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Abstract

We assess the effectiveness of Job Corps (JC), the largest job training

program targeting disadvantaged youth in the United States, by constructing

nonparametric bounds for the average and quantile treatment effects of the

program on wages. Our preferred estimates point toward convincing evidence

of positive effects of JC on wages both at the mean and throughout the wage

distribution. For the different demographic groups analyzed, the statistically

significant estimated average effects are bounded between 4.6 and 12 percent,

while the quantile treatment effects are bounded between 2.7 and 11.7 percent.

Furthermore, we find that the program’s effect on wages varies across quantiles

and groups. Blacks likely experience larger impacts in the lower part of their

wage distribution, while Whites likely experience larger impacts in the upper

part of their distribution. Non-Hispanic Females show statistically significant

impacts in the upper part of their distribution but not in the lower part.

1 Introduction

Assessment of the effect of government labor market programs on participants’ out-

comes (e.g., earnings, education, employment) is of great importance to policy makers.

To compare these programs’ effectiveness to their public cost, one relies on the ability

to estimate the causal effects of the program, which is usually a difficult task. The vast

majority of both empirical and methodological econometric literature on program evalu-

ation (e.g., Heckman, LaLonde and Smith, 1999; Imbens and Wooldridge, 2009) focuses

on estimating causal effects of participation on total earnings, which is a basic step for

a cost-benefit analysis. Evaluating the impact on total earnings, however, leaves open

a relevant question about whether or not these programs have a positive effect on the

wages of participants through the accumulation of human capital, which is an important

goal of active labor market programs.

Total earnings are the product of the individual’s wage times hours worked. In other

words, earnings have two components: price of labor and quantity supplied of labor.

By focusing on estimating the impact of program participation on earnings one cannot

distinguish how much of the effect is due to human capital improvements. Assessing the
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labor market effect of program participation on human capital requires focusing on the

price component of earnings, i.e., wages. The reason is that wages are directly related

to the improvement of participants’ human capital through the program. Unfortunately,

estimation of the program’s effect on wages is not straightforward due to the well-known

sample selection problem (Heckman, 1979). Essentially, wages are observed only for those

individuals who are employed. Even randomization of program participation does not

solve this problem, as the comparison of wages between treatment and control groups

does not result in causal effects because the individual’s decision to become employed is

endogenous and occurs after randomization.

In this paper, we use data from the National Job Corps Study (NJCS), a randomized

evaluation of the Job Corps (JC) program, to empirically assess the effect of JC training

on wages. We analyze effects both at the mean and at different quantiles of the wage

distribution of participants, as well as for different demographic groups. To accomplish

this objective, we construct nonparametric bounds that require weaker assumptions than

those conventionally employed for point identification of average treatment effects in

the presence of sample selection.1 We focus on estimating bounds on the population of

individuals who would be employed regardless of participation in JC, as previously done

in Lee (2009) and Zhang et al. (2008), among others. The main reason is that wages are

non-missing under both treatment arms for this group of individuals, thus requiring fewer

assumptions to construct bounds on their effect. Furthermore, this is an important group

of participants: it is estimated to be the largest group among eligible JC participants,

accounting for close to 60 percent of them.

Our analysis starts by computing the Horowitz and Manski (2000) “worst-case”

bounds, which exploit the randomization in the NJCS and use the empirical support

of the outcome. However, these bounds are too wide (i.e., uninformative) in our appli-

cation. Subsequently, we proceed to tighten the bounds through the use of monotonicity

1Many of the methods employed for point identification of average treatment effects under sample

selection require strong distributional assumptions that may not be satisfied in practice, such as bivariate

normality (Heckman, 1979). One may relax this distributional assumption by relying on exclusion

restrictions (Heckman, 1990; Imbens and Angrist, 1994), which require variables that determine selection

into the sample (employment) but do not affect the outcome (wages). It is well known, however, that

in the case of employment and wages it is difficult to find plausible exclusion restrictions (Angrist and

Krueger, 1999; Angrist and Krueger, 2001).
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assumptions within a principal stratification framework (Frangakis and Rubin, 2002).

We employ two types of monotonicity assumptions. The first type states individual-level

weak monotonicity of the effect of the program on employment. This assumption was

also employed by Lee (2009) to partially identify average wage effects of JC. The second

type of weak monotonicity assumption, which was not considered by Lee (2009), is on

mean potential outcomes across strata, which are subpopulations defined by the potential

values of the employment status variable under both treatment arms. These assumptions

result in informative bounds for the parameters of interest.

We contribute to the literature in several ways. We provide a substantive empiri-

cal analysis of the effect of the JC training program on wages. With a yearly cost of

about $1.5 billion, JC is America’s largest job training program. As such, this federally

funded program is under constant examination and, given legislation seeking to cut fed-

eral spending, the program’s operational budget is currently under scrutiny (e.g., USA

Today, 2011). Our results provide evidence on the effectiveness of this program in in-

creasing wages. Moreover, they answer a policy-relevant question regarding the potential

heterogeneity of the wage impacts of JC at different points of the wage distribution, and

across different demographic groups. In this way, we complement the original work by

Lee (2009) who analyzed the average effect of JC on wages, and contribute to a grow-

ing literature analyzing the effectiveness of active labor market programs across different

demographic groups (Heckman and Smith, 1999; Abadie, Angrist, and Imbens, 2002;

Flores-Lagunes, Gonzalez, and Neumann, 2009; Flores et al., forthcoming). Finally, we

illustrate a way to analyze treatment effects on different quantiles of the distribution

of an outcome in the presence of sample selection by employing the set of monotonic-

ity assumptions described above.2 In doing so, we provide one of the first applications

in economics of recently proposed sharp bounds for quantile treatment effects by Imai

(2008).3

Our results characterize the heterogeneous impact of JC training at different points

of the wage distribution. The estimated bounds for a sample that excludes Hispanics

strongly suggest positive effects of JC on wages, both at the mean and throughout the

2Other recent work (to be discussed below) that employs bounds on quantile treatment effects under

different monotonicity assumptions are Blundell et al. (2007) and Lechner and Melly (2010).
3Other models of quantile treatment effects rely on instrumental variables (Abadie, Angrist and

Imbens (2002) and Chernozhukov and Hansen (2005)), while the partial identification strategy does not.
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wage distribution. For the different demographic groups analyzed, the statistically sig-

nificant estimated average effects are bounded between 4.6 and 12 percent, while the

quantile treatment effects are bounded between 2.7 and 11.7 percent.4 Our analysis by

race and gender reveals that the positive effects for Blacks appear larger in the lower half

of their wage distribution, while for Whites the effects appear larger in the upper half

of their wage distribution. Lastly, non-Hispanic Females in the lower part of their wage

distribution do not show statistically significant positive effects of JC on their wages,

while those in the upper part do.

The rest of the paper is organized as follows. Section 2 briefly describes the Job

Corps program and the National Job Corps Study data. Section 3 formally presents the

sample selection problem and introduces the building block for the identification strategy

we employ to bound treatment effects. Section 4 describes the principal stratification

framework and the assumptions employed to construct and tighten bounds on average

treatment effects. Section 5 discusses bounds on quantile treatment effects. Section 6

presents the results of our analysis of the Job Corps program. We conclude in section 7.

2 Job Corps and the National Job Corps Study

Job Corps (JC) is America’s largest and most comprehensive education and job train-

ing program. It was established in 1964 as part of the War on Poverty under the Economic

Opportunity Act, is federally funded, and is currently administered by the US Depart-

ment of Labor. With a yearly cost of about $1.5 billion, JC annual enrollment ascends

to 100,000 students (US Department of Labor, 2010). The program’s goal is to help dis-

advantaged young people, ages 16 to 24, improve the quality of their lives by enhancing

their labor market opportunities and educational skills set. Eligible participants receive

academic, vocational, and social skills training at over 123 centers nationwide (US De-

partment of Labor, 2010), where they typically reside. Participants are selected based

on several criteria, including age, legal US residency, economically disadvantage status,

living in a disruptive environment, in need of additional education or training, and be

judged to have the capability and aspirations to participate in JC (Schochet et al., 2001).

Being the nation’s largest job training program, the effectiveness of JC has been

4The reason why Hispanics are excluded from the analysis is discussed in the next section.
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debated at times. During the mid nineties, the US Department of Labor commissioned

Mathematica Policy Research, Inc. to design and implement a randomized evaluation,

the National Job Corps Study (NJCS), in order to determine the program’s effectiveness.

The main feature of the study was its random assignment: individuals were taken from

nearly all JC’s outreach and admissions agencies located in the 48 continuous states and

the District of Columbia and randomly assigned to treatment and control groups. During

the sample intake period from November 1994 to February 1996, a total of 80,883 first

time eligible applicants were included in the study. From this total, approximately 12

percent were assigned to the treatment group (9,409) and 7 percent to the control group

(5,977). The remaining 65,497 were assigned to a program non-research group (Schochet

et al., 2001). After recording their data through a baseline interview for both treatment

and control experimental groups, a series of follow up interviews were conducted at weeks

52, 130, and 208 after randomization.

Randomization took place before participants’ assignment to a JC center. As a result,

only 73 percent of the individuals randomly assigned to the treatment group actually

enrolled in JC. Also, about 1.4 percent of the individuals assigned to the control group

enrolled in the program despite the three-year embargo imposed on them (Schochet et

al., 2001). Therefore, in the presence of this non-compliance, the comparison of outcomes

by random assignment to the treatment has the interpretation of the “intention-to-treat”

(ITT ) effect, that is, the causal effect of being offered participation in JC. Focusing on

this parameter in the presence of non-compliance is common practice in the literature

(e.g., Lee, 2009; Flores-Lagunes et al., 2009; Zhang et al., 2009). Correspondingly, our

empirical analysis focuses on estimating informative non-parametric bounds for ITT

effects, although for simplicity we describe our methods and results in the context of

treatment effects.

We start our analysis with the same sample employed by Lee (2009), who developed

an intuitive trimming procedure for bounding the average treatment effect of JC on

participants’ wages. This sample is restricted to individuals who have non-missing values

for weekly earnings and weekly hours for every week after random assignment, resulting

in a sample size of 9,145.5 We use this sample to compare our results to Lee (2009)

5As a consequence, we implicitly assume—as do the studies cited in the previous paragraph—that

the missing values are “missing completely at random”. For a recent study employing a (parametric)
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and to analyze the informational content of our additional assumption to tighten the

estimated bounds. Subsequently, we restrict the sample by excluding Hispanics, which

renders a sample size of 7,573. The reason to drop Hispanics is that, in contrast to all

other demographic groups in the NJCS sample, it has been documented that this group

exhibited negative (albeit not statistically significant) impacts of JC on both employment

and earnings (e.g., Schochet et al., 2001; Flores-Lagunes et al., 2009). Since one of our

main assumptions is individual-level monotonicity of the effect of JC on employment (to

be discussed in section 4), we prefer to leave this group out of the remaining analysis

because inclusion of this group would likely violate this assumption.6 Finally, due to

both programmatic and design reasons in the NJCS, different subgroups in the study

population had different probabilities of being included in the research sample. Thus,

throughout our analysis, we employ the NJCS design weights (Schochet, 2001).7

Summary statistics for the sample of 9,145 individuals, which essentially replicate

those of Lee (2009, p. 1075), are presented in the Internet Appendix. Pretreatment vari-

ables in the data include: demographic variables, education and background variables, in-

come variables, and employment information. As expected, given the randomization, the

distribution of these pretreatment characteristics is similar across treatment and control

groups, with the difference in the means of both groups being not statistically significant

at a 5 percent level. The resulting difference for post-treatment earnings in week 208 after

random assignment across groups in this sample is quantitatively equivalent and consis-

tent with the previously found 12 percent positive effect of JC on participants’ weekly

earnings (Burghardt et al., 1999; Schochet et al., 2001). Results on the effect of JC on

participants’ weekly hours worked in this sample of about two hours a week are also con-

sistent with those obtained in previous studies (Schochet et al., 2001). Similar summary

statistics for the groups to be analyzed (Non-Hispanics, Blacks, Whites, Non-Hispanic

Males, and Non-Hispanic Females) are also relegated to the Internet Appendix.

likelihood-based analysis to account for non-compliance, missing observations, and sample selection, see

Frumento et al. (2010).
6Nevertheless, we obtained a full set of results for the sample of Hispanics. Accordingly, most of the

estimated bounds were uninformative, and in some instances they could not be computed due to a strong

failure of the individual-level monotonicity assumption.
7For example, outreach and admissions agencies had struggle recruiting females for residential slots

in the past. Therefore, sampling rates to the control group were intentionally set lower for females in

some areas to overcome potential difficulties with unfilled slots.
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3 The Sample Selection Problem and the Horowitz

and Manski Bounds

Assessing the impact of job training programs on wages is fundamentally distinct than

assessing the program’s impact on earnings. Earnings are the product of the individual’s

wage times hours worked, therefore, the impact on earnings encompasses the effect on

the likelihood of being employed (labor supply effect) and the effect on wages. Thus, the

impact on wages can be interpreted as a pure price effect since significant increases in

wages can be directly related to the improvement of the participants’ human capital due to

the program, which is essential for individuals to boost their labor market opportunities.

Indeed, one of JC’s main goals is the enhancement of participants’ human capital through

academic and vocational training. Thus, it is of considerable importance to evaluate the

program’s impact on wages.

Estimation of a program’s causal effect on wages is complicated—even in the presence

of random assignment—by the fact that only the wages of those employed are observed.

This is referred to in the literature as the sample selection problem (Heckman, 1979).

Formally, consider having access to data on N individuals and define a binary treatment

Ti, which indicates whether individual i has participated in the program (Ti=1) or not

(Ti=0). We start with an assumption that accords with our data:

Assumption A. Ti is randomly assigned.

To illustrate the sample selection problem, assume for the moment that the individ-

ual’s wage is a linear function of a constant term, the treatment indicator Ti and a set of

pretreatment characteristics X1i,
8

(1) Y ∗i = β0 + Tiβ1 +X1iβ2 + U1i,

where Y ∗i is the latent wage for individual i, which is observed conditional on the self-

selection process into employment. This process is also assumed (for the moment) to

be linearly related to a constant, the treatment indicator Ti and a set of pretreatment

characteristics X2i,

(2) S∗i = δ0 + Tiδ1 +X2iδ2 + U2i.

8Linearity is assumed here to simplify the exposition of the sample selection problem. The non-

parametric approach to address sample selection employed in this paper does not impose linearity or

functional form assumptions to partially identify the treatment effects of interest.
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Similarly, S∗i is a latent variable representing the individual’s propensity to be employed.

Let Si denote the observed employment indicator that takes values Si=1 if individual i

is employed and 0 otherwise. Then,

Si = 1[S∗i ≥ 0],

where 1[·] is an indicator function. Therefore, we observe individual i’s wage, Yi, when i

is employed (Si =1) and it remains latent when unemployed (Si =0).

Conventionally, point identification of the parameter of interest, β1 (assumed to be

constant over the population in this setting), requires strong assumptions such as joint

independence of the errors (U1i, U2i) in the wage and employment equations (1) and

(2) and the regressors Ti, X1i and X2i, plus bivariate normality of (U1i, U2i) (Heckman,

1979). The bivariate normality assumption about the errors can be relaxed by relying on

exclusion restrictions (Heckman, 1990; Heckman and Smith, 1995; Imbens and Angrist,

1994), which require variables that determine employment but do not affect wages, or

equivalently, variables in X2i that do not belong in X1i. However, it is well known that

finding such variables that go along with economic reasoning in this situation is extremely

difficult (Angrist and Krueger, 1999; Angrist and Krueger, 2001).

An alternative approach suggests that the parameters can be bounded without relying

on distributional assumptions or on the availability and validity of exclusion restrictions.

Horowitz and Manski (2000; HM hereafter) proposed a general framework to construct

bounds on treatment effects when data is missing due to a nonrandom process, such as

self-selection into non-employment (S∗i < 0), provided that the outcome variable has a

bounded support.9 These bounds are known in the literature as “worst-case” bounds.

To illustrate HM’s bounds, let Yi(0) and Yi(1) be the potential (counterfactual) wages

for unit i under control (Ti=0) and treatment (Ti=1), respectively. The relationship

between these potential wages and the observed Yi is that Yi = Yi(1)Ti + Yi(0)(1 − Ti).

Define the average treatment effect (ATE) as

(3) ATE = E[Yi(1)− Yi(0)] = E[Yi(1)]− E[Yi(0)].

Conditional on Ti and the observed employment indicator Si, the ATE in (3) can be

9Horowitz and Manski (2000) derived conservative bounds on parameters of interest using nonpara-

metric analysis applied to experimental settings with problems of missing binary outcomes and covariates.
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written as:

ATE = E[Yi|Ti = 1, Si = 1]Pr(Si = 1|Ti = 1)

+ E[Yi(1)|Ti = 1, Si = 0]Pr(Si = 0|Ti = 1)

− E[Yi|Ti = 0, Si = 1]Pr(Si = 1|Ti = 0)

− E[Yi(0)|Ti = 0, Si = 0]Pr(Si = 0|Ti = 0)

(4)

Examination of Equation (4) reveals that, under random assignment, we can identify

from the data all the conditional probabilities (Pr(Si = s|Ti = t), for (t, s) = (0, 1)) and

also the expectations of the wage when conditioning on Si=1 (E[Yi|Ti = 1, Si = 1] and

E[Yi|Ti = 0, Si = 1]). Unfortunately, sample selection into non-employment makes it

impossible to point identify E[Yi(1)|Ti = 1, Si = 0] and E[Yi(0)|Ti = 0, Si = 0]. We can,

however, construct HM bounds on these unobserved objects provided that the support

of the outcome lies in a bounded interval [Y LB, Y UB], since this implies that the values

for these unobserved objects are restricted to such interval. Thus, HM’s lower and upper

bounds (LBHM and UBHM , respectively) are identified as follows:

LBHM = E[Yi|Ti = 1, Si = 1]Pr(Si = 1|Ti = 1) + Y LBPr(Si = 0|Ti = 1)

− E[Yi|Ti = 0, Si = 1]Pr(Si = 1|Ti = 0)− Y UBPr(Si = 0|Ti = 0)

UBHM = E[Yi|Ti = 1, Si = 1]Pr(Si = 1|Ti = 1) + Y UBPr(Si = 0|Ti = 1)

− E[Yi|Ti = 0, Si = 1]Pr(Si = 1|Ti = 0)− Y LBPr(Si = 0|Ti = 0)

(5)

Note that these bounds do not employ distributional or exclusion restrictions as-

sumptions. They are nonparametric and allow for heterogeneous treatment effects, that

is, non-constant effects over the population. On the other hand, a cost of disposing of

those assumptions is that the HM bounds are often uninformative. Indeed, this is the

case in our application as will be shown below. For this reason, we take this approach as

a building block and proceed by imposing more structure through the use of assumptions

that are typically weaker than the distributional and exclusion restriction assumptions

needed for point identification.

4 Bounds on Average Treatment Effects

We follow the approach by Lee (2009) and Zhang et al. (2008) who employ mono-

tonicity assumptions that lead to a trimming procedure that tightens the HM bounds.
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They implicitly or explicitly employ the principal stratification framework of Frangakis

and Rubin (2002) to motivate and derive their results. Principal stratification provides

a framework for analyzing average causal effects when controlling for a post-treatment

variable that has been affected by treatment assignment. In the context of the effect of JC

on wages, the affected post-treatment variable is employment. In this framework, indi-

viduals are classified into “principal strata” based on the potential values of employment

under each treatment arm. Comparisons of outcomes by treatment assignment within

strata can be interpreted as causal effects because which strata an individual belongs to

is not affected by treatment assignment.

More formally, let the potential values of employment be denoted by Si(0) and Si(1)

when i is assigned to control and treatment, respectively. We can partition the population

into strata based on the values of the vector {Si(0), Si(1)}. Since both Si and Ti are

binary, there are four principal strata:

NN : {Si(0) = 0, Si(1) = 0}

EE : {Si(0) = 1, Si(1) = 1}

EN : {Si(0) = 1, Si(1) = 0}

NE : {Si(0) = 0, Si(1) = 1}.

(6)

In the context of JC, NN is the stratum of those individuals who would be unemployed

regardless of treatment assignment, while EE is the stratum of those who would be

employed regardless of treatment assignment. The stratum EN represents those who

would be employed if assigned to control but unemployed if assigned to treatment, and

NE is the stratum of those who would be unemployed if assigned to control but employed

if assigned to treatment. Given that strata are defined based on the potential values of Si,

the stratum an individual belongs to is unobserved. A mapping of the observed groups

based on (Ti, Si) to the unobserved strata above is depicted in the first two columns of

Table 1.

Lee (2009) and Zhang et al. (2008) focus on the average treatment effect of a program

on wages for individuals who would be employed regardless of treatment status, i.e., the

EE stratum. This stratum is the only one for which wages are observed under both

treatment arms, and thus fewer assumptions are required to construct bounds for its

effects. We focus on the effects on this same stratum. Thus, the average treatment effect
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parameter we concentrate on is:

(7) ATEEE = E[Yi(1)|EE]− E[Yi(0)|EE].

4.1 Bounds Adding an Individual-Level Monotonicity Assump-

tion

To tighten the HM bounds presented in Section 3, we can employ the following

individual-level monotonicity assumption about the relationship between the treatment

(JC) and employment:

Assumption B. Individual-Level Positive Weak Monotonicity of T on S(T ): Si(1) ≥

Si(0) for all i.

This assumption states that treatment assignment affects employment (weakly) in one

direction, effectively ruling out the EN stratum. Both Lee (2009) and Zhang et al. (2008)

employed this assumption. In the context of JC, Assumption B is plausible because one

of the program’s stated goals is to increase the employability of participants. It does

so by providing academic, vocational and social skills training to participants, as well

as job search assistance. Indeed, the NJCS reported a positive and highly statistically

significant average effect of JC on employment (Schochet et al. 2001).

Nevertheless, this assumption can be criticized since it assumes the sign of the indi-

vidual treatment effect of the program on employment (e.g., Lechner and Melly, 2010).10

Two factors that may cast doubt on this assumption in our setting are that individuals

are “locked-in” away from employment while undergoing training (van Ours, 2004), and

the possibility that trained individuals may have a higher reservation wage after training

and thus may choose to remain unemployed (e.g., Blundell et al., 2007). Note, however,

that these two factors become less relevant the longer the time horizon after randomiza-

tion at which the outcome is measured. For this reason, we focus on wages at the 208th

week after random assignment, which is the latest wage measure available in the NJCS.11

In addition, there is one demographic group in our sample for which Assumption B is

10Lechner and Melly (2010) relax this individual-level monotonicity by making it hold conditional on

observed covariates.
11Zhang et al. (2009) provide some evidence that the estimated proportion of individuals who do

not satisfy the individual-level assumption (the EN stratum) falls with the time horizon at which the

outcome is measured after randomization.
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likely not appropriate. Hispanics in the NJCS were the only group found to have negative

but statistically insignificant effects of JC on both earnings and employment (Schochet et

al., 2001; Flores-Lagunes et al., 2009). Thus, in the main analysis to be presented below,

we consider a sample that excludes this group. Lastly, Assumption B can be falsified by

the data, as it gives rise to the following testable implication (Zhang et al., 2008; Imai,

2008): Pr(S = 0|T = 0)− Pr(S = 0|T = 1) ≥ 0. We employ this testable implication in

our empirical analysis below.

Assumption B, by virtue of eliminating the EN stratum, allows the identification

of some individuals in the EE and NN strata, as can be seen after deleting the EN

stratum in the last column of Table 1. Furthermore, the combination of Assumptions A

and B point identifies the proportions of each principal strata in the population. Let πk

be the population proportions of each principal strata k = NN,EE,EN,NE, and let

pS|T ≡ Pr(Si = s|Ti = t) for t, s = 0, 1. Then, πEE = p1|0, πNN = p0|1, πNE = p1|1−p1|0 =

p0|0−p0|1 and πEN = 0. Looking at the last column of Table 1, we know that individuals in

the observed group with (Ti, Si) = (0, 1) belong to the stratum of interest EE. Therefore,

we can point identify E[Yi(0)|EE] in (7) with E[Yi|Ti = 0, Si = 1]. However, it is not

possible to point identify E[Yi(1)|EE], since the observed group with (Ti, Si) = (1, 1) is

a mixture of individuals from two strata, EE and NE. Nevertheless, it can be bounded.

We can write E[Yi|Ti = 1, Si = 1] as a weighted average of individuals belonging to the

EE and NE strata:

(8) E[Yi|Ti = 1, Si = 1] =
πEE

(πEE + πNE)
E[Yi(1)|EE] +

πNE
(πEE + πNE)

E[Yi(1)|NE]

Since the proportion of EE individuals in the group (Ti, Si) = (1, 1) can be point

identified as πEE/(πEE +πNE)=p1|0/p1|1, E[Yi(1)|EE] can be bounded from above by the

expected value of Yi for the (p1|0/p1|1) fraction of the largest values of Yi in the observed

group (Ti, Si)=(1, 1). In other words, the upper bound is obtained under the scenario

that the largest (p1|0/p1|1) values of Yi belong to the EE individuals. Thus, computing the

expected value of Yi after trimming the lower tail of the distribution of Yi in (Ti, Si)=(1,

1) by 1 − (p1|0/p1|1) yields an upper bound for the EE group. Similarly, E[Yi(1)|EE]

can be bounded from below by the expected value of Yi for the (p1|0/p1|1) fraction of the

smallest values of Yi for those in the same observed group. The resulting upper (UBEE)
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and lower (LBEE) bounds for ATEEE are (Lee, 2009; Zhang et al., 2008):

UBEE = E[Yi|Ti = 1, Si = 1, Yi ≥ y11
1−(p1|0/p1|1)]− E[Yi|Ti = 0, Si = 1]

LBEE = E[Yi|Ti = 1, Si = 1, Yi ≤ y11
(p1|0/p1|1)]− E[Yi|Ti = 0, Si = 1],

(9)

where y11
1−(p1|0/p1|1) and y11

(p1|0/p1|1) denote the 1− (p1|0/p1|1) and the (p1|0/p1|1) quantiles of

Yi conditional on Ti = 1 and Si = 1, respectively. Lee (2009) shows that these bounds

are sharp (i.e., there are no shorter bounds possible under the current assumptions).

To estimate the bounds in (9) we can simply substitute sample quantities for popu-

lation quantities:

ÛBEE =
Σn
i=1Yi · Ti · Si · 1[Yi ≥ ŷ1−p̂]

Σn
i=1Ti · Si · 1[Yi ≥ ŷ1−p̂]

− Σn
i=1Yi · (1− Ti) · Si
Σn
i=1(1− Ti) · Si

L̂BEE =
Σn
i=1Yi · Ti · Si · 1[Yi ≤ ŷp̂]

Σn
i=1Ti · Si · 1[Yi ≤ ŷp̂]

− Σn
i=1Yi · (1− Ti) · Si
Σn
i=1(1− Ti) · Si

,

(10)

where ŷ1−p̂ and ŷp̂ are the sample analogs of the quantities y11
1−(p1|0/p1|1) and y11

(p1|0/p1|1) in

(9), respectively, and p̂, the sample analog of (p1|0/p1|1), is calculated as follows:

(11) p̂ =
Σn
i=1(1− Ti) · Si
Σn
i=1(1− Ti)

/
Σn
i=1Ti · Si
Σn
i=1Ti

Lee (2009) shows that these estimators are asymptotically normal and employs them

to estimate the average effect of JC on wages at different time horizons after random-

ization. Below, we will replicate his results for wages at week 208 after randomization.

We will also obtain corresponding estimates for relevant groups and estimate alterna-

tive tighter bounds that impose more structure that we argue is plausible in the current

setting.

4.2 Adding Weak Monotonicity of Mean Potential Outcomes

Across Strata to Tighten the Bounds

We present a weak monotonicity assumption of mean potential outcomes across the

EE and NE strata level that tightens the bounds in (9). This assumption was originally

proposed by Zhang and Rubin (2003) and employed in Zhang et al. (2008):

Assumption C. Weak Monotonicity of Mean Potential Outcomes Across the EE and

NE Strata: E[Y (1)|EE] ≥ E[Y (1)|NE].

Intuitively, this assumption formalizes the notion that the EE stratum is likely to be

comprised of more “able” individuals than those belonging to the NE stratum. Since
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“ability” is positively correlated with labor market outcomes (e.g., wages and employ-

ment), one would expect wages for the individuals who are employed regardless of treat-

ment status (the EE stratum) to weakly dominate on average the wages of those individ-

uals who are employed only if they receive training (the NE stratum). While Assumption

C is not directly testable, one can indirectly gauge its plausibility by comparing the aver-

age of pre-treatment variables that are highly correlated with wages between the EE and

NE strata.12 We illustrate this in our analysis below. Assumption C is related to—but

different from—Manski and Pepper’s (2000) “monotone instrumental variable” assump-

tion. Their assumption states that mean responses vary weakly monotonically across

subpopulations defined by specific values of the instrument. In contrast, Assumption C

compares mean responses across two principal strata.

Employing Assumptions A, B, and C results in tighter bounds. To see this, recall

that the average outcome in the observed group with (Ti, Si) = (1, 1) contains units from

two strata, EE and NE, and can be written as the weighted average shown in (8). By

replacing E[Yi(1)|NE] with E[Yi(1)|EE] in 8 and using the inequality in Assumption C,

we have that E[Yi|Ti = 1, Si = 1] ≤ E[Yi(1)|EE], and thus that E[Yi(1)|EE] is bounded

from below by E[Yi|Ti = 1, Si = 1]. Therefore, the lower bound for ATEEE becomes:

E[Yi|Ti = 1, Si = 1] − E[Yi|Ti = 0, Si = 1]. Imai (2008) shows that these bounds are

sharp.

To estimate the bounds under Assumptions A, B, and C, note that the upper bound

estimate of (9) remains ÛBEE from (10), while the estimate for the lower bound is the

corresponding sample analog of E[Yi|Ti = 1, Si = 1]− E[Yi|Ti = 0, Si = 1]:

(12) L̂Bc
EE =

Σn
i=1Yi · Ti · Si
Σn
i=1Ti · Si

− Σn
i=1Yi · (1− Ti) · Si
Σn
i=1(1− Ti) · Si

.

5 Bounds on Quantile Treatment Effects

We now extend the results presented in the previous section to the construction of

bounds on quantile treatment effects (QTE) based on results by Imai (2008). The param-

eters of interest are defined as the difference in the quantiles of the distributions of the

12In a setting where the outcome is not truncated due to non-employment, Flores and Flores-Lagunes

(2010) show that Assumption C provides testable implications that can be employed to falsify it. Un-

fortunately, in our current setting, the unobservability of wages for those unemployed prevents the

computation of these testable implications.
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potential outcomes Y (1) and Y (0). This difference is well-defined as long as the marginal

distributions of potential outcomes are point or partially identified. Our parameter of

interest is the α-quantile effect for the EE stratum:

(13) QTEα
EE = F−1

Yi(1)|EE(α)− F−1
Yi(0)|EE(α),

where F−1
Yi(t)|EE(α) denotes the α quantile of the distribution of Yi(t) for the EE stratum.

Two recent papers have focused on partial identification of QTE. Blundell, et. al.,

(2007) derived sharp bounds on the distribution of wages and the interquantile range

to study income inequality in the U.K. Their work builds on the worst-case bounds on

the conditional quantiles in Manski (1994), which are tighten by imposing stochastic

dominance assumptions. Their stochastic dominance assumption is applied to the distri-

bution of wages of individuals observed employed and unemployed, whereby the wages of

employed individuals are assumed to weakly dominate those of unemployed individuals

(i.e., positive selection into employment). In addition, they explore the use of exclusion

restrictions to further tighten their bounds. Lechner and Melly (2010) analyze QTE of

a German training program on wages. They impose an individual-level monotonicity

assumption similar to our Assumption B that is weakened by conditioning on covariates

X, and they subsequently employ the stochastic dominance assumption of Blundell et

al. (2007) to tighten their bounds. In contrast to those papers, we take advantage of

the randomization in the NJCS to estimate QTE by employing individual-level mono-

tonicity (Assumption B) and by strengthening Assumption C to stochastic dominance

applied to the EE and NE strata. Another difference between those studies and ours is

the parameters of interest. While Blundell et al. (2007) focus on the population QTE,

Lechner and Melly (2010) focus on the QTE for those individuals who are employed

under treatment. Our focus is on the QTE for individuals who are employed regardless

of treatment assignment (the EE stratum).13

Let FYi|Ti=t,Si=s(·) be the cumulative distribution of individuals’ wages conditional on

Ti = t and Si = s, and let ytsα denote its corresponding α-quantile, for α ∈ (0, 1), or ytsα =

F−1
Yi|Ti=t,Si=s

(α). Following the same intuition for partial identification of E[Yi(1)|EE] by

trimming the observed quantity E[Yi|Ti = 1, Si = 1], we can partially identify QTEα
EE as

13The treated-and-employed subpopulation is a mixture of two strata: EE and NE. In our application,

the EE stratum and the treated-and-employed subpopulation account for about the same proportion of

the population (57 and 61 percent, respectively).
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follows:

Proposition 1 (Imai, 2008). Under assumptions A and B, LBα
EE ≤ QTEα

EE ≤ UBα
EE,

where

UBα
EE = F−1

Yi|Ti=1,Si=1,Yi≥y111−(p1|0/p1|1)
(α)

− F−1
Yi|Ti=0,Si=1(α)

LBα
EE = F−1

Yi|Ti=1,Si=1,Yi≤y11(p1|0/p1|1)
(α)

− F−1
Yi|Ti=0,Si=1(α)

(14)

Similar to (9), FYi|Ti=1,Si=1,Yi≥y111−(p1|0/p1|1)
(·) and FYi|Ti=1,Si=1,Yi≤y11(p1|0/p1|1)

(·) correspond

to the upper and lower bounding distributions of the wages of those individuals who

belong to EE in the observed group (Ti, Si) = (1, 1). As such, UBα
EE is an upper bound

for the difference in quantiles between the treated and control groups’ outcomes at a

given α-quantile for the EE stratum. Similarly, LBα
EE represents a lower bound for this

difference. Imai (2008) shows that the bounds in (14) are sharp.

We estimate the bounds in (14) as:

ÛBα
EE = ŷuα − ŷcα

L̂Bα
EE = ŷlα − ŷcα,

(15)

where the α-quantile for each marginal distribution is calculated as:

ŷhα = min{y :
Σn
i=1Ti · Si · 1[Y h

i ≤ y]

Σn
i=1Ti · Si

≥ α},

with h = {u, l} for the upper and lower bounding distribution, respectively, and Y h
i rep-

resenting the outcome of individuals in the group with [Ti = 1, Si = 1, Yi ≥ y11
1−(p1|0/p1|1)]

for h = u or [Ti = 1, Si = 1, Yi ≤ y11
(p1|0/p1|1)] for h = l. Similarly, the α-quantile for the

observed control group with (Ti, Si) = (0, 1) is calculated as:

ŷcα = min{y :
Σn
i=1(1− Ti) · Si · 1[Y c

i ≤ y]

Σn
i=1(1− Ti) · Si

≥ α},

with Y c
i representing the outcome of the individuals in the group with (Ti, Si) = (0, 1).

5.1 Tightening Bounds on QTE using Stochastic Dominance

We tighten the bounds in (14) by employing an assumption similar to Assumption C

in section 4.2. For the case of QTE, this assumption has to be strengthened to stochastic

dominance:
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Assumption D. Stochastic Dominance Between the EE and NE Strata.: FYi(1)|EE(y) ≤

FYi(1)|NE(y),

where FYi|EE(·) and FYi|NE(·) are the cumulative distributions of wages for individuals

who belong to the EE and NE strata, respectively.

This assumption directly imposes restrictions on the distribution of potential outcomes

under treatment for individuals in the EE stratum, which results in a tighter lower bound

relative to that in (14). After adding this assumption, the resulting sharp bounds are:

Proposition 2 (Imai, 2008). Under assumptions A, B, and D, LBdα
EE ≤ QTEα

EE ≤

UBα
EE, where UB

α
EE is as in (14) and

(16) LBdα
EE = F−1

Yi|Ti=1,Si=1(α)− F−1
Yi|Ti=0,Si=1(α)

The estimator of the upper bound is still given by ÛBα
EE in (15), while the estimator

for LBdα
EE is now given by:

(17) L̂Bdα
EE = ŷlα − ŷcα,

where ŷlα = min{y :
Σn

i=1Ti·Si·1[Y t
i ≤y]

Σn
i=1Ti·Si

≥ α}, and Y t
i represents the outcome of those indi-

viduals in the group with (Ti, Si) = (1, 1).

6 Estimation of Bounds on the Effect of Job Corps

on Wages

In this section we empirically assess the effect of JC training on wages using data from

the NJCS. In Section 6.1, we concentrate on the average treatment effect and compute

the HM bounds under random assignment (Assumption A). Subsequently, we estimate

bounds for ATEEE that add different assumptions in order to tighten these benchmark

bounds. Section 6.2 reports bounds derived under Assumptions A and individual-level

monotonicity (Assumption B), while Section 6.3 explores the identifying power of weak

monotonicity of mean potential outcomes across strata (Assumption C). Sections 6.4 and

6.5 present and discuss bounds on QTEα
EE.
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6.1 Horowitz and Manski (HM) bounds

Table 2 reports the HM bounds, which only employ random assignment (Assumption

A), for the average treatment effect of JC on log wages in week 208 after randomization.

The table shows two sets of bounds. In the first, we follow Lee (2009) and transform

log wages to minimize the effect of outliers on the width of these bounds by splitting

the entire observed wage distribution into 20 percentile groups (5th, 10th,..., and 95th

percentile of log wages) and assigning to individuals in each percentile the mean log wage

in that group. The last column computes the HM bounds using the untransformed log

wages to exploit the original variation in this variable and to be able to use these bounds

as benchmark when adding other assumptions and when computing bounds on the QTE.

Table 2 shows that Lee’s transformed log wages have an upper bound on their support,

denoted by Y UB in (5), of 2.77, and a lower bound, Y LB, of 0.90. As expected, the

“smoothing” of wages has a large impact on the support of the outcome, since the last

column shows that for the untransformed wages the upper and lower bounds on their

support are 5.99 and -1.55, respectively. Consequently, the width of the HM bounds for

the untransformed log wages (6.244) is considerably larger than that for the transformed

ones (1.548). Detailed calculations of all quantities needed to construct the bounds in (5)

are shown in the second column of Table 2. Despite the large differences between the two

measures of wages, the evidence in Table 2 has the same qualitative implication about the

HM bounds: they are largely uninformative. The estimated HM bounds on the average

treatment effect of JC on wages using transformed log wages are 0.802 (upper bound)

and -0.746 (lower bound), while using untransformed log wages are 3.135 (upper bound)

and -3.109 (lower bound). These bounds are the basis upon which we add assumptions

to tighten them.

6.2 Bounds Adding Individual-Level Monotonicity

Under individual-level monotonicity of JC on employment (Assumption B) we par-

tially identify the average effect of JC on wages for those individuals who are employed

regardless of treatment assignment (the EE stratum). Therefore, it is of interest to es-

timate the size of that stratum relative to the full population, which can be done under

Assumptions A and B. Table 3 reports the estimated strata proportions for the full sam-
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ple (labeled “All”) and for demographic groups of interest. The EE stratum accounts for

close to 57 percent of the population, making it the largest stratum. The second largest

stratum is the “never employed” or NN , accounting for 39 percent of the population.

Lastly, the NE stratum accounts for 4 percent (the stratum EN is ruled out by Assump-

tion B). The relative magnitudes of the strata largely hold for all demographic groups.

Interestingly, Whites have the highest proportion of EE individuals at 66 percent, while

Blacks have the lowest at 51 percent.

Table 4 reports estimated bounds for ATEEE for the full sample using (10) under

Assumptions A and B, for both transformed and untransformed wages. The second col-

umn exactly replicates the results by Lee (2009) using transformed log wages. Relative

to the HM bounds, these bounds are much tighter: their width goes from 1.548 in the

HM bounds to 0.112. However, the bounds still include zero, as does the Imbens and

Manski (2004; IM hereafter) confidence intervals reported in the last row. These confi-

dence intervals include the true parameter of interest with a 95 percent probability. The

fourth column of Table 4 reports estimated bounds for ATEEE under Assumptions A

and B using the untransformed log wages. Unlike the HM bounds, the present bounding

procedure does not depend on the empirical support of the outcome, thereby the effect

of transforming wages is negligible. While the width of the bounds using either measure

of wages is similar, both the bounds and the IM confidence intervals include zero. Thus,

from Table 4 we see that Assumption B greatly tightens the HM bounds, although not

enough to rule out zero or a small negative effect of JC on wages at week 208.

As discussed in Section 4.1, the untestable individual-level weak monotonicity assump-

tion of the effect of JC on employment may be inadequate in certain circumstances. In

the context of JC, the group of Hispanics has been found to be unusual in the sense that

the NJCS calculated negative but statistically insignificant average effects of the program

on both their employment and weekly earnings at week 208, while for the other groups

these effects were positive and highly statistically significant (Schochet et al., 2001).14

This evidence casts doubt on the validity of Assumption B for the group of Hispanics.

Therefore, we consider a sample that excludes this group (labelled “Non-Hispanics”),

which includes 7,573 individuals.15

14The NJCS reported that Hispanics participating in JC had a statistically insignificant decrease in

the probability of employment of 3.1 percentage points (Schochet et al., 2001).
15In principle, it is possible to construct bounds on the average effect on the EE stratum that dispose
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Panel A of Table 5 presents estimated bounds under Assumptions A and B for different

demographic groups, along with their width and 95 percent IM confidence intervals. The

second column reproduces the bounds in Table 4 for the full sample (All). The third

column presents the corresponding estimated bounds for the Non-Hispanics sample. The

upper bound for this group is larger than the one for All, while the lower bound is less

negative, which is consistent with the discussion above regarding Hispanics. The IM

confidence intervals are wider for the non-Hispanics sample relative to All, but they are

more concentrated on the positive side of the real line. In terms of the other groups

(Whites, Blacks, and Non-Hispanic Males and Females), none of the estimated bounds

exclude zero, although Whites and Non-Hispanic Males have a lower bound almost right

at zero. In general, the IM confidence intervals for the last four demographic groups are

wider than those of the All and Non-Hispanics groups, which is likely a consequence of

their smaller sample sizes.

We now check the testable implication of Assumption B mentioned in Section 4.1:

Pr(S = 0|T = 0)−Pr(S = 0|T = 1) ≥ 0. Note that the left-hand-side of this expression

is the proportion of individuals in the NE stratum (πNE), which is reported in Table 3

for all groups except Hispanics. From the table it can be seen that all estimated NE

stratum proportions are between 0.04 and 0.06, and they are statistically significant at

a 1 percent level (not shown in the table). For Hispanics, the corresponding proportion

is a statistically insignificant 0.0021. This evidence indicates that Assumption B is not

falsified by the data for all groups reported in Table 3, and suggests that such evidence

is dubious for Hispanics.

We close this section by arguing, as does Lee (2009), that small and negative esti-

mated lower bounds on the effect of JC on wages under the current assumptions can be

interpreted as pointing toward positive effects. The reason is that the lower bound is ob-

tained by placing individuals in the EE stratum at the bottom of the distribution of the

observed group with (Ti, Si) = (1, 1). While this mathematically identifies a valid lower

bound, it implies a perfect negative correlation between employment and wages that is

implausible from the standpoint of standard models of labor supply, in which individuals

with higher predicted wages are more likely to be employed. Indeed, one interpretation

of the individual-level monotonicity assumption (Zhang et al., 2008). However, these bounds are typically

too wide, which is the case in our application.
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that can be given to Assumption C (employed in the next section) is that of formalizing

this theoretical notion to tighten the lower bound.

6.3 Bounds Adding Weak Monotonicity of Mean Potential Out-

comes Across Strata

The columns labelled “A, B, and C” in Table 4 present the estimated bounds for the

full sample adding Assumption C, for both transformed and untransformed log wages.

This assumption has considerable identifying power as it results in much tighter bounds

for the ATEEE compared to the previously estimated bounds, with the width being cut in

about half for both measures of log wages. Importantly, employing Assumption C yields

estimated bounds that are informative about the sign of the effect of JC training on log

wages at week 208. Bounds on the transformed log wages are 0.034 to 0.093, and those on

the untransformed log wages are 0.037 to 0.099, with both sets ruling out negative effects.

When computing IM confidence intervals on the bounds adding Assumption C, we see

in the last row of Table 4 that, with 95 percent confidence, both measures of log wages

exclude zero, indicating statistically significantly positive effects of JC. Thus, focusing on

the untransformed log wages, the effect of JC for EE individuals is significantly positive

and falls between 3.7 and 9.9 percent.

Given the strong identifying power of Assumption C, it is important to gauge its

plausibility in this application. A direct statistical test is not feasible since the assump-

tion is untestable. However, we indirectly gauge its plausibility by looking at one of its

implications. Assumption C formalizes the idea that the EE stratum possesses traits

that result in better labor market outcomes relative to individuals in the NE stratum.

Thus, we look at pre-treatment covariates that are highly correlated with log wages at

week 208 and test whether, on average, individuals in the EE stratum indeed exhibit

better characteristics at baseline relative to individuals in the NE stratum. We focus

mainly on the following pre-treatment variables: earnings, whether the individual held

a job, months employed (all three in the year prior to randomization), and education at

randomization.

To implement this idea, we compute average pre-treatment characteristics for the EE

and NE strata. Computing average characteristics for the EE stratum is straightforward

since, under Assumptions A and B, the individuals in the observed group (Ti, Si)=(0,1)
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belong to and are representative of this stratum. To estimate average characteristics for

the NE stratum, note that their average can be written as a function of the averages of the

whole population and the other strata, all of which can be estimated under Assumptions

A and B. Let W be a pre-treatment characteristic of interest, then,

E[W |NE] = {E[W ]− πEEE[W |EE]− πNNE[W |NN ]}/πNE.

The estimated differences between the average pre-treatment variables employed for this

exercise for the EE and NE strata were all positive, indicating “better” pre-treatment

labor market characteristics for the EE stratum. Formal tests of statistical significance

for these differences, however, did not reject their equality (mainly because of the high

variance in the estimation of E[W |NE]). We conclude that this exercise does not pro-

vide evidence against Assumption C, while the estimated differences suggest that it is a

plausible assumption.16

Panel B of Table 5 presents the estimated bounds, width, and IM confidence intervals

for all groups under Assumptions A, B, and C. The second and third columns show

inference for the full population (All) and Non-Hispanics. Although the two sets of

bounds are of similar width, the bounds for Non-Hispanics are shifted higher to an effect

of JC on wages between 5 to 11.8 percent. In fact, the IM confidence intervals show

that, despite the smaller sample size, this average effect is statistically significant with

95 percent confidence.

The estimated bounds for the other demographic groups in Table 5 (panel B) show

some interesting results. All of the bounds and IM confidence intervals exclude zero, with

the smallest lower bound being that of All at 3.7 percent (all others are 4.6 percent and

higher). Remarkably, the estimated bounds for all the demographic groups that exclude

Hispanics are relatively similar, suggesting that their average effect of JC on wages for

the EE stratum is between about 5 and 12 percent. The differences in the confidence

intervals across groups is likely driven by the differences in sample sizes. These results

imply unequivocal positive effects of JC on wages across the different demographic groups,

and they reinforce the previous notion of a strong identifying power of Assumption C.

16The tables corresponding to this exercise can be found in the Internet Appendix. Employing other

pre-treatment variables provided similar results (i.e., no evidence against Assumption C).
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6.4 Bounds on Quantile Treatment Effects Under Random As-

signment and Individual-Level Monotonicity

We proceed to analyze the effects of JC on participant’s wages beyond the aver-

age impact by providing estimated bounds for quantile treatment effects (QTE) for the

EE stratum, QTEα
EE. We start by estimating bounds under Assumptions A and B in

this subsection. To summarize the evidence from the computation of QTE at several

quantiles, we provide a series of figures for the different groups under analysis.17 We

concentrate on the log of the untransformed wages for brevity and to fully exploit the

original variation in this variable. The estimated QTE under Assumptions A and B,

along with their corresponding IM confidence intervals, are shown in Figure 1.

Recall that the estimated bounds for the ATEEE under the same assumptions pre-

sented in Section 6.2 did not rule out zero for any of the groups under analysis. Looking

at the estimated bounds on the QTE for the full sample in Figure 1(a), they rule out zero

for all lower quantiles up to 0.7. Once IM confidence intervals are computed, though, only

the bounds for the 0.2 quantile imply statistically significant positive effects of JC on log

wages with 95 percent confidence. Given the argument that Assumption B is likely not

satisfied for Hispanics, we look at the group of Non-Hispanics in Figure 1(b). Consistent

with the results from bounds on average effects, the estimated bounds on QTEα
EE for

this group are generally shifted towards the positive space. For this group, the estimated

bounds also exclude zero for all lower quantiles up to 0.7, and the 95 percent IM confi-

dence intervals rule out zero for the 0.5 quantile. The estimated bounds for these two

samples suggest that JC is more likely to have positive effects on log wages for the lower

quantiles of the wage distribution.

Looking at the results by race, Figures 1(c) and 1(d) show that, once again, the

estimated bounds for the QTE exclude zero for a number of lower quantiles up to 0.75

(with the exception of the 0.05 quantile for Whites and the 0.75 quantile for Blacks).

However, probably due to the smaller sample sizes, when looking at the 95 percent IM

confidence intervals for these groups only quantiles 0.55 and 0.65 for Whites and the 0.05

quantile for Blacks are statistically significant. It is worth noting that these two figures

suggest that Blacks may experience more positive effects of JC on wages in the lower

quantiles of the wage distribution, while Whites may experience more positive effects at

17The complete numerical results are shown in the Internet Appendix
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the upper quantiles. The large width of the IM confidence intervals, however, prevents

us from being conclusive about this point.

Figures 1(e) and 1(f) show the corresponding estimated bounds and 95 percent IM

confidence intervals for Non-Hispanic Males and Females, respectively. The bounds reflect

a trend of excluding zero at the lower quantiles that is similar to that of the previous

groups, albeit less clear for Non-Hispanic Females. Interestingly, Non-Hispanic Males

show a greater number of estimated bounds excluding zero, which is probably due to a

lower degree of heterogeneity in this group relative to Non-Hispanic Females.18 Looking

at the IM confidence intervals, none of them exclude zero for Non-Hispanic Females,

while they do for quantiles 0.05, 0.1, and 0.45 for Non-Hispanic Males. These results

suggest that inference for Non-Hispanic Females is more difficult due to their greater

heterogeneity and smaller sample size.

To end this subsection, we remark that, while the bounds and IM confidence inter-

vals for the average treatment effect of JC on wages under Assumptions A and B were

inconclusive about its sign, the analysis of QTE reveals that positive effects of JC on

wages tend to occur for lower and middle quantiles of the distribution. This is the case

even when looking at groups with smaller sample sizes. Furthermore, the demographic

groups analyzed seem to experience different QTE, both across quantiles and groups.

Blacks appear to have larger positive effects at lower quantiles, while Whites appear to

have larger effects in the upper quantiles. Also, Non-Hispanic Females show more un-

informative results than Non-Hispanic Males. Next, we add Assumption D (stochastic

dominance) to tighten these bounds.19

18By greater heterogeneity of Non-Hispanic Females relative to Non-Hispanic Males we mean that

the former group shows higher standard deviation in key variables such as age, marital and cohabitation

status, separated, presence of a child, number of children, and education. This is also true for the average

characteristics of the corresponding subset of individuals in the EE stratum.
19Just as with average effects, it is possible to construct bounds on QTE disposing of the individual

monotonicity assumption. While still too wide to rule out zero, several of the differences across groups

and quantiles pointed out in this section hold for those bounds. These results are available from the

authors upon request.
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6.5 Bounds on Quantile Treatment Effects Adding Stochastic

Dominance

Estimated bounds for QTE under Assumptions A, B, and D are summarized in Figure

2. The first noteworthy feature of these estimated bounds is that all of them exclude zero

at all quantiles for all groups, which strongly suggests that the effect of JC on wages is

positive along the wage distribution for all groups. These bounds speak to the identifying

power of the stochastic dominance assumption (Assumption D). Also noteworthy is that

the general conclusions drawn from the estimated bounds in the previous subsection are

maintained and reinforced in several instances.

Looking at the results for the full sample and Non-Hispanics (Figures 2(a) and 2(b)),

we again see a shift toward more positive effects when Hispanics are dropped. Interest-

ingly, in both of these samples, the lower and upper bounds for the quantiles 0.55 and

0.8 coincide, resulting in a point-identified effect of JC on wages for these two quantiles.

Also, adding the stochastic dominance assumption results in 95 percent IM confidence

intervals that exclude zero for most of the quantiles except for 0.05, 0.1, 0.6, 0.9, and 0.95

for the full sample and 0.1, 0.25, and 0.35 for the Non-Hispanic sample. Concentrating on

the latter sample, for which Assumption B is likely satisfied, and excluding the bounds

for the quantile 0.05 that differ from the rest, the bounds that exclude zero are between

(roughly) 2.7 and 11.7 percent. In addition, the IM confidence intervals that exclude

zero largely overlap, suggesting that the effects of JC on wages do not differ substantially

across quantiles. The only clear outliers are the estimated bounds on the 0.05 quantile,

which are between 10.5 and 20 percent. In summary, we take these results as clear in-

dication that JC has a significantly positive effect on wages along the wage distribution

under the maintained assumptions.

The results by race are shown in Figures 2(c) and 2(d). Adding Assumption D re-

inforces the notion that Blacks likely exhibit larger positive impacts of JC on log wages

in the lower portion of the wage distribution, while Whites likely exhibit larger impacts

on the upper quantiles. Indeed, the 95 percent IM confidence intervals for Blacks in the

lowest quantiles exclude zero but not those at the highest quantiles. The opposite is

true for Whites. However, despite this evidence being stronger than before, it appears

inconclusive when looking at the IM confidence intervals, since there is a considerable

amount of overlap on the intervals for both groups within quantiles. The IM confidence
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intervals also show that Blacks have statistically significant positive effects of JC on

wages throughout their wage distribution (except at quantiles 0.1, 0.25, 0.9, and 0.95),

with estimated bounds that are between roughly 3.1 and 11.5 percent (excluding the 0.05

quantile). Whites show statistically significant positive effects only for quantiles larger

than 0.4 (except 0.8), with estimated bounds that are between roughly 6.1 to 14 percent.

Figures 2(e) and 2(f) present the results by Non-Hispanic gender groups. All the esti-

mated bounds under Assumptions A, B, and D for these groups exclude zero at all quan-

tiles, strongly suggesting positive effects of JC on wages and illustrating the identifying

power of adding the stochastic dominance assumption. When taking into consideration

the 95 percent IM confidence intervals, we find statistically significant positive effects

of JC on log wages for more than half of the quantiles considered. Interestingly, Non-

Hispanic Females do not have any statistically significant effects throughout the lower

half of their wage distribution up to quantile 0.4 (except at the 0.2 quantile), suggesting

that Non-Hispanic Females in the upper half of the distribution are more likely to ben-

efit from higher wages due to JC training. Aside from this distinction, there does not

seem to be other substantial differences between gender groups, as judged by the large

overlap in their IM confidence intervals. Considering confidence intervals that exclude

zero, Non-Hispanic Females have estimated bounds that are between roughly 4.4 to 12.1

percent, while those estimated bounds for Non-Hispanic Males are between roughly 3.6

to 13.4 percent (excluding the 0.05 quantile).20

7 Conclusion

We empirically assess the effect of the Job Corps (JC) training program on wages

using data from the National Job Corps Study (NJCS), a randomized evaluation of the

20Recall that Assumption D (stochastic dominance) is stronger than Assumption C (weak monotonicity

of mean potential outcomes). To indirectly gauge the plausibility of Assumption D in a similar fashion

as Assumption C (see section 6.3), we proceeded to divide each corresponding sample into quintiles

based on a given pre-treatment covariate (we employ the same covariates as in section 6.3). Then, for

each quintile we compute and test the difference in the average pre-treatment covariate between the EE

and NE strata. As it was the case with Assumption C, we do not find evidence against the stochastic

dominance assumption for any of the samples analyzed. Details and the results of this exercise can be

found in the Internet Appendix.
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program. JC is the United States’ largest job training program targeting disadvantaged

youth and its stated goal is to enhance participants’ human capital and labor market

outcomes. Thus, research shedding light on the effects of JC on wages is important

because wages can be related to human capital improvements due to the program. Fur-

thermore, assessments of the effectiveness of JC are opportune given recent discussions

in the public arena seeking to cut federal spending on training programs. Our results

provide substantial evidence that JC has positive and significant effects on wages, not

only at the mean but also at different points of the wage distribution, and for different

demographic groups of interest.

Our empirical approach makes use of recent partial identification results for treat-

ment effects in the presence of sample selection due to Zhang et al. (2008), Imai (2008),

and Lee (2009). This bounding strategy allows us to estimate informative nonparamet-

ric bounds on the average and quantile treatment effects of JC on wages accounting

for non-random selection into employment under weaker assumptions than those con-

ventionally invoked for point identification. We exploit the random assignment in the

NJCS to construct “worst case” bounds (Horowitz and Manski, 2000), and then add an

individual-level monotonicity assumption on the effect of JC on employment to tighten

them. While these bounds cannot rule out negative average effects of JC on wages for

those employed irrespective of treatment assignment, by constructing bounds on quan-

tile treatment effects we find that for certain quantiles and demographic groups we are

able to statistically rule out zero or negative effects of JC on wages. These results are

noteworthy given that the lower bound under these assumptions is likely too pessimistic

since it implies a theoretically implausible perfect negative correlation between wages and

employment.

To further tighten the above bounds, we add a mean-level weak monotonicity or

a stochastic dominance assumption across strata (for average and quantile treatment

effects, respectively). This assumption formalizes the notion that individuals in some

strata are predicted to have better labor market outcomes than others, hence avoiding

the perfect negative correlation between wages and employment implied by the previous

assumptions. The estimated bounds for the average effect of JC on wages for the indi-

viduals employed irrespective of treatment assignment indicate significant positive effects

for all groups analyzed. The estimated bounds for groups that exclude Hispanics are
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remarkably similar, with an estimated lower bound of about 4.6 percent and an upper

bound of about 12 percent. Furthermore, we obtain interesting insights when analyzing

bounds on quantile treatment effects for individuals employed irrespective of treatment

assignment. In particular, we find that the positive effects of JC on wages largely hold

across quantiles but that there are differences across quantiles and demographic groups.

The effects for Blacks appear larger in the lower half of their wage distribution, while

the effects appear larger for Whites in the upper half of their wage distribution. In addi-

tion, Non-Hispanic Females show statistically significant positive effects of JC on wages

in the upper part of their wage distribution, but not in the lower part. Our preferred

estimated bounds on quantile effects—those imposing individual-level monotonicity and

stochastic dominance—for the Non-Hispanic population suggest that the effect of JC on

wages across quantiles range from about 2.7 to 11.7 percent. We provide evidence that

both of these assumptions are not falsified by the data.

In summary, our results provide evidence of a positive and significant effect of JC on

wages for those individuals who would be employed irrespective of treatment assignment.

This strongly suggests that the JC program has a positive and significant effect on the

human capital of these individuals, and that this investment is rewarded in the labor

market in the form of higher wages. These results can be taken as encouraging with

regard to the effectiveness of JC, and they provide new insights about how the program

affects different demographic groups it serves.

8 References

Abadie, A., Angrist, J., and Imbens, G. 2002. “Instrumental Variables Estimation of

Quantile Treatment Effects.” Econometrica, 70: 91-117.

Angrist, J., and Krueger, A. 1999. “Empirical Strategies in Labor Economics.” In

Orley Ashenfelter and David Card (eds) Handbook of Labor Economics, Volume IIIA,

Elsevier.

Angrist, J., and Krueger, A. 2001. “Instrumental Variables and the Search for Iden-

tification: From Supply and Demand to Natural Experiments.” Journal of Economic

Perspectives, 15(4): 69-85.

Blundell, R., Gosling, A., Ichimura, I., and Meghir, C. 2007. “Changes in the Dis-

29



tribution of Male and Female Wages Accounting for Employment Composition Using

Bounds.” Econometrica 75: 323-363.

Burghardt, J., McConnell, S., Meckstroth, A., Schochet, P., and Homrighausen, J.

1999. “National Job Corps Study: Report on Study Implementation.” Mathematica

Policy Research, Inc., Princeton, NJ.

Chernozhukov, V. and Hansen, C. 2005. “Notes and Comments an IV Model of

Quantile Treatment Effects.” Econometrica, 73(1): 245-261.

Flores, C., and Flores-Lagunes, A. 2010. “Nonparametric Partial Identification of

Causal Net and Mechanism Average Treatment Effects.”, Mimeo, University of Miami.

Flores, C., Flores-Lagunes, A., Gonzales, A., and Neumann, T. Forthcoming. “Es-

timating the Effects of Length of Exposure to Instruction in a Training Program: The

Case of Job Corps.” The Review of Economics and Statistics.

Flores-Lagunes, A., Gonzalez, A., and Neumann, T. 2009. “Learning but not Earning?

The Impact of Job Corps Training on Hispanic Youth.” Economic Inquiry, 48: 651-67.

Frangakis, C., and Rubin, D. 2002. “Principal Stratification in Causal Inference.”

Biometrics, 58: 21-29.

Frumento, P., Mealli, F., Pacini, B. and Rubin, D. 2011. “Evaluating Causal Ef-

fects in the Presence of Noncompliance, Truncation by Death, and Unintended Missing

Outcomes.” Mimeo, University of Pisa.

Heckman, J. 1979. “Sample Selection Bias as a Specification Error.” Econometrica,

47: 153-162.

Heckman, J. 1990. “Varieties of Selection Bias.” American Economic Review, 80:

313-318.

Heckman, J., LaLonde, R., and Smith, J. 1999. “The Economics and Econometrics of

Active Labor Market Programs.” In Orley Ashenfelter and David Card (eds.) Handbook

of Labor Economics, Volume IIIA, Elsevier.

Heckman, J., and Smith, J. A. 1995. “Assessing the Case for Social Experiments.”

Journal of Economic Perspectives, 9(2): 85-110.

Heckman, J., and Smith, J. A. 1999. “The Pre-Programme Earnings Dip and the De-

terminants of Participation in a Social Programme: Implications for Simple Programme

Evaluation Strategies.” Economic Journal, 109(2): 313-348.

Horowitz, J., and Manski, C. 2000. “Nonparametric Analysis of Randomized Exper-

30



iments with Missing Covariate and Outcome Data.” Journal of the American Statistical

Association, 95: 77-84.

Imai, K. 2008. “Sharp Bounds on the Causal Effects in Randomized Experiments

with “Truncation-by-Death”.” Statistics and Probability Letters, 78: 144-149.

Imbens, G., and Angrist, J. 1994. “Identification and Estimation of Local Average

Treatment Effects.” Econometrica, 62: 467-476.

Imbens, G., and Manski, C. 2004. “Confidence Intervals for Partially Identified Pa-

rameters.” Econometrica, 72: 1845-1857.

Imbens, G., and Wooldridge, J. 2009. “Recent Developments in the Econometrics of

Program Evaluation.” Journal of Economic Literature, 47: 5-86.

Lechner, M., and Melly, B. 2010. “Partial Identification of Wage Effects of Training

Programs.” Mimeo, University of St. Gallen.

Lee, David S. 2009. “Training Wages, and Sample Selection: Estimating Sharp

Bounds on Treatment Effects.” Review of Economic Studies, 76: 1071-1102.

Manski, C. 1994. “The Selection Problem.” in C. Sims (ed) Advances in Econometrics,

Sixth World Congress, vol I, Cambridge, U.K. Cambridge University Press, 143-170.

Manski, C., and Pepper, J. 2000. “Monotone Instrumental Variables: With an Ap-

plication to the Returns to Schooling.” Econometrica, 68: 997-1010.

Schochet, P. 2001. “National Job Corps Study: Methodological Appendixes on the

Impact Analysis.” Mathematica Policy Research, Inc., Princeton, NJ.

Schochet, P., Burghardt, J., and Glazerman, S. 2001. “National Job Corps Study:

The Impacts of Job Corps on Participants’ Employment and Related Outcomes.” Math-

ematica Policy Research, Inc., Princeton, NJ.

US Department of Labor. 2010. http://www.dol.gov/dol/topic/training/jobcorps.html.

USA Today. 2011. “Training Sprawl Costs U.S. $18 Billion per Year”, February 9,

2011.

van Ours, J. 2004. “The Locking-in Effect of Subsidized Jobs.” Journal of Compara-

tive Economics, 32: 37-52.

Zhang, J., and Rubin, D. 2003. “Estimation of Causal Effects via Principal Strati-

fication When Some Outcomes are Truncated by ‘Death’.” Journal of Educational and

Behavioral Statistics, 28: 353-368.

Zhang, J., Rubin, D., and Mealli, F. 2008. “Evaluating the Effect of Job Training Pro-

31



grams on Wages Through Principal Stratification.” in D. Millimet et al. (eds) Advances

in Econometrics vol XXI, Elsevier.

Zhang, J., Rubin, D., and Mealli, F. 2009. “Likelihood-based Analysis of the Causal

Effects of Job Training Programs Using Principal Stratification.” Journal of the American

Statistical Association, 104: 166-176.

32



 
Table 1. Observed groups based on treatment and employment indicators (Ti, Si) and PS 
mix within groups. 

Groups by observed (Ti, Si) PS PS (individual monotonicity) 

(0,0) NN and NE NN and NE 

(1,1) EE and NE EE and NE 

(1,0) NN and EN NN 

(0,1) EE and EN EE 

Note: PS stands for principal strata. 

 
Table 2. HM (Horowitz and Manski, 2000) Bounds on average treatment effects for week 
208 ln(wage).  

 

Quantity in eq. (5) Transformed 
wages 

Untransformed 
wages 

Bounds on support of 
wages 

 

  5th percentile mean wage  2.46 4.77 
95th percentile mean wage  15.96 14.00 

YLB YLB 0.90 -1.55 
YUB YUB 2.77 5.99 

Control group  
  Observations  3599 3599 

(i)Employment rate  Pr(Si=1 | Ti=0) 0.566 0.566 
(ii)Mean ln(wage) E[Yi | Ti=0, Si=1] 1.997 1.991 

(a)Upper bound (i)*(ii)+(1-(ii))*YUB 2.332 3.729 
(b)Lower bound (i)*(ii)+(1-(ii))*YLB 1.52 0.451 

Treatment group  
  Observations  5546 5546 

(iii)Employment rate Pr(Si=1 | Ti=1) 0.607 0.607 
(iv)Mean ln(wage) E[Yi | Ti=1, Si=1] 2.031 2.028 

(c)Upper bound (iii)*(iv)+(1-(iii))*YUB 2.321 3.587 
(d)Lower bound (iii)*(iv)+(1-(iii))*YLB 1.586 0.620 

Treatment Effect  
  Upper bound UBHM 0.802 3.135 

Lower bound LBHM -0.746 -3.109 
Width UBHM - LBHM 1.548 6.244 

Notes: “Transformed wages” are the wages transformed as described in Section 6.1. 
Alternatively to using Equation (5) to calculate UBHM and LBHM, one may use the upper 
and lower bounds for the control and treatment group, labeled (a), (b), (c), (d), 
respectively, and compute: UBHM= (c)–(b) and LBHM= (d)-(a). 

 
 
 



Table 3. Estimated principal strata proportions by demographic groups under analysis. 

PS All 
Non-

Hispanics Whites Blacks 

Non-
Hispanic 

Males 

Non-
Hispanic 
Females 

EE 0.566 0.559 0.657 0.512 0.583 0.530 
NN 0.393 0.392 0.303 0.436 0.377 0.410 
NE 0.041 0.049 0.040 0.052 0.040 0.060 
Observations 9145 7573 2358 4566 4280 3293 

Note: Non-Hispanics are the full sample (All) minus individuals that reported being Hispanic. 
All estimates are statistically significant 
 
 
Table 4. Bounds on the average treatment effect of the EE strata for ln(wage) in week 208. 

 
Transformed wages Untransformed wages 

Assumptions: A and B A, B, and C A and B A, B, and C 
Control group     

  Number of observations 3599 3599 3599 3599 
(i)Proportion employed 0.566 0.566 0.566 0.566 

Mean ln(wage) for 
employed 1.997 1.997 1.991 1.991 

Treatment group 
    Number of observations 5546 5546 5546 5546 

(ii)Proportion employed 0.607 0.607 0.607 0.607 
Mean ln(wage) for 

employed 2.031 2.031 2.028 2.028 
     p= [(ii)-(i)]/(ii) 0.068 0.068 0.068 0.068 

pth quantile 1.636 1.636 1.639 1.639 
Trimmed mean:E[Y|y>yp] 2.090 2.090 2.090 2.090 

     1-pth quantile 2.768 2.768 2.565 2.565 
Trimmed mean:E[Y|y<y1-p] 1.978 1.978 1.969 1.969 
 
Treatment Effect 

    Upper bound 0.093 0.093 0.099 0.099 

 
(0.014) (0.014) (0.014) (0.014) 

Lower bound -0.019 0.034 -0.022 0.037 

 
(0.018) (0.011) (0.016) (0.012) 

Width  0.112 0.059 0.121 0.062 
95 percent  

IM Confidence interval [-0.049, 0.116] [0.016, 0.116] [-0.048, 0.122] [0.018, 0.122] 

Note: Bootstrap standard errors in parentheses (based on 5,000 replications). IM refers to the 
Imbens and Manski (2004) confidence interval, which contains the true value of the 
parameter with a given probability. 



 
Table 5. Bounds on the average treatment effect of the EE strata for untransformed ln(wage) in week 208, by demographic 
groups. 
 
Panel A: Under Assumptions A and B 

  All Non-Hispanics Whites Blacks 
Non-Hispanic 

Females 
Non-Hispanic 

Males 
Upper bound 0.099 0.118 0.120 0.116 0.120 0.114 

 
(0.014) (0.015) (0.028) (0.020) (0.024) (0.020) 

Lower bound -0.022 -0.018 8.989E-05 -0.012 -0.023 -0.009 

 
(0.016) (0.017) (0.031) (0.021) (0.026) (0.023) 

Width 0.121 0.136 0.120 0.129 0.143 0.123 

95 percent IM 
confidence interval [-0.049, 0.122] [-0.046, 0.143] [-0.050, 0.166] [-0.047, 0.149] [-0.066, 0.159] [-0.047, 0.147] 
 
 
Panel B: Under Assumptions A, B, and C 

  All Non- Hispanics Whites Blacks 
Non-Hispanic 

Females 
Non-Hispanic 

Males 
Upper bound 0.099 0.118 0.120 0.116 0.120 0.114 

 
(0.014) (0.015) (0.028) (0.020) (0.024) (0.020) 

Lower bound 0.037 0.050 0.056 0.053 0.046 0.052 

 
(0.012) (0.013) (0.022) (0.016) (0.020) (0.016) 

Width 0.062 0.068 0.064 0.063 0.074 0.061 

95 percent IM 
confidence interval  [0.018, 0.122] [0.029, 0.143] [0.019, 0.166] [0.027, 0.149] [0.014, 0.159] [0.026, 0.147] 
Note: Bootstrap standard errors in parentheses (based on 5,000 replications). IM refers to the Imbens and Manski (2004) confidence 

interval, which contains the true value of the parameter with a given probability. 
 
 



 

 

 

Figure 1. Bounds and 95 percent Imbens and Manski (2004) confidence intervals for QTE 
by subgroups, under Assumptions A & B. Upper and lower bounds are denoted by a short 
dash, while IM confidence intervals are denoted by a long dash at the end of the dashed 
vertical lines. 
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Figure 2. Bounds and 95 percent Imbens and Manski (2004) confidence intervals for QTE 
by subgroups, under Assumptions A, B, & D. Upper and lower bounds are denoted by a 
short dash, while IM confidence intervals are denoted by a long dash at the end of the 
dashed vertical lines. 
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