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Abstract

We show that Zheng (2002)’s optimal mechanism in the presence of resale

can be interpreted as an equilibrium of an ascending-price auction and, in the

two-bidder case, as an equilibrium with a no-regret property of the English

and second-price auctions. We also show that it can be extended beyond

Zheng (2002)’s original assumptions.
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Zheng’s Optimal Mechanism with Resale
and the Second-Price Auction.

1. Introduction

In the independent private value model with possible resale between bid-

ders, Zheng (2002) constructs a selling mechanism that, under some assump-

tions, implements Myerson (1981)’s allocation. The mechanism is thus opti-

mal among all selling mechanisms, even those that can prevent resale. This

result is important since, in many cases, resale is too costly or impossible to

prevent.

We first interpret, in Section 2, Zheng ’s mechanism as an equilibrium of

a non-standard ascending-price auction with sequential entry. In Sections 3

and 4, we then show that, with 2 bidders, it is equivalent to an equilibrium,

with a no-regret property, of the standard English and second-price auctions.

Furthermore, the English and second-price auctions implement the op-

timal allocation under more general assumptions than Zheng (2002)’s. In

fact, from the three assumptions for the two-bidder case in Zheng (2002),

we only keep unchanged Assumption 3—the Resale Monotonicity Assump-

tion. We replace Assumption 1, which requires that the hazard rates be

strictly increasing, by the standard assumption that the virtual-value func-

tions be strictly increasing (the “regular case” in Myerson, 1981). We drop

Assumption 2—the Uniform Bias Assumption—, according to which the valua-

tion supports are nested and the hazard rates are ranked. Consequently, we

allow valuation distributions with overlapping supports and without relation

of stochastic dominance between them.

We show in Section 5 how Zheng’s mechanism itself can be amended to

deal with such less restricted distributions.

Our results follow from a recent contribution on standard auctions with

resale (Lebrun, 2006), which, through a link with the common-value model,

characterizes an infinity of equilibria of the second-price auction with resale.

Mylovanov and Tröger (2006) investigate the generality of Zheng (2002)’s
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assumptions, especially in the n-bidder case. Calzolari and Pavan (2005) ob-

tain optimal mechanisms with resale for a two-bidder model where the values

are distributed over two-point supports and where the bargaining powers at

resale depend on the bidders’ identities. They then implement their optimal

mechanisms through, depending on the values of their parameters, first-price

auctions with limited sets of acceptable bids (and specific tie-breaking rules)

or second-price auctions with personalized reserve prices.

2. Zheng’s Mechanism as an Ascending-Price Auction.

In Zheng (2002), the bidders’ hazard rates are ranked: a lower index

bidder has a higher hazard-rate function. Starting with bidder 1, Zheng ’s

mechanism examines the bidders sequentially according to increasing index

order and awards the item to the first bidder i who passes the following test:

the transformation, through the pre-specified function βij, of the value bidder

i submits is not smaller than the value bidder j submits, for all j > i.

A bidder is called the “leader” when it is his turn to be examined. When

the current leader passes the test, the price he pays for the item is, if he

is the highest index bidder, his personalized reserve price or, if he is not, a

pre-announced and specific nondecreasing transformation of his bid. When

he fails the test, the mechanism updates the reserve prices of all remaining

possible winners and examines the next leader. At the equilibrium of this

mechanism, the bidders truthfully reveal their values.

This mechanism can be naturally interpreted as an equilibrium of an

acsending-price auction that allows only two bidders at a time and starts,

at the initial stage, with bidders 1 and 2. The high bidder may stay on for

the next stage, where the new bidder allowed in will be the bidder whose

index comes next after the maximum of the current-stage bidders’ indices2.

2Under Zheng (2002)’s “Transitivity Assumption,” we do not need, when there is a
change of leader to compare the new leader’s transformed value with bidders’ values that
have already been compared with the previous leader. The same assumption implies here
that the high-bidder will bid higher in the next stage than in the current stage. From the
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If there is no such new bidder, the high bidder wins the auction and pays

a price calculated from his bid and his reserve price. The leader is, in this

interpretation, the current high bidder.

Every time the stage high bidder changes, the auctioneer informs the

potential participants to the future stages of their reserve prices, which he

has updated using the bids submitted by the losers in the previous stages.

Otherwise, the bidders’ actions are kept secret. The rules governing the

updating of the reserve prices and the winner’s payment can be chosen to

obtain an equilibrium that mimics the honest equilibrium of Zheng’s mech-

anism, that is, where bidder i bids according to the function βij, j > i, if he

is the previous-stage high bidder and is matched with bidder j and bids his

value if he is the new bidder.

Obviously, this auction with sequential entry is very different from the

standard ascending-price auctions: the price may increase discontinuously at

the start of a new stage, at no stage does the high bidder observe the low

bidder’s bid, and the bid of the last losing bidder does not always determine

the final price. In the next sections, we show that, at least in the two

bidder case, Zheng’s mechanism is exactly equivalent to an equilibrium of

the standard English and second-price auctions, where the winner observes

and pays the maximum of the loser’s bid and the reserve price.

3. The English and Second-Price Auctions with Resale
3.1 The Sealed-Bid Second-Price Auction with Deferred Payment

In this section, we extend some known results about the second-price

auction. Consider the independent private values model with two, possibly

heterogeneous, risk-neutral bidders. Bidder i’s use value vi for the item being

auctioned is distributed over an interval [ci, di], with 0 ≤ ci ≤ di, according

ranking of the hazard rates, the new added bidder bids higher than the previous stage low
bidder. In this auction interpretation of Zheng’s mechanism, we may thus assume that
the price is ascending and that exit is irrevocable.
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to an absolutely continuous probability measure Fi, with a strictly positive,

continuous, and bounded density function fi over (ci, di], i = 1, 2. We use

the same notations F1 and F2 for the cumulative distribution functions. A

bidder’s use value is his private information.

We allow a reserve price and personalized entrance fees. No bidder

observes his opponent’s participation decison. We add a post-auction stage

where resale takes place between bidders if and only if the auction has resulted

in the sale of the item and the auction winner proposes a resale price the loser

agrees to.

We first consider the sealed-bid second-price auction where the auctioneer

keeps the number of bids and their values secret, announces only the identity

of the winner, if any, and delays the announcement of the auction price until

after the resale stage. In the definition of a regular equilibrium below, r is

the reserve price.

Definition 1:
(i) A regular bidding function βi of bidder i is a real-valued function,

nondecreasing and continuous from the right over [ci, di], equal to −1 over
[ci, c

0
i), not smaller than r over [c0i, di], constant over [c

0
i, c

00
i ), and strictly

increasing and continuous over [c00i , di], where c0i, c
00
i are such that ci ≤ c0i ≤

c00i ≤ di.

(ii) A regular resale-offer function γi of bidder i is a bounded and measur-

able (with respect to the σ-algebra of the Borel subsets) function defined over

[ci, di]× [r,+∞) and such that γi (v; b) ≥ v, for all (v, b) in [ci, di]× [r,+∞).
(iii) A regular strategy of bidder i is a couple σi = (βi, γi) where βi is a

regular bidding function and γi is a regular resale-offer function.

(iv) A regular equilibrium (σ1, σ2) is a couple of regular strategies that

can be completed3 into a perfect Bayesian equilibrium.

If bidder i with use value vi follows the bidding function βi, he participates

3By adding beliefs and by adding what responses every bidder gives to offers from the
other bidder at the resale stage, as functions of past observed histories.
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in the auction, pays his entrance fee, if any, and bids βi (vi) when vi ≥ c0i and

does not take part in the auction when vi < c0i. If he follows the resale-offer

function γi, he offers γi (vi; b) at resale after winning the auction with the

bid b.

Definition 2:
(i) For all i = 1, 2, bidder i’s virtual-value function ωi is defined over

(ci, di] as follows:

ωi (vi) = vi − 1− Fi (vi)

fi (vi)
.

If ωi is strictly increasing, ωi (ci) is the value, possibly infinite, of its contin-

uous extension at ci.

(ii) Let ωi be strictly increasing over (ci, di], for all i = 1, 2. Let the

optimal-resale-price function ρ be the function defined over [c1, d1]× [c2, d2]
such that, for all (w1, w2) in [c1, d1]× [c2, d2],

ρ (w1, w2) = inf

½
p ∈ (cl, dl] |wk ≤ p− Fl (wl)− Fl (p)

fl (p)

¾
,

where k and l are such that {1, 2} = {l, k} and wk ≤ wl, that is, l ∈
argmaxiwi and k ∈ argminiwi.

(iii) Notation: ρ1 (v, w) = ρ2 (w, v) = ρ (v, w), for all (v, w) in [c1, d1]×
[c2, d2].

In Definition 2 (ii), ρ (w1, w2) is the resale price that maximizes bid-

der k’s expected payoff when bidder k’s use value is wk and bidder l’s use

value is distributed according to Fl conditionally on belonging to the interval

[cl, wl]. Indeed, in this case, bidder k’s maximization problem is equivalent

to maxp∈[wk,wl] (p− wk) (Fl (wl)− Fl (p)), whose first-order condition is (ii).

According to the notation (iii), ρi is the function ρ with bidder i’s use value

as its first argument.
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In Result 1 below, αi = β−1i is the “extended” inverse of βi that is con-

tinuous from the right, that is, β−1i (b) = sup {vi ∈ [ci, di] |βi (vi) ≤ b}, for all
b in {−1} ∪ [r,+∞). The functions γ1, γ2 are the smallest optimal resale-

offer functions. We show in Appendix 1 how to extend the proof in Lebrun

(2006), which deals with the particular case of the same valuation interval,

mandatory participation, and no reserve price or entrance fees, to our more

general setting.

Result 1 (from Lebrun, 2006): Let ω1 and ω2 be strictly increasing.

Let c0i, c
00
i be in [ci, di), for all i = 1, 2, such that c

0
1 = c001 ≤ c02 = ρ (c001, c

00
2) ≤ c002.

Let ϕ be a real-valued function strictly increasing and continuous over [c001, d1]

such that ρ (v1, ϕ (v1)) is strictly increasing and ϕ (c001) = c002, ϕ (d1) = d2. Let

r, e1, and e2 be a reserve price and entrance fees such that:

r ≤ c001; ei ≤ ei (r) , with ei = ei (r) when c0i > ci;

where

e1 (r) = (c
0
2 − r)F2 (c

00
2) + (c

00
1 − c02)F2 (c

0
2) , e2 (r) = (c

0
2 − r)F1 (c

00
1) .

Let (β1, γ1;β2, γ2) be the following couple of regular strategies:

β1 (v1) = −1, if v1 ∈ [c1, c001) ,
= ρ (v1, ϕ (v1)) , if v1 ∈ [c001, d1] ;

β2 (v2) = −1, if v2 ∈ [c2, c02) ,
= r, if v2 ∈ [c02, c002) ,
= ρ

¡
ϕ−1 (v2) , v2

¢
, if v2 ∈ [c002, d2] ;

γ1 (v1; b) = ρ (v1,max (v1, α2 (b))) ;

γ2 (v2; b) = ρ (max (α1 (b) , v2) , v2) ;
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where αi is the extended inverse of βi, i = 1, 2, for all v1 in [c1, d1], v2 in

[c2, d2], and b in [r,+∞). Then, we have:
(i) (Equilibria) (β1, γ1;β2, γ2) is a regular equilibrium of the second-price

auction where payments are deferred, ties are broken in favor of bidder 1,

and with reserve price r and personalized entrance fees e1, e2. Moreover, the

following equalities hold true:

β1 (v1) = β2 (ϕ (v1)) ,

ρ (α1 (b) , α2 (b)) = b, (1)

for all v1 in (c001, d1] and b in (ρ (c001, c
00
2) , ρ (d1, d2)).

(ii) (Sets of Optimal Bids) If vi in [c0i, di] is such that βi (vi) < vi, then

all bids in the interval
£
β (vi) ,max (vi, di)

¤
are optimal for bidder i with use

value vi, where β (vi) = max ({r} ∪ {w ∈ [c001, d1] |ϕ (w) = w ≤ vi}).
(iii) (Final Equilibrium Allocations) Let λϕ be the function defined over

[c1, d1] as follows:

λϕ (v1) = c02, if v1 < c001;

λϕ (v1) = ρ (v1, ϕ (v1)) , if ϕ (v1) ≥ v1 ≥ c001;

λϕ (v1) =
¡
ρ
¡
ϕ−1 (.) , .

¢¢−1
(v1) , if ϕ (v1) ≤ v1 ≤ min (ρ (d1, d2) , d1) ;

λϕ (v1) = d2, if v1 ≥ min (ρ (d1, d2) , d1) .

If v2 > λϕ (v1), the item goes eventually to bidder 2. If v2 < λϕ (v1) and

v1 ≥ c001, the item eventually goes to bidder 1. If v2 < λϕ (v1) and v1 < c001,

the item stays with the auctioneer.

The intuition for Result 1 comes from a link between our model and the

common-value model. Optimal resale under incomplete information at least

remedies the “worst cases” of inefficiency, where the auction loser’s use value

is the highest one the winner thinks possible, that is, when both bidders
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submit the same bid. In this case, each bidder’s net value for winning is

equal to the resale price: by winning a bidder saves the resale price if he

would be a buyer at resale and earns it if he would be a reseller. At an

equilibrium, the first-order condition (1) thus follows. As in the common-

value second-price auction, the multiplicity of equilibria described in Result

1 ensues from this, common to both bidders, condition.

To illustrate (ii), consider, for example, bidder 2 with use value v2 such

that he could not be the reseller, that is, such that α1 (β2 (v2)) < v2. Let a

bid b be such that:

α1 (b) < α2 (b) and b < v2. (2)

When, at equilibrium, bidder 1 submits such a bid b and wins, he proposes

(from (1)) b at resale, which bidder 2 accepts. Since the prices are identical,

bidder 2 is indifferent between winning the auction against such a bidder

and losing it and thus between submitting b and submitting slightly different

bids. The set of optimal bids in (ii), to which β2 (v2) belongs, is the closure

of the interval of such bids b’s.

Checking that the final allocation is as in Result 1 (iii) is simple. For

example, assume v1 ≥ c001 and ϕ (v1) ≥ v1. From the definition of the bidding

functions and of λϕ, λϕ (v1) ≤ ϕ (v1) = α2β1 (v1). If v2 < λϕ (v1), bidder 2

loses the auction and refuses bidder 1’s resale offer. If λϕ (v1) < v2 < ϕ (v1),

bidder 2 loses the auction and accepts bidder 1’s resale offer. If ϕ (v1) < v2,

bidder 2 wins the auction and no advantageous resale is possible.

3.2 The Standard Second-Price and English Auctions.

We now consider the second-price auction where, as it is standard, the

auction winner learns the auction price—the maximum of the reserve price

and the loser’s bid—right at the conclusion of the auction. As in the pre-

vious subsection, the bidders’ bids are kept secret. We need to extend our

definition of a regular equilibrium to “behavioral” strategies.
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Definition 3:
(i) A regular bidding strategy Gi (.|.) of bidder i is a regular condi-

tional probability measure4 with respect to vi in [ci, di].

(ii) A regular resale-offer function δi of bidder i is a bounded and

measurable function defined at all (vi, bi, b) in [ci, di]×[r,+∞)2 and such that
δi (vi; bi, b) ≥ vi, for all such (vi, bi, b).

(iii) A regular strategy of bidder i is a couple (Gi (.|.) , δi) where
Gi (.|.) is a regular bidding strategy and δi is a regular resale-offer function.

(iv) Bidder i’s beliefs are regular if they are represented by a regular

conditional probability measure Fj (.|., .) with respect to (bi, b) in [r,+∞)2
such that b ≤ bi.

(v) A regular equilibrium is a couple of regular strategies and a cou-

ple of regular beliefs (G1 (.|.) , δ1, F2 (.|., .) ;G2 (.|.) , δ2, F1 (.|., .)) that can be
completed into a perfect Bayesian equilibrium.

The measure Fj (.|bi, b) represents the revised beliefs bidder i holds about
bidder j’s use value after winning the auction with the bid bi and learning his

payment b. If bidder i with use value vi follows (Gi (.|.) , δi), he chooses his
bid according to Gi (.|vi) and, if he has won the auction with the bid bi and

has to pay b, he offers δi (vi; bi, b) at resale. Result 2 below is an extension

to the case with reserve price and entrance fees of a result in Lebrun (2006).

Result 2 (from Lebrun, 2006): Let ω1 and ω2 be strictly increasing.

Let E be a regular equilibrium as in Result 1 of the second-price auction

with deferred payment. Then, there exists a regular equilibrium E 0 of the
standard second-price auction with the same reserve price, entrance fees, and

tie-breaking rule, such that:

(i) (Equivalent Outcomes) The bid marginal distributions, the in-

terim total expected payoffs, and the final allocation are the same in as E.
Conditionally on the use value of the auction winner, resale takes place with

the same probability as in E and, when this probability is different from zero,
4Also called “stochastic kernel” and “transition probability distributions.”
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at the same price;

(iii) (No-Regret Property) In E 0, all bids in the support of Gi (.|vi)
are optimal bids in [r,+∞) for bidder i even after learning his payment in
case of winning, for all vi in [c0i, di] and all i = 1, 2

5.

If bidder 1’s entrance fee e1 is equal to the maximum entrance fee e1 (r),

then (i) and (ii) also hold true for any tie-breaking rule.

Let E =(β1, γ1;β2, γ2) be a regular equilibrium as in Result 1. The

proof of Result 2, which we outline in Appendix 2, consists in constructing an

equilibrium E 0=(G1 (.|.) , δ1, F2 (.|., .) ;G2 (.|.) , δ2, F1 (.|., .)) with the required
properties. Here, assume that ties are broken in favor of bidder 1. In

Appendix 3, we explain the minor modifications a different tie-breaking rule

requires. Because bidder 1’s bid distribution is atomless in E , the auction
winner’s revised beliefs are the same whether he wins with a bid strictly

higher than or equal to his payment and hence are independent of his bid.

We may thus consider simplified revised beliefs Fj (.|.) that depend only on
the payment. Since bidder i will be willing to offer a resale price that is

also independent of his bid, we construct in E 0 resale-offer functions that are
simplified functions6 δi (vi; b). As we show in Appendix 2, it is possible to

construct E 0 in the following four steps.

Step 1: Construction of the supports: If vi is in [c0i, di] and such that

βi (vi) < vi, the support of Gi (.|vi) is the interval of optimal bids in Result
1 (ii). Otherwise, the support of Gi (.|vi) is {βi (vi)}.
Step 2: Construction of revised beliefs F1 (.|.) and F2 (.|.) that are con-

sistent with the supports in Step 1 and such that, when advantageous resale

is possible, the auction winner finds it optimal to offer the same resale price

5However, bidder i might regret his entry decision. Notice that learning the payment
in case of winning and learning the other bidder’s bid are equivalent when c02 = c002 , since
then bids are different from the reserve price with probability one.

6Such a resale-offer function is formally defined as in Definition 1 (ii). However, here
the second argument of δi is bidder i’s payment and not his bid.
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as in E .
Step 3: Construction of the bidding strategy Gi (.|.) as the conditional

distribution of the bid with respect to the use value from the joint distribution

of the use value-payment couples generated by the marginal Fiαi over [r,+∞)
of bidder i’s payment in E and the conditional Fi (.|.) from Step 2.

Step 4: Extension of the construction of optimal regular resale-offer func-

tions from the domains in Step 2, where resale is possible, to the whole defi-

nition domain such that the resale offer does not depend on the bid from the

auction loser along the equilibrium path.

If, as it is common, we interpret a bidder’s acceptable bid as the price at

which he exits the auction, E 0 in Result 2 also defines an equilibrium of the

English auction, with initial entrance fees, no information release about the

number of active bidders, and where the price starts rising from the reserve

price.

4. Optimality of the Second-Price and English Auctions

Assume that the initial seller has some use value v0 for the item and that

the virtual-value functions are strictly increasing. From Myerson (1981), the

seller maximizes his expected payoff if he keeps the item when no bidder has

a virtual value larger than v0, sells it to the bidder with the highest virtual

use value otherwise, and leaves no payoff to the bidders with the smallest

possible use values. We make the following “nondegeneracy assumption”

which rules out those trivial cases where one bidder’s virtual value is never

larger than v0 or than the other bidder’s virtual value7:

min (d1, d2) > max (v0, ω1 (c1) , ω2 (c2)) .

7 If, for example, d2 ≤ v0 or d2 ≤ ω1 (c1), the optimal allocation is implemented by the
second-price auction where the reserve price and entrance fees are such that only bidder 1
with virtual value larger than v0 takes part (or, equivalently, a take-it-or-leave-it-offer to
bidder 1). There will be no profitable resale to bidder 2.
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Then, the “screening levels”, that is, the smallest use values c01, c
0
2 at which

it can be optimal to allocate the item are:

c0i = ω−1i (max (v0, ω1 (c1) , ω2 (c2))) , (3)

for all i = 1, 2. Without loss of generality, we may assume c01 ≤ c02.

We may define the function ψ that determines the optimal allocation as

follows:

ψ (v1) = ω−12 (min (d2, ω1 (max (v1, c
0
1)))) ,

for all v1 in [c1, d1]. Any optimal mechanism allocates the item to bidder 2

if v2 > ψ (v1) and to bidder 1 if v1 > c01 and v2 < ψ (v1).

If there exists a strictly increasing and continuous function ϕ∗ such that

ϕ∗ (c01) = c02, ϕ
∗ (d1) = d2, and λϕ

∗
= ψ, where λϕ

∗
is as defined in Result 1

(iii) (Section 3.1), then the regular equilibrium of the second-price auction

constructed from ϕ∗ will implement the optimal allocation. In fact, according

to Result 1 (iii) (Section 3.1), it will allocate the item according to λϕ
∗
= ψ.

Assumption A below guarantees the existence of such a function ϕ∗.

(Weak) Assumption A: ω1 and ω2 are strictly increasing and:

(i) The unique continuous function µ2 defined over C = {v1 ∈ (c01, d1] |ψ (v1) ≥ v1}
and such that µ2 (v1) ≥ ψ (v1) and ρ (v1, µ2 (v1)) = ψ (v1), for all v1 in C, is

(nondecreasing) strictly increasing.

(ii) The unique continuous function µ1 defined over D =©
v2 ∈ (c02, ρ (min (d1, d2) , d2)] |ψ−1 (v2) ≥ v2

ª
and such that µ1 (v2) ≥ ψ−1 (v2)

and ρ (µ1 (v2) , v2) = ψ−1 (v2), for all v2 in D, is (nondecreasing) strictly in-

creasing8.

The existence of the functions µ1, µ2 as defined above comes from the

continuity and, when different from the lower extremities of the supports,

the strict monotonicity of ρ. When Assumption A is satisfied, we simply

8 It is straightforward to show that the continuous extension of the inverse ψ−1

of ψ is uniquely determined over [c02, ρ (min (d1, d2) , d2)] and that ψ−1 (c02) = c01 and
ψ−1 (ρ (min (d1, d2) , d2)) = ρ (d1,min (d1, d2)).
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construct ϕ∗ from µ1 and µ2 as follows: ϕ∗ = µ2 over C and ϕ∗ = µ−11
over µ1 (D). If, given a reserve price r∗ ≤ c01, the entrance fees are equal

to their maximum values e1 (r∗) and e2 (r
∗), defined in Result 1 (Section

3.1), the bidders’ equilibrium payoffs vanish at the screening levels c01, c
0
2,

and Theorem 1 below then follows from Myerson (1981).

Theorem 1: Let Assumption A be satisfied. Let r∗, e1 (r∗) , e∗2 (r∗) be as
in Result 1 (Section 3.1) where c01, c

0
2 are the screening levels (9) with c01 ≤ c02

and c002 = µ2 (c
0
1). Then, the second-price and English auctions with reserve

price r∗, entrance fees e1 (r
∗) , e2 (r∗), and arbitrary tie breaking rule have

a regular equilibrium that satisfies the no-regret property (defined in Result

2 (iii), Section 3.2) and that is optimal among all incentive-compatible and

individually rational mechanisms.

Notice that if the screening levels c01, c
0
2 are identical, the reserve price

r∗ = c01 suffices, since then ei (r
∗) = 0, for all i. From Result 1 (Section 3.1),

optimality is also achieved by a regular equilibrium of the sealed-bid auction

with deferred payment, the same reserve price and entrance fees, and where

bidder 1 wins ties.

If we require, as in the Weak Assumption A, the functions µ1 and µ2 to

be only nondecreasing, the same construction as above will produce a nonde-

creasing function ϕ∗ with, possibly, discontinuity jumps under the 45-degree

line and flat portions above the 45-degree line. If we allow in our defi-

nitions bidding functions with discontinuity jumps above the reserve price

and bidding strategies mixing over nonconvex supports, our results extend

straightforwardly to this case. Under Zheng (2002)’s “Uniform Bias As-

sumption,” according to which the use value supports are nested and the

hazard rates are ranked, that is, [c1, d1] ⊆ [c2, d2] and ω1 (.) ≥ ω2 (.) (and,

consequently, c01 ≤ c02 and C = (c01, d1]), our Weak Assumption A reduces to

his “Resale Monotonicity Assumption9.”

9Zheng (2002) uses the notation β12 for our ϕ
∗. A referee summarized our extension

of the construction of ϕ∗ as follows: “The idea is to observe, from the continuity of the
Myerson allocation, that if the Myerson allocation favors bidder i against j at xi, then

14



In Appendix 4, we explicitly work out one of Zheng (2002)’s examples.

5. Back to Zheng’s Mechanism.

Zheng’s mechanism also uses ϕ∗ from our previous section to determine

the mechanism “winner,” to whom it awards the item, from the use values

v1, v2 the bidders provide as inputs (see footnote 9). Under Zheng (2002)’s

assumptions, ϕ∗ (v1) is never below v1 and hence only bidder 1 can be a

reseller at equilibrium. When he is awarded the item, bidder 1 pays a price

that depends only on his own input and such that his total expected payoff

is equal to his expected payoff, conditional on the intermediate allocation,

from Myerson’s optimal mechanism. When bidder 2 is awarded the item,

he pays the smallest use value at which, given bider 1’s use value, Myerson’s

mechanism would have awarded him the item.

From our results, Zheng’s mechanism can easily be amended to accom-

modate those cases that satisfy the Weak Assumption A (Section 4) and

where hazard rates are not ranked. In such a case, the function ϕ∗ can

cross the 45-degree line and bidders 1 and 2 can be resellers at equilibrium.

The mechanism may simply require from each bidder a payment equal to

his total expected payment, including the entrance fee and conditional on

his use value and the identity of the winner, at our optimal equilibrium of

the second-price or English auction. As for bidder 1 in Zheng’s original

mechanism, a bidder’s payment then depends only on his own input and is

such that his total expected payoff, which includes his payoff from the resale

stage, is equal to his expected payoff from Myerson’s mechanism, conditional

on the intermediate allocation.

A winner of this amended mechanism learns the same information as in

the optimal equilibrium of the sealed-bid auction and hence will propose

it continues to favor i against j at any x0i sufficiently close to xi. Then within this
neighborhood of xi one can derive a winner-selection rule βij as β12. Then do that for all
neighborhoods, within each of which the relationship of favoring one against the other is
stable. Then patch up all the winner-selection rules βij obtained locally, and we obtain
a global winner-selection rule, ...”

15



the same resale price. Truth-telling is an equilibrium of Zheng’s amended

mechanism, otherwise bidders would deviate from their equilibrium strategies

in the second-price auction.

With n bidders, Zheng’s mechanism can be amended to fit cases that

satisfy all his assumptions with the exception that the hazard rates of bidders

n−1 and n may not be ranked between them. In fact, the mechanism looks
for a winner by inspecting bidders in increasing index order. Once it reaches

bidder n − 1, it reduces to a two-bidder mechanism, which we can then
amend as above. This change is inconsequential to the behaviors of bidders

at earlier stages.

6. Conclusion.

We showed that Zheng (2002)’s optimal mechanism in the presence of

resale can be interpreted as an equilibrium of an ascending-price auction

and, in the two-bidder case, as an equilibrium with a no-regret property of

the English and second-price auctions. It is somewhat surprising that such a

novel and apparently complex mechanism actually describes an equilibrium

of more familiar auctions. We also showed that it can be extended beyond

Zheng (2002)’s original assumptions.

Appendix 1: Outline of the Proof of Result 1 (Section 3.1)

Assume that β1, β2 are the regular bidding functions the bidders are ex-

pected to follow at auction. Assume bidder i is declared the winner in any

tie that may occur with strictly positive probability. Bidder i’s updated

beliefs about bidder j’s use value after winning the auction with a bid bi

are represented by the conditional of Fj on [cj, αj (bi)]. Then, as stated in

the main text, γi (vi; bi) = ρi (vi,max (vi, αj (bi))) in Result 1 is the smallest

resale price that maximizes his expected payoff.

Assume that the bidders choose their resale prices according to these

resale-offer functions. When looking for regular equilibria, we may focus
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on the difference between bidder i’s expected utility and his expected utility

from losing with probability one. In fact, his utility when losing uli does not

depend on his bid. Then, bidder i’s net value ui for winning, that is, the

difference between his utility when winning (gross of the auction price) uwi
and his utility when losing uli is as follows.:

ui
¡
vi, vj; bi, bj;βi, βj

¢
= ρi (vi,max (vi, αj (bi))) , if not larger than vj;

= ρj (vj,max (vj, αi (bj))) , if not larger than vi;

= vi, otherwise;

for all couple of bids (b1, b2) in ({−1} ∪ [r,+∞))2, couple of use values (v1, v2)
in [c1, d1]× [c2, d2], and i, j such that {i, j} = {1, 2}.
Since bidder i’s bid can enter his net value only as an argument of his

resale price, which, we have assumed, he chooses optimally, b0i = bi is a

solution of the maximization problem below:

bi ∈ argmax
b0i≥r

Z αj(bi)

cj

ui
¡
vi, vj; b

0
i, βj (vj) ;βi, βj

¢
dFj (vj) . (A1.1)

By, as in Lebrun (2006), applying an envelope theorem, we find the first

property below, which allows to circumvent the direct dependence of ui on

the own bid bi. The other properties also mainly follow from Lebrun (2006)10.

Properties of the Net-Value Functions: Assume β2 (c
00
2) ≥ β1 (c

0
1) and

β1 (c
00
1) ≥ β2 (c

0
2), where c

0
i, c

00
i and βi are as in Definition 1 (i), for all i = 1, 2.

10Below, we use (iii.2) to prove the optimality of the participation decisions. Lebrun
(2006) did not need this property because he assumed mandatory participation.
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(i) Envelope Property: For all vi in [ci, di] and all bi in
£
βj
¡
c0j
¢
,+∞¢:

Z αj(bi)

cj

ui
¡
vi, vj; bi, βj (vj) ;βi, βj

¢
dFj (vj)

=

Z αj(bi)

cj

ui
¡
vi, vj; max

¡
βj (vj) , βj

¡
c0j
¢¢

, βj (vj) ;βi, βj
¢
dFj (vj) .

(ii) Common Value for Pivotal Bids when Bidding as Expected: For all

b in (maxi βi (c
00
i ) ,mini βi (di)):

u1 (α1 (b) , α2 (b) ; b, b;β1, β2) = u1 (α1 (b) , α2 (b) ; b, b;β1, β2) = ρ (α1 (b) , α2 (b)) .

(iii) Monotonicity with Respect to Own Type: For all b in (maxi βi (c
00
i ) ,mini βi (di))

and all bi ≥ r:

(iii.1) ui
¡
vi, αj (b) ; b, b;βi, βj

¢
is nondecreasing with respect to vi in

[ci, di],

(iii.2)
R αj(bi)
cj

ui
¡
vi, vj; bi, βj (vj) ;βi, βj

¢
dFj (vj) is nondecreasing with

respect to vi in [ci, di].

Proof: We amend the proof of (i) in Lebrun (2006) to take into account

the possible jump of βj at c00j . From (2), the integralR αj(bi)
cj

ui
¡
vi, vj; bi, βj (vj) ;βi, βj

¢
dFj (vj) is constant in bi over

£
βj
¡
c0j
¢
, βj

¡
c00j
¢¤

and the equality in (i) holds true over this interval.

We next observe that, for all vi in [ci, di] and almost all vj in [cj, dj],

ui
¡
vi, vj; bi, βj (vj) ;βi, βj

¢
is right-continuous with respect to bi at bi = βj

¡
c00j
¢
.

In fact, from its definition and the continuity from the right of αj, it is

continuous from the right with respect to bi at bi = βj
¡
c00j
¢
, for all vj 6=

ρi
¡
vi,max

¡
vi, c

00
j

¢¢
. Applying the envelope theorem as in Lebrun (2006)

and using this right-continuity, we find that the expected net value is equal toR αj(bi)
cj

ui
¡
vi, vj;max

¡
βj (vj) , βj

¡
c00j
¢¢

, βj (vj) ;βi, βj
¢
dFj (vj), for bi in

£
βj
¡
c00j
¢
, βj (dj)

¢
.

From the previous paragraph, the equality in (i) follows.

The equality in (i) over the interval
£
βj (dj) ,+∞

¢
is then proved as in
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Lebrun (2006) (by reasoning as in the first paragraph above).

(ii) and (iii.1) are proved as in Lebrun (2006).

Bidder i obtains the net expected payoff
R αj(bi)
cj

ui
¡
vi, vj; bi, βj (vj) ;βi, βj

¢
dFj (vj)

if he proposes his optimal resale price ρi (vi,max (vi, αj (bi))) when he wins.

It is thus the maximum of the net expected payoff he obtains when he pro-

poses pi, over all possible resale prices pi. Since, for any fixed pi, his net

expected payoff is nondecreasing in his use value vi, so will his optimal net

expected payoff. (iii.2) is proved. ||
Result 1 (i) is an easy consequence of the properties above. In fact,

bidder i’s expected net payoff when his use value is vi and his bid b is in

(maxi βi (c
00
i ) ,mini βi (di)) is as follows:

Z αj(bi)

cj

ui
¡
vi, vj; max

¡
βj (vj) , βj

¡
c0j
¢¢

, βj (vj) ;βi, βj
¢−max ¡βj (vj) , r¢ dFj (vj) .

Since, at an equilibrium, b should be optimal for vi = αi (b), we obtain the

following first-order condition:

ρ (α1 (b) , α2 (b)) = b.

From Property (iii.1), the “second-order” condition is satisfied and any bid

the bidding function specifies at or under the reserve price is optimal in this

range. Bidder i’s entrance fee ei is chosen in Result 1 such that it is not

larger than bidder i’s expected net payoff at c0i and equal to it when c0i > ci.

From Property (iii.2), the participation decision is optimal and any couple

of strategies as in Result 1 form an equilibrium.

As in Lebrun (2006), from the first-order condition and the envelope

property we obtain the sets of optimal bids in Result 1 (ii). Result 1 (iii)

can be proved as indicated in the main text.

Appendix 2: Outline of the Proof of Result 2 (Section 3.2).
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Step 1 of the construction of E 0 from E is a simple definition. To show

how Step 2 can be carried out, consider, for example, b in (c02, ρ (d1, d2))

such that α1 (b) < α2 (b). From Step 1, the support of F2 (.|b) is equal to£
b, ϕ+2 (b)

¤
, where ϕ+2 (b) = min ({d2} ∪ {w ∈ [c001, d1] |ϕ (w) = w ≥ b}). For

all w in this interval and not larger than ρ (d1, d2), in order for bidder 1

with use value α1 (w) to propose the same price w he would propose in

E , w must maximize bidder 1’s expected payoff at resale. Integrating the

first-order condition11 of this maximization problem in w from b to v2 in£
b,min

¡
ϕ+2 (b) , ρ (d1, d2)

¢¤
determines F2 (.|b) over this interval. Because no

resale price larger than ρ (d1, d2) is proposed along the equilibrium path of E ,
bidder 1’s revised beliefs are not uniquely determined over

¡
ρ (d1, d2) , ϕ

+
2 (b)

¢
when ρ (d1, d2) < ϕ+2 (b) and thus d1 < ϕ+2 (b) = d2. In this case, an example

of equilibrium beliefs is obtained by extending the first-order condition and,

by integration, the revised beliefs to all w and v2 in
£
b, ϕ+2 (b)

¤
as follows:

(w − eα1 (w)) f2 (w|b) = 1− F2 (w|b)
F2 (v2|b) = 1− exp

Z v2

b

1eα1 (w)− w
dw, (A2.1)

where eα1 is the continuous extension of α1 over [r, d2] such that ρ (eα1 (b) , d2) =
b, for all b in [ρ (d1, d2) , d2]. Formula (A2.1) indeed defines a probability dis-

tribution with the specified support because its R.H.S. tends towards one as

v2 tends towards ϕ+2 (b) (for a proof, see Lebrun, 2006)
12.

In the general case, for the purpose of defining the revised beliefs and,

as we show below, the strategies, the function αi, for all i = 1, 2, is ex-

tended as a continuous and nondecreasing function eαi over [r,max (d1, d2)]

11This necessary first-order condition will actually be sufficient and w will be the optimal
resale offer for bidder 1 with use value α1 (w).
12When the payment b is the reserve price, the revised beliefs must account for the pos-

sibility that bidder 2 did not take part in the auction. If F2 (c002) > 0, we have F2 (v2|b) =
F2 (v2) /F2 (c

00
2), for all v2 in [c2, c

0
2], and F2 (v2|b) = 1− F2(c002 )−F2(c02)

F2(c002 )
exp

R v2
c02

1
α1(w)−wdw,

for all v2 in
£
c02, ϕ

+
2 (r)

¤
.
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into [c0i,max (d1, d2)] such that:

ρ (eα1 (w) , eα2 (w)) = w, (A2.2)

for all w in [r,max (d1, d2)]. From Result 1 (i), such extensions are possible.

As the example above where d1 < d2 shows, only at most one function among

α1, α2 needs to be extended strictly.

Step 3 leads to a bidding strategy of bidder i if and only if the marginal

distribution F ∗i of the joint distribution generated by Fiαi (over [r,+∞))
and Fi (.|.) is equal over [c0i, di] to the actual distribution Fi of bidder i’s use

value. To show that this is indeed the case, take, for example, v in [c02, d2]

such that β2 (v) < v. Then, for all w in
¡
ϕ−2 (v) , ϕ

+
2 (v)

¢
, where ϕ−2 (v) =

max ({c02} ∪ {w ∈ [c001, d1] |ϕ (w) = w ≤ v}), and all b in £β2 ¡ϕ−2 (v)¢ ,min (w, ρ (d1, d2))¤,
the first-order condition (A2.1) holds true. Integrating it with respect to

the payment b, we find that F ∗2 satisfies over the interval
¡
ϕ−2 (v) , ϕ

+
2 (v)

¢
the same differential equation that, from (A2.2), F2 satisfies. Because these

two cumulative functions coincide at the extremities of this interval, they are

identical everywhere inside it (for more details, see Lebrun 2006)13.

Step 4 can be carried out by defining the following resale-offer function,

for all (vi, b) in [ci, di]× [r,+∞):

δi (vi, b) = ρi
¡
vi,max

¡
c00j , vi

¢¢
, if vi ∈ [ci, c0i) and b = r;

= max (vi, dj) , if b > ρ (d1, d2) ;

= max (min (b, αj (b)) ,max (βi (vi) , vi)) , otherwise.

13For b0 in
£
β2
¡
ϕ−2 (v)

¢
,min (v2, ρ (d1, d2))

¤
, the explicit formula for 1−G2 (b

0|v2) can
be obtained by differentiating (A2.1) with respect to v2, integrating with respect to b from
b0 to min (v2, ρ (d1, d2)) according to F2α2, and dividing by f2 (v2). Proceeding in this
way, we find:

G2 (b
0|v2) = 1−

Rmin(v2,ρ(d1,d2))
b0 exp

R v2
b

dweα1(w)−wdF2α2 (b)
f2 (v2) (v2 − eα1 (v2)) .
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If we then define as in Appendix 1 the net-value functions u1, u2 from

these resale-offer functions, we obtain the properties below. Because we

only consider βi, βj from E , we drop them from the argument of ui. Notice

the change of lower extremity in (i) with respect to the similar property in

Appendix 1. Since here the utility in case of winning does not depend on

the own bid, we compare the expected utility to the expected utility from

winning with probability one, that is, for all use values of the opponent.

Properties of the Net-Value Functions:

(i) For all vi in [ci, di] and all bi in [r,+∞):
(i.1)

Z
ui (vi, vj; bi, b) dFj (vj|b)

=

Z
ui (vi, vj; b, b) dFj (vj|b) ,

for all b ≥ bi, and

(i.2) Z bi

ρ(d1,d2)

Z
ui (vi, vj; bi, b) dFj (vj|b) dFjαj (b)

=

Z bi

ρ(d1,d2)

Z
ui (vi, vj; b, b) dFj (vj|b) dFjαj (b) .

(ii) For all b > c02:Z
ui (αi (b) , vj; b, b) dFj (vj|b) = ρ (α1 (b) , α2 (b)) .

(iii) For all b ≥ r,
R
ui (vi, vj; b, b) dFj (vj|b) is nondecreasing with respect

to vi in [ci, di].

Proof: (i.1) is immediate since, from Step 4, the net-value of the auction

loser at resale does not depend on his bid. (i.2) follows from (i.1). (ii) holds
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true because resale occurs with probability one when both bidders submit the

same bid b (and α1 (b) 6= α2 (b)). If, for example, α2 (b) > α1 (b), bidder 1’s

use value is α1 (b) and bidder 1’s resale offer ρ (α1 (b) , α2 (b)) is accepted with

probability one by bidder 2, since it is the minimum of the revised support

of his use value. (iii) can be proved as (iii.2) in Appendix 1. ||
Proceeding as in Appendix 1, we obtain in E 0 the same sets of optimal

bids for the use values leading to participation in the auction in E . Since

those sets are the supports of the bidding strategies Gi (.|.), i = 1, 2, bidders
in E 0, when they take part in the auction, submit optimal bids.
The participation decisions are also optimal. If bidder i’s use value is c0i,

his expected payoff, gross of the entrance fee, when he submits r, which is

optimal in [r,+∞), is equal to14 ei (r). Since bidder i can always replicate
what he does for a smaller use value and obtain a payoff at least as high,

the decision to participate only when his use value is at least c0i is optimal.

Consequently, E 0 is a regular equilibrium.
From (i) and (ii) (and (1)), when a bidder takes part, according to E 0,

in the auction, any of his equilibrium bids wins against bids that would

contribute nonegatively to his net expected payoff and loses against those

that would contribute nonpositively. The no-regret property follows.

To check that the final allocation is the same in E 0 as in E , assume, for
example, that bidder 1’s use value v1 is such that v1 ≥ c01 and ϕ (v1) ≥ v1.

Then, bidder 1 bids β1 (v1) and we have v1 ≤ λϕ (v1) = ρ (v1, ϕ (v1)) ≤ ϕ (v1).

If v2 ≤ λϕ (v1), Step 2 implies that bidder 2 with use value v2 does not bid

higher than β1 (v1). Thus, bidder 2 loses the auction and refuses bidder 1’s

offer. If v2 ≥ λϕ (v1), bidder 2 accepts bidder 1’s resale offer when bidder 1

wins and there is no profitable resale if bidder 2 wins15. The rest of Result

14In fact, when the bid c02 of bidder 1 with use value c01 wins, which occurs with probabil-
ity F2 (c002), he offers the resale price c

0
2, which bidder 2 refuses with conditional probability

F2 (c
0
2) /F2 (c

00
2). Bidder 1’s expected payoff is then e1 (r). Since bidder 1 offers at least

c02 as a resale price and since no resale is possible when bidder 2 with use value c02 and bid
r wins, such a bidder 2’s expected payoff is e2 (r).
15As an example of a use value such that the bidder stays out of the auction, consider
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2 then follows from Myerson (1981).

Appendix 3

If the tie-breaking rule chooses bidder 1 with probability q 6= 1, only the
following specifications differ:

G1 (.|c01) is concentrated at − 1.

F2 (v2|r, r) =
F2 (v2)

(1− q)F2 (c02) + F2 (c002)
, if v2 ∈ [c2, c02]

= 1− q (F2 (c
00
2)− F2 (c

0
2))

(1− q)F2 (c02) + F2 (c002)
exp

Z v2

c02

dw

α1 (w)− w
, if v2 ∈

£
c02, ϕ

+
2 (r)

¤
.

δ1 (v1; r, r) = argmax
p≥v1

(v1 − p) (1− F2 (p|r, r)) .

Otherwise, the simplification in the text and in Appendix 2, according to

which the revised beliefs and the resale offers do not depend on the own bid,

still applies. Since bidder 1’s acceptable bid distribution is atomless, nothing

is changed for bidder 2. Bidding the reserve price is the only deviation that

the change of tie-breaking rule may render profitable for bidder 1. However,

for bidder 1 with use value at least c01, bidding slightly above the reserve

price is more advantageous because it increases the probability of obtaining

the item at a price—r—not larger than the use value (here we use r ≤ c01) and

than any resale price bidder 2 may offer when he bids r. Moreover, when

bidder 1’s use value is c01, bidding slightly above r gives bidder 1 a gross

expected payoff equal to e1 (r). Reasoning as in Appendix 2, it is optimal

for bidder 1 with use value v1 < c01 not to take part.

Appendix 4

v1 < c01. Bidder 2 takes part in the auction only when v2 ≥ c02, in which case, since
c02 ≥ c01, no resale is possible.
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Here, we work out Zheng (2002)’s example where F1 and F2 are uniform

distributions over intervals [c1, d1] and [c2, d2] such that v0 ∈ [c1, d1] ⊆ [c2, d2].
The virtual-value functions are ω1 (v1) = 2v1 − d1, ω2 (v2) = 2v2 − d2 and

the screening levels are then c01 =
v0+d1
2
≤ c02 =

v0+d2
2
. The function ψ such

that ψ (v1) = v1 +
d2−d1
2
, for all v1 in [c01, d1], determines the optimal final

allocation. Since C in Assumption A (i) (Section 4) is the whole interval

(c01, d1], the function ϕ∗ that determines the optimal intermediate allocation

is equal to µ2 and we have ϕ
∗ (v1) = v1 + d2 − d1, for all v1 in [c01, d1]. The

value v0−d1
2
+ d2 for c002 = ϕ∗ (c01) follows.

Let us set, for example, the reserve price r at c01. Then, from the formulas

in Result 1 (Section 3.1), the entrance fees e1 (r) and e2 (r) are, respectively,¡
d2−d1
2

¢2 1
d2−c2 and

d2−d1
4

³
1 + v0−c1

d1−c1

´
. Again from Result 1, the following

bidding functions form an optimal equilibrium of the second-price auction

with deferred payment (see Figure 1):

β1 (v1) = −1, if v1 < c01;

= v1 +
d2 − d1
2

, if v1 ≥ c01;

β2 (v2) = −1, if v2 < c02;

= r, if c02 ≤ v2 < c002;

= v2 −
µ
d2 − d1
2

¶
, if v ≥ c002;

The inverse bidding functions are such that α1 (b) = b−¡d2−d1
2

¢
and α2 (b) =

b+
¡
d2−d1
2

¢
, for all b in

£
c02,

d1+d2
2

¤
.

FIGURE 1

Following the construction of the equivalent equilibrium in Result 2 (Sec-

tion 3.2), bidder 1 follows the same bidding strategy16 in the standard second-

16Except that, if the tie-breaking rule does not favor bidder 1, he does not take part in
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price auction and bidder 2, when he takes part in the auction, randomizes

over bids. As we explain in Appendix 2, in order to obtain formulas for

bidder 1’s revised beliefs and bidder 2’s behavioral strategy, we can extend

α1 to the interval [c02, d2] according to ρ (eα1 (b) , d2) = b or, equivalently,eα1 (b) = ω2 (b) = 2b − d2, for all b in
£
d1+d2
2

, d2
¤
. The formula (A2.1) then

gives17:

F2 (v2|b) = 1− exp 2 (b− v2)

d2 − d1
, if b ≤ v2 ≤ d1 + d2

2
;

= 1− 2 (d2 − v2)

d2 − d1
exp

2b− d1 − d2
d2 − d1

, if
d1 + d2
2

≤ v2 ≤ d2;

for all b in
£
c02,

d1+d2
2

¤
. Proceeding as in Step 3 (see Footnote 13, Appendix

2), we find:

G2 (b2|v2) = exp 2 (b2 − v2)

d2 − d1
, if c02 ≤ b2 ≤ v2;

for all v2 in
£
c02,

d1+d2
2

¤
, and

G2 (b2|v2) = exp 2b− d1 − d2
d2 − d1

, if c02 ≤ b2 ≤ d1 + d2
2

;

for all v2 in
£
d1+d2
2

, d2
¤
. In both cases, G2 (.|v2) is constant over [r, c02].
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