsequent columns contain the forecast Y values.
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Chapter 4

Error Correction Models

Error Correction Models are often used to estimate long-run and short-run
relationships and to test for cointegration.

A stationary (means-removed) VAR(p) model is written as:

φ(L)Yt = Yt −
p∑

j=1

φjYt−j + βXt = εt (4.1)

where Yt is an L dimensioned covariance stationary time series process, the εt are i.i.d.
N (0,Ωn), Ωn is a positive definite matrix of order L, and Xt is a K × 1 vector of fixed
explanatory variables, has the error correction form:

∆Yt = ΠYt−1 +
k∑

i=1

Γi∆Yt−i + βXt + εt, t = 1, ..., T (4.2)

where the Π and Γ matrices have dimension L× L. The β coefficients have dimension
L×K.

The ecm procedure estimates this model using FIML (exact, unconditional - Mauricio’s
procedure, discussed in section 3.5). It has a number of returns, including

A L × r matrix of coefficients, such that AB = Π

B r × L matrix, eigenvectors spanning the cointegrating space of dimension r

va r × 1 vector, eigenvalues

Pi L × L matrix of cointegration coefficients

Note that Π is a reserved word in GAUSS. Users will need to assign this to a
different variable name.
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4.0.1 Cointegration Tests

Given the above ECM model, the degree of cointegration (the dimension of the
cointegrating space) may be examined using Johansen’s likelihood ratio Trace and
Maximum Eigenvalue statistics, returned by the vmsj procedure. If the ecmflag input
argument equals one, two sets of Trace and Maximum Eigenvalue statistics are
returned. The first set is based on Johansen’s estimation procedure, specifically on his
method for calculating eigenvalues of the Π matrix. The second set is based on the Π
eigenvalues returned from Full Information Maximum Likelihood estimation of the ECM

model.

If Π has full rank then all the variables in Yt are stationary. If Π has less than full rank,
say r, then r of the variables are cointegrated. The Trace statistic tests the null
hypothesis that the rank of Π is less than or equal to r versus the alternative that it is
greater than r. The Maximum Eigenvalue statistic tests the null hypothesis that the
rank of Π is equal to r versus the alternative that the rank of Π is r + 1. These
statistics are given in Johansen (1995):

Trace = −T
L∑

i=r+1

ln(1− λ̂i)

λmax = −T ln(1− λ̂r+1)

where λ̂r+1, ..., λ̂L are the smallest L− r eigenvalues of S−1
11 S10S

−1
00 S01 and the Sij

matrices represent sums of squares from two regressions, ∆Yt on ∆Yt−1, ...,∆Yt−p+1

(returning residuals R0t) and Yt−1 on ∆Yt−1, ...,∆Yt−p+1 (returning residuals R1t).

Asymptotic critical values for the Trace and Maximum Eigenvalue statistics, based on
Johansen’s method of calculating eigenvalues and given that the correlations are
estimated rather than observed, are returned by vmc sja and vmc sjt. The former
returns Maximum Eigenvalue critical values and the latter returns Trace critical values.

4.0.2 Cointegration Coefficients and Π

Occasionally the A ∗B calculation will not match the returned Π matrix. This is
because the eigenvalues close to zero are associated with eigenvectors not in the
cointegrating space. A ∗B will always equal Π if r equals zero, i.e. if all eigenvectors
are in the cointegrating space. If r equals one, A ∗B will equal Π only if the eigenvalue
associated with the removed eigenvector is zero. If the eigenvalue is close to zero, A ∗B
will almost equal Π. If the eigenvalue is not close to zero, A ∗B will be quite different
from Π.

4.1 Printing ECM Results

Three global variables, output, vm output, and vm PrintIters determine the
output that is displayed from the ecm, varmax, sqpsolve, and subordinate procedures.
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1. Set output = 0 to suppress all printing from the sqpsolve procedure.

2. Set vm PrintIters = 0 ( output is not equal to zero) to print an
Executing... message while starting values are calculated for each
dependent variable during the sqpsolve operation.

3. Set vm PrintIters > 0 ( output is not equal to zero) to print sqpsolve
iteration information. This information includes the value of the objective
function and the gradient at each estimated coefficient. It is useful in finding
where and why convergence might fail.

4. Set output > 0 to print sqpsolve results.

vm output is either a scalar or a 6× 1 vector. Set vm output = 0 to suppress all
printing from the ecm and varmax estimations. Set vm output > 0 to print all ecm
and varmax output. Define vm output as a 6× 1 vector to control the printing of
various parts of ecm and varmax output.

1. Set element [1] of vm output to a non-zero value to print the model’s
header

2. Set element [2] of vm output to a non-zero value to print a variety of
unitroot tests, and, if a multivariate model, cointegration tests from the
unitroots procedure.

3. Set element [3] of vm output to a non-zero value to print summary
statistics for each estimated equation

4. Set element [4] of vm output to a non-zero value to print the estimated
coefficients and their standard errors

5. Set element [5] of vm output to a non-zero value to print the roots of the
AR and MA characteristic equations

6. Set element [6] of vm output to a non-zero value to print the
autocorrelation function and portmanteau statistics

4.2 References

Johansen, S.J. and Juselius, K. “Maximum Likelihood Estimation and Inference on
Cointegration, with Applications for the Demand for Money,” Oxford Bulletin of
Economics and Statistics, 52, 1990, pp. 169-210.

Osterwald-Lenum, M. (1992). “A Note with Fractiles of the Asymptotic Distribution of
the Maximum Likelihood Cointegration Rank Test Statistics: Four Cases,” Oxford
Bulletin of Economics and Statistics, 54, 461-72.
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Chapter 5

Panel Data

The TIME SERIES module includes procedures for the computation of estimates for
the “pooled times-series cross-section” (TSCS) regression model.

5.1 Introduction

In order to use these procedures the tscs library must be active. This is done by
including tscs in the library statement at the top of your program:

library tscs,quantal,pgraph;

This enables GAUSS to find the TSCS procedures. If you plan to make any right-hand
references to the global variables (described under the tscs function definition in
chapter 8), you will also need the statement:

#include tscs.ext;

Finally, to reset global variables in succeeding executions of the program the following
instruction can be used:

tscsset;

This could be included with the earlier statements without harm and would insure the
proper definition of the global variables for all executions of the program.
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5.2 Pooled Time-Series Cross-Section Regression Model

This program provides procedures to compute estimates for “pooled time-series
cross-sectional” models. The assumption is that there are multiple observations over
time on a set of cross-sectional units (e.g., people, firms, countries). For example, the
analyst may have data for a cross-section of individuals each measured over 10 time
periods. While these models were devised to study a cross-section of units over multiple
time periods, they also correspond to models in which there are data for groups such as
schools or firms with measurements on multiple observations within the groups (e.g.,
students, teachers, employees).

The specific model that can be estimated with this program is a regression model with
variable intercepts, i.e., a model with individual-specific effects. The regression
parameters for the exogenous variables are assumed to be constant across
cross-sectional units. The intercept varies across individuals.

This program provides three estimators:

• the fixed-effects OLS estimator (analysis of covariance estimator),

• the constrained OLS estimator (individual-specific effects are excluded
from the equation) and

• the random effects estimator using GLS.

A Hausman test is computed to show whether the error components (random effects)
model is the correct specification.

In addition to providing the analysis of covariance and GLS estimates, two multiple
partial-squared correlations are computed. The first partial correlation (squared
correlation) shows the percentage of variation in the dependent variable that can be
explained by the set of independent variables while holding constant the group variable.
The second estimate shows the extent to which variation in the dependent variable can
be accounted for by the group variable after the other independent variables have been
statistically held constant.

A feature of this program is that it allows for a variable number of time-series
observations per cross-sectional unit. For instance, there might be 5 time-series
observations for the first individual, 10 for the second, and so on. This is useful, for
example, if there are missing values.

5.3 References

Judge, George C., R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, and
Tsoung-Chao Lee. 1988. Introduction to the Theory and Practice of
Econometrics. Second Edition, New York: Wiley.

Hsiao, Cheng. 1986. Analysis of Panel Data. Cambridge: Cambridge University Press.
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Chapter 6

ARIMA

The TIME SERIES module includes procedures for the computation of estimates and
forecasts for the autoregressive integrated moving average model. The model may
include fixed regressors such as linear or quadratic time trends, or other explanatory
variables which are predetermined. Forecasts are computed using the estimated
parameters and errors.

6.1 Introduction

In order to use these procedures the arima library must be active. This is done by
including arima in the library statement at the top of your program:

library arima,pgraph;

This enables GAUSS to find the arima procedures.

Finally, to reset global variables in succeeding executiions of the program the following
instruction can be used:

arimaset;

This could be included with the earlier statements without harm and would insure the
proper definition of the global variables for all executions of the progam.
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6.2 ARIMA Models

This program will compute estimates of the parameters and standard errors for a time
series model with ARMA errors. If the model contains only autoregressive parameters,
then arima gives the same estimates as autoreg. arima reports standard errors,
parameters estimates, model selection criteria, roots of the parameters, the Ljung-Box
portmanteau statistic and the covariance and correlation matrices.

The model estimated is of the general form:

φ(L)[(1− L)dyt − xtβ] = θ(L)εt

where

Ljyt = yt−j
φ(L) = 1− φ1L − φ2L

2 − · · · − φpLp
θ(L) = 1− θ1L − θ2L

2 − · · · − θqLq

where it is assumed that et is a white noise error term, distributed as N (0, σ2). Such
models are referred to as arima(p, d, q), where p is the autoregressive order, d is the
difference order and q is the moving average order.

The parameters to be estimated are thus: φ (P × 1), θ (Q× 1), β (M × 1) and σ2 (1x1).

The arima procedure computes starting values or allows the user to specify starting
values. User specified starting values are useful when the user wants to determine
whether the parameters estimates computed by arima correspond to the global
maximum of the log likelihood function and not just a local maximum. Finally, the
tsforecast procedure computes forecasts for the series h steps ahead using the
estimated parameters and errors returned by the arima procedure.

6.3 References

Granger, C.W.J. and Newbold, Paul. 1986. Forecasting Economic Time Series. Second
Edition, San Diego: Academic Press.

Ansely, Craig F. 1979. “An Algorithm for the Exact Likelihood of a Mixed
Autoregressive-Moving Average Process,” Biometrika 66, 59–65.
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Chapter 7

Autoregression

The TIME SERIES module includes procedures for the computation of estimates for
the autoregression model with autoregressive errors of any specified order, and the
computation of autocorrelations and autocovariances.

7.1 Introduction

In order to use these procedures the autoreg library must be active. This is done by
including auto in the library statement at the top of your program:

library auto,quantal,pgraph;

This enables GAUSS to find the autoreg procedures. If you plan to make any
right-hand references to the global variables (described under the autoreg function
definition in chapter 8), you will also need the statement:

#include auto.ext;

Finally, to reset global variables in succeeding executions of the program the following
instruction can be used:

autoset;

This could be included with the earlier statements without harm and would insure the
proper definition of the global variables for all executions of the program.
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7.2 Autoregression Models

This program will compute estimates of the parameters and standard errors for a
regression model with autoregressive errors. Thus, it can be used for models for which
the Cochrane-Orcutt or similar procedure can be used. It is also similar to the SAS
autoreg procedure except that this routine will compute the maximum likelihood
estimates based upon the exact likelihood function.

The model estimated is of the general form:

yt = xtβ + ut

ut − φ1ut−1 − ...− φput−p = et

where it is assumed that et is a white noise error term, distributed as N (0, σ2).

The parameters to be estimated are thus: β (K × 1), φ (L × 1) and σ2 (a scalar). The
order of the process is L.

In addition, this program will estimate the autocovariances and autocorrelations of the
error term u. It produces initial estimates of these based upon the residuals of an OLS
regression. Then it computes the maximum likelihood estimates of these based upon
the maximum likelihood estimates of the other parameters.

7.3 References

Judge, George C., R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, and
Tsoung-Chao Lee. 1988. Introduction to the Theory and Practice of
Econometrics. Second Edition, New York: Wiley.
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acf 8. COMMAND REFERENCE

Library

arima

Purpose

Computes sample autocorrelations for a univariate time series.

Format

a = acf(x ,l ,d);

Input

x N × 1 vector. The mean is subtracted automatically.

l scalar, the maximum lags to compute.

d scalar, the difference order.

Output

a l × 1 vector, sample autocorrelations.

Remarks

This function is similar to autocor, however, acf allows the users to compute the
autocorrelations for the differenced data.

Source

tsutil.src
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8. COMMAND REFERENCE arima

Library

arima

Purpose

Estimates coefficients of a univariate time series model with autoregressive-moving
average errors. Model may include fixed regressors.

Format

{ coefs,ll ,e,vcb,aic,sbc } = arima(startv ,y ,p,d ,q ,const)

Input

startv scalar, 0, then arima computes starting values.
– or –

K × 1 vector, starting values.

y N × 1 vector, data.

p scalar, the autoregressive order.

d scalar, the order of differencing.

q scalar, the moving average order.

const scalar, if 1, a constant is estimated, 0 otherwise.
– or –

N × 1 matrix, fixed regressors.

The number of rows in the fixed regressor matrix must be equal the
number of rows for y after differencing.

Output

coefs K × 1 vector, estimated model coefficients.

ll scalar, the value of the log likelihood function.

e N × 1 vector, residual from fitted model.

vcb K ×K matrix, the covariance matrix of estimated model coefficients.

aic scalar, value of the Akaike information criterion.

sbc scalar, value of the Schwartz Bayesian criterion.
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arima 8. COMMAND REFERENCE

Globals

am itol 3x1 vector, controls the convergence criterion.

[1] Maximum number of iterations. Default = 100.

[2] Minimum percentage change in the sum of squared errors.
Default = 1e-8.

[3] Minimum percentage change in the parameter values. Default
= 1e-6.

output scalar, controls printing of output

0 Nothing will be printed by arima.

1 Final results are printed.

2 Final results, iterations results, residual autocorrelations,
Box-Ljung statistic, and Covariance and correlation matrices
are printed,

am varn 1x(M+1) vector of parameter names. This is used for models with fixed
regressors. The first element contains the name of the independent
variable; the second through Mth elements contain the variable names for
the fixed regressors. If am varn = 0, the fixed regressors labeled as
X0, X1, . . . , XM . Default am varn = 0.

Remarks

There are other global variables which are used by arima’s likelihood function. These
are am b, am y, am p, am d, am q, am const, am n, am e,

am k, am m, am inter.

This program will only handle data sets that fit in memory.

All autoregressive and moving average parameters are estimated up to the specified lag.
You cannot estimate only the first and fourth lag, for instance.

arima forces the autoregressive coefficients to be invertible (in other words, the
autorgressive roots have modulus greater than one). The moving average roots will
have modulus one or greater. If a moving average root is one, arima reports a missing
value for the moving average coefficient’s standard deviation, t-statistic and p-value.
This is because these values are meaningless when one of the moving average roots is
equal to one. A moving average root equal to one suggests that the data may have been
over-differenced.

Source

arima.src
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8. COMMAND REFERENCE arimaset

Library

arima

Purpose

Initializes arima global values to default values.

Format

arimaset;

Input

None

Output

None

Remarks

Putting this instruction at the top of all programs that invoke arima is generally good
practice. This will prevent globals from being inappropriately defined when a program
is run either several times or after another program that also call arima.

Source

arima.src
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armanames 8. COMMAND REFERENCE

Library

varma

Purpose

Returns the names of the AR, MA and x variables.

Format

names = armanames(p,q ,y ,x ,xnames,ecmflag);

Input

p scalar, AR order

y T × L matrix, dependent variables

x T ×K matrix, independent variables. Enter 0 if there is no x matrix.

xnames K × 1 character vector, names of variables in x or 0. Enter 0 if there are
no xnames given

ecmflag scalar, Enter 1 if an ecm model is estimated. Enter 0 otherwise.

Output

names (p+ q +K) × 1 character vector, names of ARMA and x variables

Remarks

armanames returns AR and MA variable names in the order
Phi− 1, Phi− 2, ..., Phi− p, Theta− 1, ..., Theta− q, concatenated onto the x variable
names (either as given by the user or X1, ...XK). Only the ARMA terms are returned
if there are no x variables.

Source

varma.src
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8. COMMAND REFERENCE autocor

Library

auto

Purpose

Computes specified autocorrelations for each column of a matrix.

Format

a = autocor(x ,f ,l);

Input

x N ×K matrix. Autocorrelations will be computed for each column
separately. x is assumed to have 0 mean.

f scalar, in range [0, rows(x )−1], denoting the first autocorrelation to
compute.

l scalar, in range [0, rows(x )−1], denoting the last autocorrelation to
compute. It must be that f ≤ l; if l = 0 and f = 0, then l is set to
rows(x )−1 and all autocorrelations from f to l are computed. If l = 0
and f < 0, then only the 0th order autocorrelation is computed (this
equals x′x).

Output

c GxK matrix, where G = l − f + 1, containing the autocorrelations of
order f , f +1, ..., l for each of the columns of x . If the variance of any
variable is 0, missings will be returned for that variable.

Remarks

The 0th autocorrelation will always be 1.

The data are assumed to have 0 mean. Thus, use

x = x - meanc(x)’;

prior to the use of this function if the mean is not 0.

Source

autoreg.src
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autocov 8. COMMAND REFERENCE

Library

auto

Purpose

Computes specified autocovariances for each column of a matrix.

Format

a = autocov(x ,f ,l);

Input

x N ×K matrix. Autocovariances will be computed for each column
separately. x is assumed to have 0 mean.

f scalar, in range [0, rows(x )−1], denoting the first autocovariance to
compute.

l scalar, in range [0, rows(x )−1], denoting the last autocovariance to
compute. It must be that f ≤ l; if l = 0 and f = 0, then l is set to
rows(x )−1 and all autocovariances are computed. If l = 0 and f < 0,
then only the 0th order autocovariance is computed (this equals x′x).

Output

a GxK matrix, where G = l − f + 1, containing the autocovariances of
order f , f +1, ..., l for each of the columns of x .

Remarks

The 0th autocovariance is just the variance of the variable. The divisor for each
autocovariance is the number of elements involved in its computation. Thus, the pth

order cross product is divided by N − P, where N = rows(x ), to obtain the pth order
autocovariance.

The data are assumed to have 0 mean. Thus, use

x = x - meanc(x)’;

prior to the use of this function if mean is not 0.

Source

autoreg.src
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8. COMMAND REFERENCE autoreg

Library

auto

Purpose

Estimates coefficients of a regression model with autoregressive errors of any specified
order.

Format

{ coefs,vcb,phi ,vcphi ,sigsq ,acov ,acor } =
autoreg(dataset ,depvar ,indvars,lagvars,order)

Input

dataset string, name of GAUSS data set
– or –

N ×K matrix, data

.

depvar string, the name of the dependent variable
– or –

scalar, the index of the dependent variable.

If dataset is a matrix and if variable names have been provided using
altnam, then depvar may be a string or character variable containing

a variable label.

indvars K × 1 character vector, names of the independent variables
– or –

K × 1 numeric vector, indices of the independent variables.

indvars can include repeated entries of the independent variables and the
dependent variable as long as the corresponding entries in lagvars are
lagged uniquely.

If dataset is a matrix and if variable names have been provided using
altnam, then indvars may be a character vector containing variable

labels.

lagvars K × 1 vector, the number of periods to lag the variables in indvars. If
there are no lagged variables, set to scalar 0.

The variables in indvars will be lagged the number of periods indicated
in the corresponding entries in lagvars. indvars may contain the
dependent variable in one of its columns as long as the corresponding
entry in lagvars is not 0; also, the independent variables can be repeated
if the corresponding entries in lagvars are unique.
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autoreg 8. COMMAND REFERENCE

order scalar, order of the autoregressive process; must be greater than 0 and
less than the number of observations.

Output

coefs K × 1 vector, estimated regression coefficients

vcb K ×K matrix, covariance matrix of estimated regression coefficients

phi Lx1 vector, lag coefficients

vcphi LxL matrix, covariance matrix of phi

sigsq scalar, variance of white noise error

acov (L+1)x1 vector, autocovariances

acor (L+1)x1 vector, autocorrelations

Globals

arinit scalar. If 1, only initial estimates will be computed. Default = 0.

ariter scalar.

0 Nothing will be printed by autoreg.

1 Results will be printed at end of iterations.

2 Results will be printed at all iterations.

Default = 2.

altnam K × 1 vector, alternate names for variables when a matrix is passed to
autoreg. These names will be used in place of the names set by autoreg
(X1, X2, ...). When a data matrix is passed to autoreg and the user is
selecting from that matrix, altnam, if used, must contain names for
the original matrix.

con scalar integer. If 1, constant will be used in model. Default = 1.

header string, specifies the format for the output header. header can contain
zero or more of the following characters:

t print title (see title)
l bracket title with lines
d print date and time
v print procedure name and version number
f print file name being analyzed

Example:

48



Com
m

and Reference

8. COMMAND REFERENCE autoreg

__header = "tld";

If header == “”, no header is printed. Default = “tldvf”.

output scalar, if nonzero, results are printed to screen. Under UNIX, default =
1; under DOS, default = 2.

row scalar. Specifies how many rows of the data set will be read per iteration
of the read loop. By default, the number of rows to be read will be
calculated by autoreg.

rowfac scalar, “row factor”. If autoreg fails due to insufficient memory while
attempting to read a GAUSS data set, rowfac may be set to some
value between 0 and 1 to read a proportion of the original number of
rows of the GAUSS data set. For example, setting

__rowfac = 0.8;

causes GAUSS to read in 80% of the rows of the GAUSS data set that
were read when the failure due to insufficient memory occurred. Default
= 1.

rowfac has an effect only when row = 0.

Default = 1.

title string, a title to be printed at the top of the output header (see
header). By default, no title is printed ( title = “”).

tol scalar, convergence tolerance. Default = 1e−5.

vpad scalar. If dataset is a matrix in memory, the variable names are
automatically created by autoreg. Two types of names can be created:

0 Variable names are not padded to give them equal length. For
example, X1, X2 ... X10, X11, ....

1 Variable names are padded with zeros to give them an equal
number of characters. For example, X01, X02 ... X10, X11, ....
This is useful if you want the variable names to sort properly.

Default = 1.

Global Output

arvsig scalar, variance of sigsq (variance of the variance of white noise error).

archisq scalar, −2 ∗ log-likelihood.

artobs scalar, number of observations.
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arrsq scalar, explained variance.

Remarks

This program will only handle data sets that fit in memory.

All autoregressive parameters are estimated up to the specified lag. You cannot
estimate only the first and fourth lags, for instance.

The algorithm will fail if the model is not stationary at the estimated parameters.
Thus, in that sense it automatically tests for stationarity.

Source

autoreg.src
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8. COMMAND REFERENCE autoset

Library

auto

Purpose

Initializes autoreg global variables to default values.

Format

autoset;

Input

None

Output

None

Remarks

Putting this instruction at the top of all programs that invoke autoreg is generally
good practice. This will prevent globals from being inappropriately defined when a
program is run either several times or after another program that also calls autoreg.

autoset calls gausset.

Source

autoreg.src
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coeffprt 8. COMMAND REFERENCE

Library

varma

Purpose

Print the coefficient estimates and standard errors from an ecm or varmax call.

Format

coeffprt(coeffs,x ,xnames,ynames,p,q ,ecmflag);

Input

coeffs compact matrix created using vput. Read it using vread. It contains:

phi p ∗ (L× L) matrix of AR coefficient estimates stacked in the
order AR(1), ..., AR(p)

phi se p ∗ (L× L) matrix of AR standard errors stacked in the order
AR(1), ..., AR(p)

theta q ∗ (L× L) matrix of MA coefficient estimates stacked in the
order MA(1), ...,MA(q)

theta se q ∗ (L× L) matrix of MA standard errors stacked in the order
MA(1), ...,MA(q)

beta L ×K matrix of x coefficient estimates

beta se L ×K matrix of x coefficient standard errors stacked in the
order MA(1), ...,MA(q)

x T ×K matrix of independent variables or scalar, equals zero if there are
no independent variables

xnames K × 1 vector of names for the x matrix variables

ynames L× 1 vector of names for the dependent variables in y

p scalar, order of the AR process

q scalar, order of the MA process

ecmflag scalar, 1 if an ecm model was estimated, 0 otherwise

Output

None
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8. COMMAND REFERENCE coeffprt

Globals

output, vm output

vm output is either a scalar or a 6× 1 vector. Set vm output = 0 to suppress all
printing from the ecm and varmax estimations. Set vm output > 0 to print all ecm
and varmax output.

Define vm output as a 6× 1 vector to control the printing of various parts of ecm
and varmax output.

1. Set element [1] of vm output to a non-zero value to print the model’s
header

2. Set element [4] of vm output to a non-zero value to print the
estimated coefficients and their standard errors
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corm 8. COMMAND REFERENCE

Library

varma

Purpose

Prints, with labels, the correlation matrix of parameters for univariate models.

Format

corm(covb,names);

Input

covb K ×K matrix, covariances of estimated parameters

names K × 1 character vector, names of the parameters

Output

none

Globals

none

Source

varma.src
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8. COMMAND REFERENCE covm

Library

varma

Purpose

Prints, with labels, the covariance matrix of parameters for univariate models.

Format

covm(covb,names);

Input

covb K ×K matrix, covariances of estimated parameters

names K × 1 character vector, names of the parameters

Output

none

Globals

none

Source

varma.src
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ecm 8. COMMAND REFERENCE

Library

varma

Purpose

Calculates and returns parameter estimates for an error correction model.

Format

{ A,B ,va,coeffs,vc,covb,res,statret ,retc } =
ecm(dataset ,depvars,indvars,ynames,xnames,p,r ,vctype)

Input

dataset string, name of dataset.

If this is a null string, , the procedure assumes that the actual data has
been passed in the depvar and indvars arguments.

depvars dependent variables.

1. If dataset is a null string, “”, this is interpreted as a T × L
matrix, the dependent variables.

2. If dataset contains the name of a dataset, this is interpreted as:
L × 1 character vector, names of dependent variables in the
dataset

– or –

L × 1 numeric vector, indices of dependent variables in the
dataset.

These can be any subset of the variables in the dataset, and
can be in any order.

NOTE: Each column must be ordered as y1, y2, ..., yT . The top row is the
first observation and the last row is the most current observation.

indvars independent variables.

1. Enter a 0 if there are no independent variables.

2. If dataset is a null string, , this is interpreted as a T ×K
matrix, the independent variables

3. If dataset contains the name of a dataset, this is interpreted as:
K × 1 character vector, names of independent variables in the
dataset.

56



Com
m

and Reference

8. COMMAND REFERENCE ecm

– or –

K × 1 numeric vector, indices of independent variables in the
dataset.

These can be any subset of the variables in the dataset, and
can be in any order.

NOTE: Each column must be ordered as x1, x2, ..., xT. The top row is
the first observation and the last row is the most current observation.

ynames L× 1 character matrix of names for the variables in depvars, or scalar 0.
GAUSS will supply variable names Y 1, ..., Y L if 0 is entered.

p scalar, order of AR process.

r scalar, number of cointegrating relations. Set to -1 to have GAUSS
estimate this value.

vcType scalar, set to 1 for ML covariance matrix of parameters set to 2 for QML
covariance matrix of parameters

Output

A L× r matrix of coefficients, such that AB = Π (see remarks below)

B r × L matrix, eigenvectors spanning the cointegrating space of dimension
r

va r × 1 vector, eigenvalues

coeffs compact matrix created using vput. Read it using vread. It contains:

Pi L× L matrix of cointegration coefficients

Note that Π is a reserved word in GAUSS. Users will need to
assign this to a different variable name.

Pi se L× L matrix of corresponding standard errors

phi p ∗ (L × L) matrix of AR coefficient estimates stacked in the
order AR(1), ..., AR(p)

phi se p ∗ (L × L) matrix of AR standard errors stacked in the order
AR(1), ..., AR(p)

vc L× L matrix, covariance matrix of residuals

covb Q× Q matrix of estimated parameters where Q is the number of
estimated parameters. The parameters are in the row-major order: Π,
AR(1) to AR(p), beta (if x variables were present in the estimation), and
the constants.
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res T × L matrix, residuals

statret compact matrix created using vput. Read it using vread. It contains:

ss L × 2 matrix, the sum of squares for Y in column one and the
sum of squared error in column two

info Lx4 matrix

row one - the likelihood value

row two - the Akaike Information Criterion

row three - the Schwarz Bayesian Information Criterion

row four - the Likelihood Ratio Statistic

arroots p × 1 vector of AR roots, possibly complex

maroots q × 1 vector of MA roots, possibly complex

acfm L × (p ∗ L) matrix, the autocorrelation function The first L
columns are the lag 1 ACF, The last L columns are the lag p
ACF.

pacfm L × (p ∗ L) matrix, the partial autocorrelation function, only
computed if a univariate model is estimated. The first L
columns are the lag 1 ACF, The last L columns are the lag p
ACF.

portman vm lags−(p+ q)× 3 matrix of portmanteau statistics for the
multivariate model and Ljung-Box statistics for the univariate
model. The time period is in column one, the Qs
(portmanteau) statistic in column two and the p-value in
column three

retc 2× 1 vector, return code

first element of retc

0 normal convergence

1 forced exit

2 maximum number of iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 error with constraints

second element of retc

0 covariance matrix of parameters fails

1 ML covariance matrix computed
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2 QML covariance matrix

3 Cross-Product covariance matrix

Globals

vmcritl scalar, the significance levels defining p-values

vm DirTol scalar, convergence tolerance for gradient of estimated coefficients.
Default = 1e-5. When this criterion has been satisifed SQPSolve (the
iteration procedure beneath varma and ecm) will exit the iterations.

vm FeasibleTest scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined outside
inequality boundaries, then this test can be turned off.

vm IndEquations K × L matrix of zeros and ones. Used to set zero restrictions on
the x variables to be estimated. Only used if the number of equations,

vm L is greater than one. Elements set to one indicate the coefficients
to be estimated. If vm L = 1, all coefficients will be estimated. If

vm L > 1 and vm IndEquations is set to a missing value (the
default), all coefficients will be estimated.

vm Lagrange compact matrix created using vput. Contains the Lagrangean
coefficients for the constraints. They may be extracted with the vread
procedure using the following strings:

“lineq” linear equality constraints
“nlineq” nonlinear equality constraints
“linineq” linear inequality constraints
“nlinineq” nonlinear inequality constraints
“bounds” bounds

When an inequality or bounds constraint is active, its associated
Lagrangean is nonzero. The linear Lagrangeans preceed the nonlinear
Lagrangeans in the covariance matrices.

vm lags scalar, No. of lags over which ACF and Diagnostics are calculated.

vm MaxIters scalar, maximum number of iterations. Default = 1e+5. Termination
can be forced by pressing C on the keyboard

vm Output scalar or a 6× 1 matrix. Set vm output = 0 to suppress all printing
from the ecm and varmax estimations. Set vm output > 0 to print all
ecm and varmax output.

Set vm output to a 6× 1 vector to control the printing of various
parts of ecm and varmax output.
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1. Set element [1] of vm output to a non-zero value to print
the model’s header

2. Set element [2] of vm output to a non-zero value to print a
variety of unitroot tests, and, if a multivariate model,
cointegration tests from the unitroots procedure.

3. Set element [3] of vm output to a non-zero value to print
summary statistics for each estimated equation

4. Set element [4] of vm output to a non-zero value to print
the estimated coefficients and their standard errors

5. Set element [5] of vm output to a non-zero value to print
the roots of the AR and MA characteristic equations

6. Set element [6] of vm output to a non-zero value to print
the autocorrelation function and portmanteau statistics

vm PrintIters 1. Set vm PrintIters = 0 ( output is not equal to zero)
to print an Executing... message while starting values are
calculated for each dependent variable during the sqpsolve
operation.

2. Set vm PrintIters > 0 ( output is not equal to zero) to
print sqpsolve iteration information. This information includes
the value of the objective function and the gradient at each
estimated coefficient. It is useful in finding where and why
convergence might fail.

vm RandRadius scalar, if nonzero gives the radius of random search taken when the
STEPBT line search fails. If zero, no random search occurs and
SQPSolve returns with an error code. Default = .01.

vm scale scalar, scalar or an Lx1 vector, scales the time series. If scalar, all series
are multiplied by the value. If an Lx1 vector, each series is multiplied by
the corresponding element of ˙vm˙scale. Default = 4 / standard deviation
(found to be best by experimentation).

vm SetConstraints scalar, set to a nonzero value to impose stationarity and
invertibility by constraining roots of the AR and MA characteristic
equations to be outside the unit circle. Set to zero (the default) to
estimate an unconstrained model.

vm Start (Q− L) × 1 vector of starting values, in the row major order, AR(1) to
AR(p), MA(1) to MA(q), beta, and the covariance matrix of these
parameters.

vm TrustRadius scalar, gives the radius of the trust region if nonzero, i.e., the
maximum amount in absolute value for the direction vector at each
iteration. If zero, the trust region method inactivated.
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Remarks

Errors are assumed to be distributed N(0,Q).

Source

varma.src
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Library

varma

Purpose

Computes and prints ACF and PACF functions and portmanteau test statistics.

Format

{ acfm,pacfm,Qs } = identify(p,q ,res);

Input

p AR order

q MA order

res T × L matrix of residuals

Output

acfm ( vm lags*L)× 1 vector of univariate scalar autocorrelations, in order
from lag(1) to lag( vm lags)

– or –

L×( vm lags*L) matrix, the autocorrelation function matrices in order
from lag(1) to lag( vm lags)

pacfm vm lags ×1 vector of univariate scalar partial autocorrelations, in
order from lag(1) to lag( vm lags)

Qs vm lags ×1 vector of Ljung-Box statistics, in order from lag(1) to
lag( vm lags), for the univariate case

– or –

vm lags ×1 vector of Qs Portmanteau statistics (see remarks below) in
order from lag(1) to lag( vm lags), for the multivariate case

Globals

vm output is either a scalar or a 6× 1 vector. Set vm output = 0 to suppress all
printing from the ecm and varmax estimations. Set vm output > 0 to print all ecm
and varmax output.

Define vm output as a 6× 1 vector to control the printing of various parts of ecm
and varmax output.
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1. Set element [1] of vm output to a non-zero value to print
the model’s header

2. Set element [6] of vm output to a non-zero value to print
the autocorrelation function and portmanteau statistics

vm lags The vm lags global variable sets the number of lags over which ACF,
PACF, and Portmanteau statistics are calculated. The default value for

vm lags is 12.

Remarks

The Qs multivariate portmanteau statistic is described in Reinsel (1993, p 133).

Qs = T 2
s∑

l=1

(T − l)−1
k∑

i=1

k∑

j=1

Cij(l)rji(−l)

= T 2
s∑

l=1

(T − l)−1tr{Cε(l)Σ̂−1Cε(−l)Σ̂−1}

= T 2
s∑

l=1

(T − l)−1tr{ρ̂ε(l)ρ̂ε(0)−1ρ̂ε(−l)ρ̂ε(0)−1}

Under the null hypothesis:

H0 : Yt is an ARMA(p, q) process

H1 : not H0

and assuming that s is large, the Qs statistic has approximately a χ2(L2(s− p− q))
distribution.

Source

varma.src
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Library

varma

Purpose

Finds an autocorrelation function matrix for multiple dependent variables

Format

x = macf(y ,lag);

Input

y T × L matrix of data

lag scalar, the lag for which an autocorrelation matrix is desired. Specify 0
to obtain the initial correlation

Output

x L× L matrix of autocorrelations, res and res(-lag)

Globals

None

Source

varma.src
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Library

varma

Purpose

Finds the Newey-West Covariance matrix

Format

x = nw(covb,resid);

Input

covb Q× Q matrix, covariance matrix for the AR parameters

resid T × L matrix of residuals

Output

x Q× Q matrix, Newey-West adjusted covariances.

Globals

vm nwtrunc sets the number of autocorrelations to use in calculating the
Newey-West correction (q in the Remarks section below). Setting vm nwtrunc = 0
causes GAUSS to use a truncation lag given by Newey and West, q = 4(T/100)2/9.

Remarks

The Newey-West correction is used to account for the effect of heteroskedasticity and
residual serial correlation on estimated parameter standard errors. The adjusted
parameter covariance matrix is (X ′X)−1Ω(X ′X)−1 where

Ω =
T∑

t=1

ε2
txtx

′
t +

q∑

j=1

[1− j

q + 1
]

T∑

t=j+1

(xtεtεt−jx
′
t−j + xt−jεt−jεtx

′
t) (8.1)

Source

varma.src
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Library

arima

Purpose

Computes partial autocorrelations for a univariate time series.

Format

a = pacf(y ,l ,d);

Input

y N × 1 vector, data.

l scalar, number of partial autocorrelations to compute.

d scalar, order of differencing.

Output

a l × 1 vector, partial autocorrelations.

Source

tsutil.src
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Library

varma

Purpose

Returns parameter estimates from ecm and varmax

Format

coeffs = paramconfig(p,q ,coeffs,se,x ,ecmflag);

Input

p scalar, order of the AR process

q scalar, order of the MA process

coeffs L ∗ (p + q + K + 1)× 1 vector of coefficient estimates in the order AR,
MA, x, Constant

se L ∗ (p + q + K + 1)× 1 vector of standard error estimates in the order
AR, MA, x, Constant

x T ×K matrix of explanatory variables

ecmflag scalar, equals one if an ECM model was estimated, zero otherwise.

Output

coeffs compact matrix created using vput. Read it using vread. It contains:

pi L× L matrix, the impact matrix. Only returned if an ecm
model was estimated.

Note that Π is a reserved word in GAUSS. Users will need to
assign this to a different variable name.

pi se L× L matrix of impact coefficient standard errors. Only
returned if an ecm model was estimated.

phi p ∗ (L × L) matrix of AR coefficient estimates stacked in the
order AR(1), ..., AR(p)

phi se p ∗ (L × L) matrix of AR standard errors stacked in the order
AR(1), ..., AR(p)

theta q*(L× L) matrix of MA coefficient estimates stacked in the
order MA(1), ...,MA(q). Only returned if a varmax model was
estimated.
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theta se q*(L × L) matrix of MA standard errors stacked in the order
MA(1), ...,MA(q). Only returned if a varmax model was
estimated.

beta L ×K matrix of x coefficient estimates. Only returned if a
varmax model was estimated.

beta se L ×K matrix of x coefficient standard errors. Only returned if
a varmax model was estimated.

Globals

None

Source

varma.src
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Library

arima

Purpose

Simulate ARMA time series process.

Format

y = simarma(b,p,q ,const ,n,k ,std ,seed);

Input

b K × 1 vector, coefficient values for theoretical ARMA process.

p scalar, the autoregressive order.

q scalar, the moving average order.

const scalar, value of the constant term.
– or –

N ×M matrix, fixed regressor matrix.

n scalar, the number of observations to generate.

k scalar, the number of replications to generate.

std scalar, the standard deviation of the error process.

seed scalar, the value of the seed. If seed = 0, then rndn is used, otherwise
rndns is used.

Output

y N ×K matrix, simulated ARMA process. Each column represents an
independent realization of a univariate time series.

Remarks

simarma only simulates times series which are generated by normally distributed errors.

If your simulation is large or if your available memory is limited, make several calls to
simarma during a simulation. Keep in mind that there is some overhead computing the
starting values with the desired multivariate distribution.

If the process you are simulating lies on or near a boundary, try generating a longer
time series, then trim the beginning observations. In general, simarma should give
reasonable results since the starting values are normalized to have required multivariate
normal distribution.

Source

simarma.src
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Library

varma

Purpose

Return summary statistics from the ecm and varmax procedures

Format

{ ss,info } = sumstat(res,y ,f ,ynames,ecmflag);

Input

res T × L matrix, residuals

y T × L matrix of dependent variables

f value of the maximized likelihood function.

ynames L× 1 character matrix of dependent variable names

ecmflag scalar, equals one if an ecm model was estimated, zero otherwise.

Output

ss 2× L matrix, sum of squares of y in row 1 and sum of squared errors in
row 2.

info 4× L matrix of information criteria

row 1 the value of the likelihood function

row 2 the Akaike Information Criterion (AIC)

row 3 the Schwarz Bayesian Information Criterion (BIC)

row 4 the likelihood ratio statistic (LRS)

Globals

None

Source

varma.src
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Library

arima

Purpose

Compute the theoretical autocovariances given the coefficient values from an
ARMA(p,q) process.

Format

g = tautocov(b,p,q);

Input

b K × 1 vector, parameter coefficients.

p scalar, the autoregressive order.

q scalar, the moving average order.

Output

g [Max(p,q)+1]x1 vector, theoretical autocovariances.

Remarks

The theoretical autocorrelations are found by dividing g by g [1].

Source

tautocov.src
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Library

tscs

Purpose

Estimates the parameters of the pooled time-series cross-section regression model.

Format

{ bdv ,vcdv ,mdv ,bec,vcec,mec } = tscs(dataset ,depvar ,indvars,grp)

Input

dataset string, name of the input GAUSS data set.

depvar string, name of the dependent (endogenous) variable
– or –

scalar, index of the dependent (endogenous) variable.

indvars K × 1 character vector, names of the independent (exogenous) variables
– or –

K × 1 numeric vector, indices of the independent (exogenous) variables.

grp string, name of the group variable
– or –

scalar, index of the group variable.

Output

bdv K × 1 vector, regression coefficients from the dummy effects model
(excluding individual-variables regression model).

vcdv K ×K matrix, variance-covariance matrix of the dummy variables
regression model.

mdv (K+1)x(K+1) matrix, moment matrix of the transformed variables
(including a constant) from the dummy variables regression model.

bec K × 1 vector, regression coefficients from the random effects regression
model.

vcec K ×K matrix, variance-covariance matrix of the random effects
regression model.

mec (K+1)x(K+1) matrix, moment matrix of the transformed variables
(including a constant) from the random effects regression model.
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Globals

tsmodel scalar, controls the type of models to be estimated. Possible values are:

0 all models are estimated.

1 the random effects (error components model) is not estimated.

Default = 0.

tsstnd scalar. If 1, print standardized estimates of regression parameters.
Default = 1.

tsmeth scalar. Possible values are:

0 Uses the fixed effects estimates of the individual-specific effects
to estimate the variance components of the random effects
model. Use this option if there are a different number of
observations for each cross-sectional unit. The chi-squared test
for the individual error components equal to 0 may not be
correct if there are a different number of observations for each
individual.

1 Uses regression on group means to estimate variance
components.

Default = 0.

tsise scalar. If 1, the individual-specific effects are not printed. Default = 0.

tsmnsfn string, the name of a file in which to save the group means of the data
set. By default, tsmnsfn = “”, so the means are not saved.

header string, specifies the format for the output header. header can contain
zero or more of the following characters:

t print title (see title)
l bracket title with lines
d print date and time
v print procedure name and version number
f print file name being analyzed

Example:

__header = "tld";

If header == “”, no header is printed. Default = “tldvf”.

output scalar, if nonzero, results are printed to screen. Under UNIX, default =
1; under DOS, default = 2.
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row scalar. Specifies how many rows of the data set are to be read per
iteration of the read loop. By default, the number of rows to be read is
calculated by tscs.

rowfac scalar, “row factor”. If tscs fails due to insufficient memory while
attempting to read a GAUSS data set, rowfac may be set to some
value between 0 and 1 to read a proportion of the original number of
rows of the GAUSS data set. For example, setting

__rowfac = 0.8;

causes GAUSS to read in 80% of the rows of the GAUSS data set that
were read when the failure due to insufficient memory occurred.

rowfac has an effect only when row = 0.

Default = 1.

title string, a title to be printed at the top of the output header (see
header). By default, no title is printed ( title = “”).

Remarks

The data must be contained in a GAUSS data set cross-sectional unit by cross-sectional
unit, with one variable containing an index for the units. From each cross-sectional unit
all observations must be grouped together. For example, for the first cross-sectional
unit there may be 10 rows in the data set, for the second cross-sectional unit there may
be another 10 rows, and so on. Each row in the data set contains measurements on the
endogenous and exogenous variables measured for each observation along with the
index identifying the cross-sectional unit.

The index variable must be a series of integers. While all observations for each
cross-sectional unit must be grouped together, they do not have to be sorted according
to the index.

Example

The following example is taken from the program tscs.e, located in the examples

subdirectory. The program uses the sample data in jdata.dat.

library tscs;

#include tscs.ext;

tscsset;

lhs = { x2 };

exog = { x3 };

inname = "jdata";

output file = jdata.out reset;

grp = { x1 };

_tsmeth = 1;

call tscs(inname,lhs,exog,grp);

output off;
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Source

tscs.src
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Library

tscs

Purpose

Initializes TSCS global variables to default values.

Format

tscsset;

Input

None

Output

None

Remarks

Putting this instruction at the top of all programs that invoke tscs is generally good
practice. This prevents globals from being inappropriately defined when a program is
run either several times or after another program that also calls tscs.

tscsset calls gausset.

Source

tscs.src
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Library

arima

Purpose

Estimate forecasts using estimation results obtained from arima.

Format

f = tsforecast(b,y ,p,d ,q ,const ,e,h);

Input

b K × 1 vector, estimated coefficients.

y N × 1 vector, data.

p scalar, the autoregressive order.

d scalar, the order of differencing.

q scalar, the moving average order.

const scalar, if 1, a constant is estimated, 0 otherwise.

e N × 1 vector, residuals reported by arima program.

h scalar, the number of step-ahead forecasts to compute.

Output

f h× 3 matrix,

[.,1] Lower forecast confidence bounds.

[.,2] Forecasts.

[.,3] Upper forecast confidence bounds.

Globals

amcritl scalar, confidence level to compute for forecast

confidence bounds. Default = 0.95.

output scalar

0 Nothing is printed.
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1 Forecasts, confidence bounds and forecast standard errors are
printed.

Remarks

Data must be transformed before being sent to tsforecast.

tsforecast does not compute forecasts for models with fixed regressors.

Source

forecast.src
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Library

varma

Purpose

Calls and prints unit root and cointegration tests

Format

unitroots(y ,ynames)

Input

y T × L matrix of dependent variables

ynames L× 1 character vector of dependent variable names

Globals

vm output is either a scalar or a 6× 1 vector. Set vm output = 0 to suppress all
printing from the ecm and varmax estimations. Set vm output > 0 to print all ecm
and varmax output.

Define vm output as a 6× 1 vector to control the printing of various parts of ecm
and varmax output.

1. Set element [1] of vm output to a non-zero value to print the model’s
header

2. Set element [2] of vm output to a non-zero value to print a variety of
unitroot tests, and, if a multivariate model, cointegration tests from the
unitroots procedure.

Remarks

unitroots calls the unit root and cointegration procedures, vmadf, vmcadf, vmpp, and
vmsj. These use the global variable vm adforder to define the number of AR lags to
include in the unit root and ECM cointegration specifications.

Source

varma.src
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Library

varma

Purpose

Sets global variables in the VARMA library to their default values.

Format

varmaset;

Input

None

Output

None

Remarks

Putting this instruction at the top of all programs that call a VARMA library
procedure is generally good practice. This will prevent globals from being
inappropriately defined when a program is run either several times or after another
program that also calls one of the VARMA procedures.

Source

varma.src
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Library

varma

Purpose

Computes exact maximum likelihood parameter estimates for a varmax model.

Format

{ coeffs,res,vc,ynames,xnames,covb,statret ,retc } =
varmax(dataset ,depvars,indvars,ynames,xnames,p,d ,q ,vctype)

Input

dataset string, name of dataset.

If this is a null string, , the procedure assumes that the actual data has
been passed in the depvar and indvars arguments.

depvars dependent variables.

1. If dataset is a null string, , this is interpreted as:

T × L matrix, the dependent variables

2. If dataset contains the name of a dataset, this is interpreted as:
L× 1 character vector, names of dependent variables in the
dataset

– or –

L× 1 numeric vector, indices of dependent variables in the
dataset

These can be any subset of the variables in the dataset, and
can be in any order.

NOTE: Each column must be ordered as y1, y2, ..., yT . The top row is the
first observation and the last row is the most current observation.

indvars independent variables.

1. Enter a 0 if there are no independent variables. This will result
in a vector ARMA model being estimated.

2. If dataset is a null string, , this is interpreted as a

T ×K matrix, the independent variables

3. If dataset contains the name of a dataset, this is interpreted as
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K × 1 character vector, names of independent variables
in the dataset

K × 1 numeric vector, indices of independent variables
in the dataset.

These can be any subset of the variables in the dataset,
and can be in any order.

NOTE: Each column must be ordered as x1, x2, ..., xT. The top row is
the first observation and the last row is the most current observation.

ynames L× 1 character matrix

Names for the variables in depvars, or scalar 0. GAUSS will supply
variable names Y1,...,YL if 0 is entered.

xnames K × 1 character matrix

Names for the variables in indvars, or scalar 0. GAUSS will supply
variable names X1,...,Xk if 0 is entered.

p scalar, number of AR matrices to be estimated.

d scalar, order of differencing to achieve stationarity

q scalar, number of MA matrices to be estimated.

vcType scalar, set to 1 for ML covariance matrix of parameters set to 2 for QML
covariance matrix of parameters

Output

coeffs compact matrix created using vput. Read it using vread. It contains:

phi p ∗ (L× L) matrix of AR coefficient estimates stacked in the
order AR(1), ..., AR(p)

phi se p ∗ (L× L) matrix of AR standard errors stacked in the order
AR(1), ..., AR(p)

theta q*(L × L) matrix of MA coefficient estimates stacked in the
order MA(1), ...,MA(q).

theta se q*(L × L) matrix of MA standard errors stacked in the order
MA(1), ...,MA(q).

beta L ×K matrix of x coefficient estimates.

beta se L ×K matrix of x coefficient standard errors.

res T × L matrix, residuals

vc L× L matrix, residual covariance matrix
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ynames L× 1 character matrix of names for the variables in depvars, or scalar 0.
GAUSS will supply variable names Y 1, ..., Y L if 0 is entered.

xnames (p+ q + K)× 1 character matrix of corresponding variable names, in the
order AR(p), MA(q), indvars.

covb Q× Q matrix of estimated parameters. The parameters are in the
row-major order: AR(1) to AR(p), MA(1) to MA(q), beta (if x variables
were present in the estimation), and the constants.

statret compact matrix created using vput. Read it using vread. It contains:

ss L× 2 matrix, the sum of squares for Y in column one and the
sum of squared error in column two

info Lx4 matrix

row one - the likelihood value

row two - the Akaike Information Criterion

row three - the Schwarz Bayesian Information Criterion

row four - the Likelihood Ratio Statistic

arroots p× 1 vector of AR roots, possibly complex

maroots q × 1 vector of MA roots, possibly complex

acfm L× (p ∗ L) matrix, the autocorrelation function The first L
columns are the lag 1 ACF, The last L columns are the lag p
ACF.

pacfm L× (p ∗ L) matrix, the partial autocorrelation function, only
returned if a univariate model is estimated. The first L
columns are the lag 1 ACF, The last L columns are the lag p
ACF.

portman vm lags−(p+ q)× 3 matrix of portmanteau statistics for the
multivariate model and Ljung-Box statistics for the univariate
model. The time period is in column one, the Qs
(portmanteau) statistic in column two and the p-value in
column three

retc 2× 1 vector, return code

first element of retc

0 normal convergence

1 forced exit

2 maximum number of iterations exceeded

3 function calculation failed

4 gradient calculation failed
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5 Hessian calculation failed

6 line search failed

7 error with constraints

second element of retc

0 covariance matrix of parameters fails

1 ML covariance matrix computed

2 QML covariance matrix

3 Cross-Product covariance matrix

Globals

output 1. Set output = 0 to suppress all printing from the sqpsolve
procedure.

2. Set output > 0 to print sqpsolve results.

vm A M ×K matrix, linear equality constraint coefficients

vm adforder scalar, number of AR lags in the ADF test statistic

vm B M × 1 vector, linear equality constraint constants These globals are used
to specify linear equality constraints of the following type: vm A * X
= vm B where X is the K × 1 unknown parameter vector.

vm Bounds K × 2 matrix, bounds on parameters. The first column contains the
lower bounds, and the second column the upper bounds. If the bounds
for all the coefficients are the same, a 1x2 matrix may be used. Default =
-1e256 1e256

vm C M ×K matrix, linear inequality constraint coefficients

vmcritl scalar, the significance levels defining p-values

vm D M × 1 vector, linear inequality constraint constants These globals are
used to specify linear inequality constraints of the following type:

vm C * X >= vm D where X is the K × 1 unknown parameter
vector.

vm DirTol scalar, convergence tolerance for gradient of estimated coefficients.
Default = 1e-5. When this criterion has been satisifed SQPSolve (the
iteration procedure beneath varma and ecm) will exit the iterations.

vm FeasibleTest scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined outside
inequality boundaries, then this test can be turned off.
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vm IndEquations K × L matrix of zeros and ones. Used to set zero restrictions on
the x variables to be estimated. Only used if the number of equations,

vm L is greater than one. Elements set to one indicate the coefficients
to be estimated. If vm L = 1, all coefficients will be estimated. If

vm L > 1 and vm IndEquations is set to a missing value (the
default), all coefficients will be estimated.

vm Lagrange compact matrix created using vput. Contains the Lagrangean
coefficients for the constraints. They may be extracted with the vread
procedure using the following strings:

“lineq” linear equality constraints
“nlineq” nonlinear equality constraints
“linineq” linear inequality constraints
“nlinineq” nonlinear inequality constraints
“bounds” bounds

When an inequality or bounds constraint is active, its associated
Lagrangean is nonzero. The linear Lagrangeans preceed the nonlinear
Lagrangeans in the covariance matrices.

vm lags scalar, No. of lags over which ACF and Diagnostics are calculated.

vm MaxIters scalar, maximum number of iterations. Default = 1e+5. Termination
can be forced by pressing C on the keyboard

vm Output scalar or a 6× 1 matrix. Set vm output = 0 to suppress all printing
from the ecm and varmax estimations. Set vm output > 0 to print all
ecm and varmax output.

Set vm output to a 6× 1 vector to control the printing of various
parts of ecm and varmax output.

1. Set element [1] of vm output to a non-zero value to print
the model’s header

2. Set element [2] of vm output to a non-zero value to print a
variety of unitroot tests, and, if a multivariate model,
cointegration tests from the unitroots procedure.

3. Set element [3] of vm output to a non-zero value to print
summary statistics for each estimated equation

4. Set element [4] of vm output to a non-zero value to print
the estimated coefficients and their standard errors

5. Set element [5] of vm output to a non-zero value to print
the roots of the AR and MA characteristic equations

6. Set element [6] of vm output to a non-zero value to print
the autocorrelation function and portmanteau statistics
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vm PrintIters 1. Set vm PrintIters = 0 ( output is not equal to zero)
to print an Executing... message while starting values are
calculated for each dependent variable during the sqpsolve
operation.

2. Set vm PrintIters > 0 ( output is not equal to zero) to
print sqpsolve iteration information. This information includes
the value of the objective function and the gradient at each
estimated coefficient. It is useful in finding where and why
convergence might fail.

vm RandRadius scalar, if nonzero gives the radius of random search taken when the
STEPBT line search fails. If zero, no random search occurs and
SQPSolve returns with an error code. Default = .01.

vm scale scalar, scalar or an Lx1 vector, scales the time series. If scalar, all series
are multiplied by the value. If an Lx1 vector, each series is multiplied by
the corresponding element of ˙vm˙scale. Default = 4 / standard deviation
(found to be best by experimentation).

vm SetConstraints scalar, set to a nonzero value to impose stationarity and
invertibility by constraining roots of the AR and MA characteristic
equations to be outside the unit circle. Set to zero (the default) to
estimate an unconstrained model.

vm Start (Q− L) × 1 vector of starting values, in the row major order, AR(1) to
AR(p), MA(1) to MA(q), beta, and the covariance matrix of these
parameters.

vm TrustRadius scalar, gives the radius of the trust region if nonzero, i.e., the
maximum amount in absolute value for the direction vector at each
iteration. If zero, the trust region method inactivated.

Remarks

Errors are assumed to be distributed N(0,Q). The estimation procedure assumes that
all series are stationary. Setting vm SetConstraints nonzero enforces stationarity, by
constraining the roots of the characteristic equation

1− Φ1z − Φ2z
2 − · · · − Φpz

p

to be outside the unit circle (where Φi, i = 1, ..., p are the AR coefficient matrices).

If any estimated parameters in the coefficient matrices are on a constraint boundary,
the Lagrangeans associated with these parameters will be nonzero. These Lagrangeans
are stored in the global vm Lagrange. Standard errors are generally not available for
parameters on constraint boundaries.

Source

varma.src
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8. COMMAND REFERENCE vmadf

Library

varma

Purpose

Compute the Augmented Dickey Fuller statistic, allowing for deterministic polynomial
time trends of an arbitrary order.

Format

{ alpha,tstat ,vmztcrit } = vmadf(x ,p,l);

Input

x matrix, time series variable

p scalar, order of the time-polynomial to include in the ADF regression.
Set p = −1 for no deterministic part.

l scalar, number of lagged changes of x to include in the fitted regression.

Output

alpha estimate of the autoregressive parmaeter;

tstat ADF t-statistic

vmztcrit (6 x 1) vector of critical values for the adf-t-statistic: 1% 5% 10% 90%
95% 99%

Source

varma.src
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Library

varma

Purpose

Compute the Augmented Dickey Fuller statistic applied to the residuals of a
cointegrating regression, allowing for deterministic polynomial time trends of an
arbitrary order.

Format

{ alpha,tstat ,vmrztcrit} = vmcadf(y ,x ,p,l);

Input

y dependent variable

x explanatory variables

p order of the time-polynomial to include in the cointegrating regression.
Set p = −1 for no deterministic part.

l number of lagged changes of the residuals to include in the fitted
regression.

Output

alpha estimate of the autoregressive parmaeter;

tstat ADF t-statistic

vmrztcrit 6× 1 vector of critical values for the adf-t-statistic: 1% 5% 10% 90% 95%
99%

Source

varma.src
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8. COMMAND REFERENCE vmc sja

Library

varma

Purpose

Returns critical values for the Johansen Maximum Eigenvalue statistic. Computed
using 8000 iterations and 500 observations.

Format

c-values = vmc sja(n,p);

Input

n scalar, number of variables in the system

p scalar, order of the time-polynomial in the fitted regression

Output

c-values A

Source

varma.src
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Library

varma

Purpose

Returns critical values for the Johansen Trace statistic.

Format

c-values = vmc sjt(n,p);

Input

n scalar, number of variables in the system

p scalar, order of the time-polynomial in the fitted regression

Output

vmrztcrit 6x1 vector of critical values for the adf-t-statistic: 1 5 10 90 95 99

Source

varma.src
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8. COMMAND REFERENCE vmdetrend

Library

varma

Purpose

Returns residuals from a regression of data on a time trend polynomial

Format

res = vmdetrend(y,p);

Input

y T × L matrix of data

p scalar. If p = −1 returns the data. Use p = 0 for demeaning; p = 1 for
regression against a constant term and trend; p > 1 for a higher order
polynomial time trend.

Output

res T × L matrix of residuals

Source

varma.src
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Library

varma

Purpose

Differences matrices

Format

y = vmdiff(x,d);

Input

x T ×K matrix

d scalar, the number of periods over which differencing occurs

Output

y (T − d)×K matrix, the differenced data.

Source

varma.src
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8. COMMAND REFERENCE vmforecast

Library

varma

Purpose

Calculates forecasts from a VARMAX model

Format

f = vmforecast(coeffs,p,q ,y ,x ,res,t);

Input

coeffs compact matrix created using vput. Read it using vread. It contains:

phi p ∗ (L × L) matrix of AR coefficient estimates stacked in the
order AR(1), ..., AR(p)

phi se p ∗ (L × L) matrix of AR standard errors stacked in the order
AR(1), ..., AR(p)

theta q*(L× L) matrix of MA coefficient estimates stacked in the
order MA(1), ...,MA(q)

theta se q*(L× L) matrix of MA standard errors stacked in the order
MA(1), ...,MA(q)

beta L×K matrix of x coefficient estimates

beta se L×K matrix of x coefficient standard errors stacked in the
order MA(1), ...,MA(q)

b0 L× 1 matrix of intercept estimates

b0 se L× 1 matrix of intercept standard errors (missing values in
vm ver = 1,0,0.

p scalar, AR order

q scalar, MA order

y T × L matrix, the variables to be forecast

x t×K matrix of x variables covering only the forecast horizon, in the
order T + 1, ..., T + t or the scalar zero if there are no x variables.

res T × L matrix of residuals from the VARMA estimation

t scalar, the number of periods to forecast

Output
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f t× (L + 1) matrix. Column one contains the period forecast, The
remaining colums contain the forecast values.

Globals

None

Remarks

The varmax and ecm procedures estimate centered models and do not return
intercepts. However, vmforecast allows intercepts, so that it might be used with the
results of other estimation procedures.

Source

varma.src
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8. COMMAND REFERENCE vmpp

Library

varma

Purpose

Returns Phillips-Perron unit root test statistics and critical values

Format

{ ppb, ppt , pptcrit } = vmpp(y ,p);

Input

y T × 1 vector, a time series

p scalar, order of the time-polynomial to include in the regression. Set
p = −1 for no deterministic part, p = 0 for a constant term, and p = 1 for
a constant with trend.

Output

ppb scalar, estimate of the autoregressive parameter, the ρ coefficient below.

ppt scalar, the adjusted t-statistic for testing H0 : ρ = 1

pptcrit 6× 1 vector of critical values, vector of critical values for the adjusted t
statistic, in the order 1%, 5%, 10%, 90%, 95%, 99%.

Globals

vm nwtrunc sets the number of autocorrelations to use in calculating the Newey-West
correction (q in the Remarks section below. Setting vm nwtrunc = 0 causes GAUSS
to use a truncation lag given by Newey and West, q = 4(T/100)2/9.

Remarks

Phillips (1987) and Phillips and Perron (1988) test for unit roots by adjusting the OLS
estimate of an AR(1) coefficient for serial correlation in the OLS residuals. Three
specifications are considered, an AR(1) model without a drift, an AR(1) with a drift,
and an AR(1) model with a drift and linear trend:

Yt = ρYt−1 + εt

Yt = α+ ρYt−1 + εt

Yt = α+ δt+ ρYt−1 + εt
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The unit root null hypothesis is H0 : (ρ − 1) = 0.

Hamilton (1994, pp. 506-511) tests this hypothesis using two statistics that are analogs
of the Phillips and Perron (1988) Zα and Zt statistics. Hamilton’s statistics are based
on OLS estimation of the above equations. They allow an identical formula for each
statistic to be used for all three cases.

The vmpp procedure returns the Zt statistic as calculated by Hamilton and critical
values. Suppose any of the equations is estimated by OLS, returning ρ̂T and σ̂

ρ̂T
(the

OLS estimates of ρ and the standard error of ρ̂T respectively), tT = (ρ − 1)/σ̂
ρ̂T

(the

usual OLS t statistic for testing H0), ε̂t (the OLS residuals), and sT (the estimated
standard error of the regression).

Hamilton’s Zt statistic is:

Zt = (γ̂0/λ̂
2)

1
2 tT − {

1

2
(λ̂2 − γ̂0)/λ̂}{T (σ̂

ρ̂T
/sT )}

λ̂2 is an estimate of the asymptotic variance of the sample mean of εt. In the vmpp
procedure λ̂2 is estimated using the Newey-West (1987) estimator,

λ̂2 = γ̂0 + 2

q∑

j=1

[1− j/(q + 1)]γ̂j

where γ̂j = T−1
∑T
t=j+1 ε̂tε̂t−j are the sample autocovariances of εt.

A global variable, vm nwtrunc, sets the number of autocorrelations to use in
calculating the Newey-West correction (q in the above equation). The default setting,
vm nwtrunc = 0, causes GAUSS to use a truncation lag given by Newey and West,
q = 4(T/100)2/9.

Under the null hypothesis, the Zt statistics has the same asymptotic distribution as a
Dickey-Fuller statistic.

References

Hamilton, James D., (1994). Time Series Analysis, Princeton University Press

Newey, W.K. and West, K.D. (1987) “A Simple Positive Semi-Definite
Heteroskedasticity and Autocorrelation-Consistent Covariance Matrix,” Econometrica,
55, 703-708.

Source

varma.src

96



Com
m

and Reference

8. COMMAND REFERENCE vmroots

Purpose

Computes and prints the roots of the AR and MA characteristic equations.

Format

{ arroots, maroots } = vmroots(p,q ,coeffs);

Library

varma

Input

p scalar, AR order

q scalar, MA order

coeffs compact matrix created using vput. Read it using vread. The contents
used in vmroots are:

phi p ∗ (L × L) matrix of AR coefficient estimates stacked in the
order AR(1), ..., AR(p)

theta q ∗ (L × L) matrix of MA coefficient estimates stacked in the
order MA(1), ...,MA(q). Only returned if a varmax model was
estimated.

Output

arroots p× 1 vector of AR roots, possibly complex

maroots q × 1 vector of MA roots, possibly complex

Globals

vm output is either a scalar or a 6× 1 vector. Set vm output = 0 to suppress all
printing from the ecm and varmax estimations. Set vm output > 0 to print all ecm
and varmax output.

Define vm output as a 6× 1 vector to control the printing of various parts of ecm
and varmax output.

1. Set element [1] of vm output to a non-zero value to print the model’s
header

2. Set element [5] of vm output to a non-zero value to print the roots of
the AR and MA characteristic equations

Remarks

Calls the polymroot procedure.

Source

varma.src
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Library

varma

Purpose

Returns τ critical values for the Augmented Dickey- Fuller statistic, derived from the
residuals of a a cointegrating regression. Depends on p, the AR order in the fitted
regression, the number of observations, and the number of explanatory variables.

Format

c-values = vmrztcrit(nobs,n,p);

Input

nobs scalar, number of observations in the series.

n scalar, column dimension of x;

p scalar, order of the time-polynomial in the null hypothesis

Source

varma.src
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8. COMMAND REFERENCE vmsj

Library

varma

Purpose

Compute Johansen’s (1988) ML Trace and Maximum Eigenvalue statistics

Format

{ ev ,evec,lr1 ,lr2 } = vmsj(x ,p,k);

Input

x T × L matrix

p scalar, order of the time polynomial in the fitted regression. Set p = −1
for no deterministic part, p = 0 for a constant term, and p = 1 for a
constant with trend.

k scalar, number of lagged difference terms to use when computing the
estimator

Output

ev L× 1 vector of eigenvalues

evec L× L matrix of eigenvectors. The first r columns are the unnormalized
cointegrating vectors.

lr1 L× 1 vector of Johansen’s likelihood ratio Trace statistics for the null
hypotheses of H0: at most r cointegrating vectors versus H1: not H0,
r = 0, ..., L− 1

lr2 L× 1 vector of Johansen’s Maximum Eigenvalue statistics for the null
hypotheses of H0: r cointegrating vectors versus H1: r+1 cointegrating
vectors, r = 0, ..., L− 1

Globals

Set vm NoDet = 1 to suppress the constant term from the fitted regression and
include it in the co-integrating regression. Remember to set vm NoDet = 0 after the
procedure call to ensure that subsequent procedures are not affected.

Source

varma.src
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Library

varma

Purpose

Returns τ critical values for the Augmented Dickey-Fuller test statistic, depending on
the number of observations and p, the AR order in the fitted regression. Computed
using 10000 iterations.

Format

c-values = vmztcrit(nobs,p);

Input

nobs scalar, number of observations in the series.

p scalar, order of the time-polynomial in the null hypothesis

Output

c-values 6x1 vector of critical values in order 1%, 5%, 10%, 90%, 95%, 99%.

Source

varma.src
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vm Hessian, 25

A

acf, 40
altnam, 47, 48

am itol, 42
am varn, 42
amcritl, 78
archisq, 49

arima, 41, 43
ARIMA, 35
arima.src, 43
arimaset, 35

arinit, 48
ariter, 48

armanames, 44
arrsq, 50
artobs, 49
arvsig, 49

autocor, 45
autocorrelations, 37, 45
autocov, 46
autocovariances, 37, 46
autoreg, 47
autoreg.src, 50
arima.src, 42
autoreg.src, 45, 46, 51
autoregression, 35, 37
autoset, 37, 51

B

bounds constraints, 9, 19, 24

C

coeffprt, 52
con, 48

condition of Hessian, 25
constraints, 9, 17, 21
corm, 54
covm, 55

E

ecm, 56
equality constraints, 21, 23

F

forecast, 35, 77
forecast.src, 78
forecasting, 26

G

gausset, 51

H

header, 48, 73
Hessian, 19, 20, 25

I

identify, 62
inequality constraints, 22, 23
Installation, 1

L

Lagrange coefficients, 59, 85
library, 8, 33, 35, 37
linear constraints, 19, 21, 22
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M

macf, 64

N

Newton’s method, 18
nonlinear constraints, 9, 19, 23
nonlinear contraints, 23
nw, 65

O

output, 42, 49, 73, 78

P

pacf, 66
panel data, 33
paramconfig, 67

Q

QML covariance matrix, 17

R

regression, autoregression, 37
regression, error components, 33
regression, fixed effects, 33
regression, TSCS, 33

row, 49, 74
rowfac, 49, 74

S

scaling, 25
simarma, 69
simarma.src, 69
starting point, 26
starting values, 17, 26
sumstat, 70

T

tautocov, 71
tautocov.src, 71
time series, 37
time-series cross-section, 33, 34, 72

title, 49, 74
tol, 49

tscs, 72
TSCS model, 33
tscs.src, 75, 76
tscsset, 33, 75, 76
tsforecast, 36, 77

tsise, 73
tsmeth, 73
tsmnsfn, 73
tsmodel, 73
tsstnd, 73
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UNIX, 1, 3

V

varma.src, 80
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