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Abstract

In many �elds of economics, and also in other disciplines, it is hard to justify the

assumption that the random error terms in regression models are uncorrelated. Assum-

ing that they are correlated within clusters, such as geographical areas or time periods,

but uncorrelated across clusters, seems more plausible. It has therefore become very

popular to use �clustered� standard errors, which are robust against arbitrary patterns

of within-cluster variation and covariation. Conventional methods for inference using

clustered standard errors work very well when the model is correct and the data satisfy

certain conditions, but they can produce very misleading results in other cases. This

paper discusses some of the issues that users of these methods need to be aware of.
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1 Introduction

The assumption that the disturbances (random error terms) in regression models are un-
correlated across observations is a very strong one. Econometricians have long been aware
of the potential for serial correlation when using time-series data, and methods for dealing
with it have been a major focus of econometric research. But for data at the individual
level, it was traditionally assumed that the disturbances are uncorrelated, perhaps after
time and/or group �xed e�ects were included among the regressors. The idea was that any
correlation across observations could be accounted for by the �xed e�ects.

This assumption changed quite rapidly, beginning in the mid 1990s, after the popular
econometrics package Stata o�ered the option of cluster-robust, or �clustered,� standard
errors, which are discussed in Section 2. It soon became common to allow for arbitrary
patterns of within-cluster correlation for clusters de�ned in various ways. In the educa-
tion literature, for example, the disturbances for models of student performance might be
clustered by classroom, by teacher, by school, or perhaps by school district. In the health
literature, the disturbances for models of health outcomes might be clustered by doctor,
by hospital, or by hospital chain. In the development literature, the disturbances might
be clustered by village, by province, by country, or even by regional groups of countries,
depending on the nature of the model and dataset. Whenever the observations can plausibly
be grouped into a set of clusters, it has become customary, indeed often mandatory, in many
areas of applied econometrics to use clustered standard errors.

Cameron and Miller (2015) provides a comprehensive survey of cluster-robust inference
in econometrics, but there have been a number of developments since it was written. This
paper will not attempt to be comprehensive. Instead, it will focus on a few key concepts and
issues, and it will discuss some recent developments. Section 2 brie�y reviews the literature
on cluster-robust covariance matrices. Section 3 discusses the consequences of clustered
disturbances for statistical inference. Section 4 discusses some of the issues that can make
�nite-sample cluster-robust inference problematical, along with methods such as the wild
cluster bootstrap designed to make it more reliable. Section 5 presents an empirical example
which illustrates how, in a large sample, inferences can be very sensitive to assumptions
about how the disturbances are clustered. Section 6 discusses some of the reasons why
residuals may display intra-cluster correlation, and Section 7 concludes.

2 Cluster-Robust Covariance Matrices

For simplicity, consider the linear regression model

y = Xβ + u, E(uu′) = Ω, (1)

where y and u are N×1 vectors of observations and disturbances, X is an N×K matrix of
exogenous covariates, and β is a K × 1 parameter vector. With one-way clustering, which
is currently the most common case, there are G clusters, indexed by g, where the gth cluster
has Ng observations. The N × N covariance matrix Ω is block-diagonal, with G diagonal
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blocks that correspond to the G clusters:

Ω =


Ω1 O . . . O
O Ω2 . . . O
...

...
...

O O . . . ΩG

. (2)

Here Ωg is the Ng ×Ng covariance matrix for the observations belonging to the gth cluster,
which is assumed to be positive de�nite but unknown. For notational convenience, the
observations here are ordered by cluster, although this is not necessary in practice. What
is essential is that every observation be known to belong to one and only one cluster.

The covariance matrix of the OLS estimator β̂ = (X ′X)−1X ′y in the model (1) is

Var(β̂) = (X ′X)−1X ′ΩX(X ′X)−1 = (X ′X)−1
(

G∑
g=1

X ′gΩgXg

)
(X ′X)−1, (3)

where the Ng × k matrix Xg contains the rows of X that belong to the gth cluster. The

fact that Var(β̂) has this form has important consequences for inference; see Section 3.

In order to estimate (3), we replace theK×K matricesX ′gΩgXg by their sample analogs,
using the outer product of the residual vector ûg with itself to estimate Ωg. This yields a
cluster-robust variance estimator, or CRVE, of which the most widely-used version is

CV1 : V̂ ≡ G(N − 1)

(G− 1)(N −K)
(X ′X)−1

(
G∑

g=1

X ′gûgû
′
gXg

)
(X ′X)−1. (4)

The �rst factor here is asymptotically negligible, but it makes CV1 larger when G and N
are �nite. It is analogous to the factor 1/(N −K) used in the well-known HC1 covariance
matrix (MacKinnon and White 1985) that is robust only to heteroskedasticity of unknown
form. Note that CV1 reduces to the latter when each cluster contains just one observation,
so that G = N .

Covariance matrix estimators like (4) are often referred to as �sandwich estimators� be-
cause there are two identical pieces of �bread� on the outside and a ��lling� in the middle.
The �lling in the sandwich is supposed to estimate the corresponding matrix in equation
(3). In both cases, the �lling involves a sum of G matrices. In the case of (4) and other
CRVEs, these matrices have rank 1, even though they are of dimension K×K. In contrast,
the matrices X ′gΩgXg in (3) usually have rank K. This makes it clear that the individ-
ual components of the �lling in (4) cannot possibly provide consistent estimators of the
corresponding components of the �lling in (3).

Because the matrices in the �lling of (4) are of rank 1, the CRVE itself can have rank
at most G. This makes it impossible to test hypotheses involving more than G restrictions
using Wald tests. Moreover, for hypotheses that involve numbers of restrictions not much
smaller than G, the �nite-sample properties of Wald tests based on (4) and other CRVEs
are likely to be poor. Indeed, as will be discussed in Section 4, any sort of Wald test based
on a CRVE, including t tests, can have very poor �nite-sample properties in some cases.
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Although CV1 is by far the most commonly employed CRVE, it is not the only one.
A more complicated estimator, which is the analog of the HC2 estimator studied in Mac-
Kinnon and White (1985), was proposed in Bell and McCa�rey (2002) and has recently
been advocated by Imbens and Kolesár (2016); see also Pustejovsky and Tipton (2017).
This estimator is

CV2 : (X ′X)−1
(

G∑
g=1

X ′gM
−1/2
gg ûgû

′
gM

−1/2
gg Xg

)
(X ′X)−1, (5)

whereM
−1/2
gg is the inverse symmetric square root of the matrixMgg ≡ INg−Xg(X

′X)−1X ′g ,
which is the gth diagonal block of MX ≡ I−X(X ′X)−1X ′, an N ×N projection matrix.
Thus CV2 omits the scalar factor in CV1 and replaces the residual subvectors ûg by rescaled
subvectors M

−1/2
gg ûg.

Ordinary least squares shrinks the disturbance vector u di�erentially when it creates the
residual vector û. Because the rescaling in (5) tends to undo the shrinkage, CV2 typically
yields larger and more accurate standard errors than CV1. However, CV2 is considerably
more expensive to compute than CV1 when the clusters are large, because it requires �nding
the inverse symmetric square root of the Ng × Ng matrix Mgg for each cluster. In fact, it
seems to be numerically di�cult to compute CV2 once any of the Ng exceeds 5000 or so; see
MacKinnon and Webb (2018). Nevertheless, CV2 should certainly be considered for samples
of moderate size.

Using a di�erent CRVE is not the only way to obtain inferences that are more accurate
than the ones from Wald tests based on CV1. A large number of methods is available, some
of which, notably ones based on the wild cluster bootstrap, will be discussed in Section 4.

The true covariance matrix (3) and its estimators (4) and (5) allow for one-way clustering.
However, there are models and datasets for which it is plausible that there may be multi-way
clustering. For example, with individual data gathered at di�erent times in di�erent places,
there may be clustering by both time period and location. This led Cameron, Gelbach and
Miller (2011) and Thompson (2011) to propose CRVEs that allow for clustering in two or
more dimensions.

In the two-dimensional case, the �lling in the true covariance matrix (3) becomes

G∑
g=1

X ′gΩgXg +
H∑

h=1

X ′hΩhXh −
G∑

g=1

H∑
h=1

X ′ghΩghXgh. (6)

Here there are G clusters in the �rst dimension and H in the second, Xg contains the rows
of X that belong to cluster g in the �rst dimension, and Xh contains the rows of X that
belong to cluster h in the second dimension. Similarly, Ωg is the covariance matrix for
cluster g in the �rst dimension, and Ωh is the covariance matrix for cluster h in the second
dimension. The matrix Xgh contains the rows of X that belong both to cluster g in the
�rst dimension and to cluster h in the second. Similarly, the matrix Ωgh is the covariance
matrix for observations that belong to both clusters g and h. Notice the minus sign in (6).
Without it, there would be double counting.

4



The �lling in the two-way CRVE analogous to (4) that corresponds to (6) is

G∑
g=1

X ′gûgû
′
gXg +

H∑
h=1

X ′hûhû
′
hXh −

G∑
g=1

H∑
h=1

X ′ghûghû
′
ghXgh, (7)

where the notation should be obvious. Notice that, because the last term is subtracted,
this matrix may not be positive de�nite in �nite samples. Also, the number of terms in
the double summation may be less than GH, perhaps much less, because there may be no
observations associated with some gh pairs.

The two-way CRVE based on (7) can be extended to multi-way clustering in three or even
more dimensions, although the algebra rapidly gets complicated; see Cameron, Gelbach and
Miller (2011). In practice, it is often not at all obvious whether to use one-way clustering or
two-way clustering, and the choice can be important for inference, as the empirical example
in Section 5 illustrates.

3 Consequences of Clustered Disturbances

Allowing the disturbances to be correlated fundamentally changes the nature of statistical
inference, especially for large samples. This is most easily seen in the context of estimating
a population mean. Suppose we have a sample of N uncorrelated observations, yi, each with
variance Var(yi) that is bounded from below and above. Then the usual formula for the
variance of the sample mean ȳ is

Var(ȳ) =
1

N2

N∑
i=1

Var(yi) =
1

N
σ2, (8)

where σ2 is the limiting value of the average of the Var(yi). The result (8) is obvious when
the disturbances are homoskedastic, since Var(yi) = σ2 for all i. But it also holds under
heteroskedasticity of unknown form, provided the limiting value σ2 exists and is �nite. The
sandwich has disappeared in this case, because the only regressor is a constant term, and
the product of the two (X ′X)−1 matrices is just 1/N2.

From (8) it is easy to see that Var(ȳ)→ 0 as N →∞. But this result depends crucially
on the assumption that the yi are uncorrelated. Without such an assumption, the variance
of the sample mean would be

Var(ȳ) =
1

N2

N∑
i=1

Var(yi) +
2

N2

N∑
i=1

N∑
j=i+1

Cov(yi, yj). (9)

The �rst term on the right-hand side is the middle expression in (8) and is O(1/N), as we
would expect. But the second term is O(1), because it is 2/N2 times a double summation
involving O(N2) elements. Thus, even if the Cov(yi, yj) are very small, the variance of ȳ
will never converge to zero as N →∞. Instead, it will ultimately converge to whatever the
second term converges to. Therefore, ȳ cannot estimate the population mean consistently.
For a more detailed discussion of this type of inconsistency, see Andrews (2005).
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The variance given in (9) is the variance of the sample mean when there is just one
cluster, since every observation may be correlated with every other observation. When
there is one-way clustering, the variance is instead

Var(ȳ) =
1

N2

G∑
g=1

Ng∑
i=1

Var(ygi) +
2

N2

G∑
g=1

Ng∑
i=1

Ng∑
j=i+1

Cov(ygi, ygj), (10)

where ygi is the i
th observation in cluster g. The second term here now involves a triple

summation, the number of elements in which is of order G(maxNg)
2. For ȳ to be consistent,

G(maxNg)
2/N2 must tend to 0 as N → ∞. The easiest way to ensure that this happens

is to let G increase with N, while bounding all the Ng. In that case, ȳ will converge to the
population mean at rate G−1/2, which is proportional to N−1/2. However, it is also possible
for G to increase more slowly than N and the Ng to increase without bound, provided they
do not do so too fast. When that happens, ȳ will converge at a rate slower than G−1/2.
For a detailed discussion of the conditions that must be imposed on the number of clusters
and their sizes for β̂ to be consistent in the regression case, see Djogbenou, MacKinnon and
Nielsen (2018).

Equation (10) makes it clear that inference with clustered disturbances can be very
di�erent from inference with uncorrelated ones. When G is �xed, or increases less rapidly
than N, the information contained in a sample grows more slowly than the sample size. As
the sample gets larger, the �rst term in (10) shrinks at rate N−1, while the second term
either stays roughly constant (when G is �xed) or shrinks at a rate slower than N−1 (when
G increases more slowly than N). Thus, for large samples, the second term must dominate
the �rst term unless G is proportional to N, and the rate at which information accumulates
is then determined by the latter. This implies that the amount of information about the
parameters of interest contained in extremely large samples may be very much less than
intuition would suggest. We will encounter an example of this in Section 5.

4 Inference in Finite Samples

Much of the work on cluster-robust inference in recent years has focused on inference in
�nite samples. The meaning of ��nite� is not the usual one, however. What matters for
reliable inference is not the number of observations, N, but the number of clusters, G.
In addition, the way in which observations are distributed across clusters and the way in
which the Xg matrices vary across clusters can greatly a�ect the reliability of �nite-sample
inference. Simple rules about how many clusters are needed for reliable inference have been
suggested, but they can be misleading. For example, Angrist and Pischke (2008) suggested
that 42 clusters is generally su�cient, a conclusion strongly disputed in MacKinnon and
Webb (2017b).

Suppose we are interested in one element of β, say βj. Cluster-robust inference is typi-
cally based on the t statistic

tj =
β̂j − βj0√

V̂jj

, (11)
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where βj0 is the value under the null hypothesis, and V̂jj is the j
th diagonal element of the

CV1 matrix (4). The statistic tj is usually assumed to follow the t(G−1) distribution, which
can be justi�ed by a result in Bester, Conley and Hansen (2011).

If there are at least 50 clusters and they are reasonably homogeneous, that is, similar in
size and similar in theirX ′gXg andX

′
gΩgXg matrices, then inference based on (11) and the

t(G− 1) distribution typically works very well. However, there can be severe over-rejection
when these conditions are not satis�ed; see, among others, MacKinnon and Webb (2017b)
and Djogbenou, MacKinnon and Nielsen (2018). The latter considers a case in which one
cluster is much bigger than any of the others and �nds that the test based on (11) over-
rejects severely even with over 200 clusters. This is true even when the largest cluster is
becoming a smaller fraction of the sample at a rate fast enough for asymptotic theory to be
valid as G increases.

One way to check whether inference is likely to be reliable is to compute the �e�ective
number of clusters,� G∗, as de�ned in Carter, Schnepel and Steigerwald (2017). This depends
on G, the Ng, and the entire X matrix, and it requires assumptions about the extent of
intra-cluster correlation. When G∗ is substantially less than G, and especially when it is
small (say, less than 20), tests based on the t(G− 1) distribution are almost certain to over-
reject. Computing G∗ using the entire sample can be costly or even infeasible when N is
large, but it is often possible to compute a very good estimate using a subsample. Inference
can be based on the t(G∗− 1) distribution, if desired, although this does not seem to be the
best approach.

As was discussed in Section 2, the test statistic (11) can be modi�ed by using the CV2

covariance matrix given in (5) instead of CV1. Bell and McCa�rey (2002) and Imbens and
Kolesár (2016) further suggest ways of computing a degrees-of-freedom parameter to be
used instead of G − 1. Young (2016) proposes a di�erent way of accomplishing essentially
the same thing. His method �rst corrects the bias of the CV1 standard error, thus avoiding
the computational di�culties of calculating CV2, and then calculates a degrees-of-freedom
parameter. These methods are discussed and compared in MacKinnon and Webb (2018).

Instead of comparing tj to the t distribution with a computed number of degrees of
freedom, we can compare it to a bootstrap distribution. There are several ways in which
the bootstrap samples can be generated. In most cases, the best approach seems to be to
use the restricted wild cluster bootstrap (WCR) proposed in Cameron, Gelbach and Miller
(2008), which we now discuss. MacKinnon and Webb (2017b) studies this method in detail,
and Djogbenou, MacKinnon and Nielsen (2018) proves that it is asymptotically valid. The
basic idea is to generate the vector of bootstrap disturbances for each cluster using the
vector of residuals for that cluster, so as to retain the intra-cluster covariances of the latter.
The method is called �restricted� because the parameters and disturbances of the bootstrap
DGP are based on estimates that satisfy the null hypothesis.

Suppose the objective is to test the restriction a′β = 0, where a is a known vector of
length K. Then the WCR bootstrap works as follows:

1. Obtain OLS estimates β̂ and the CRVE V̂ using (1) and (4). Also, re-estimate (1)
subject to the restriction a′β = 0 to obtain restricted estimates β̃ and residuals ũ.
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2. Calculate the cluster-robust t-statistic, ta = a′β̂/
√
a′V̂ a .

3. For each of B bootstrap replications, indexed by b,

(a) generate a set of bootstrap disturbances u∗b, where the subvector corresponding
to cluster g is equal to u∗bg = v∗bg ũg, and the v∗bg are independent realizations of
an auxiliary random variable v∗ with zero mean and unit variance;

(b) generate the bootstrap dependent variables according to y∗b = Xβ̃ + u∗b ;

(c) obtain the bootstrap estimate β̂∗b = (X ′X)−1X ′y∗b, the bootstrap residuals û∗b,
and the bootstrap covariance matrix

V̂ ∗b =
G(N − 1)

(G− 1)(N −K)
(X ′X)−1

(
G∑

g=1

X ′gû
∗b
g (û∗bg )′Xg

)
(X ′X)−1; (12)

(d) calculate the bootstrap t-statistic

t∗ba =
a′β̂∗b√
a′V̂ ∗b a

.

4. If the alternative hypothesis is a′β 6= 0 and there is no reason to expect the test
statistic to have a nonzero mean, compute the symmetric bootstrap P value

P̂ ∗S =
1

B

B∑
b=1

I
(
|t∗ba | > |ta|

)
,

where I(·) denotes the indicator function. Alternatively, we can compute an upper-tail,
lower-tail, or equal-tail P value, as appropriate.

The WCR bootstrap has two key features. The �rst is that the same realization of
the auxiliary random variable, v∗bg , multiplies every residual within cluster g for bootstrap
sample b. This ensures that the bootstrap DGP retains the intra-cluster covariances of the
residuals, which, on average, should look like the intra-cluster covariances of the distur-
bances. The second is that the bootstrap DGP imposes the null hypothesis. In principle,
the v∗ could follow any distribution with mean 0 and variance 1. However, in most cases, it
seems to be best to employ the Rademacher distribution, for which v∗ = 1 or −1, each with
probability 0.5. This is not a good idea when G is very small, however, because the number
of distinct bootstrap samples is just 2G; see Webb (2014).

Provided the number of clusters is not too large, it is possible to generate a large number
of wild cluster bootstrap statistics very e�ciently. This is what the Stata routine boottest
does; see Roodman, MacKinnon, Nielsen and Webb (2018). The algorithm it uses actually
computes the t∗ba without explicitly calculating either the bootstrap residuals û∗b or the
bootstrap CRVE (12). All of the computations that are O(N) are just done once, rather
than for every bootstrap sample.
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Because boottest is remarkably e�cient in most cases, it probably makes sense to use
the restricted wild cluster bootstrap most of the time. Con�dence intervals can easily be
obtained by inverting the bootstrap test, and boottest does this by default. Note that,
even though the disturbances for bootstrap samples generated by the wild cluster bootstrap
are clustered in only one dimension, this bootstrap method can be used in conjunction with
multi-way clustered standard errors. MacKinnon, Nielsen and Webb (2017) shows that this
often works well, and boottest makes it easy to do.

Other bootstrap methods can also be used. MacKinnon and Webb (2018) argues that
the ordinary wild bootstrap can work better than the wild cluster bootstrap in certain cases
(notably, when interest focuses on a treatment dummy, very few clusters are treated, and
clusters are otherwise homogeneous). Djogbenou, MacKinnon and Nielsen (2018) proves
that using it is asymptotically valid, even though it cannot mimic the intra-cluster corre-
lations of the disturbances.1 Bertrand, Du�o and Mullainathan (2004) suggests using the
pairs cluster bootstrap, in which the data are resampled by cluster. This typically does
not work as well as the wild cluster bootstrap; see Cameron, Gelbach and Miller (2008),
MacKinnon and Webb (2017a), and below. However, it has the advantage that it can be
used for models which are not regression models.

Reliable inference is particularly challenging when the parameter of interest is the coef-
�cient on a treatment dummy variable, treatment is assigned at the cluster level, and there
are very few treated clusters. This includes the case of di�erence-in-di�erences regressions
when all the treated observations belong to just a few clusters. It has been known for some
time that inference based on cluster-robust t statistics greatly over-rejects in such cases; see
Abadie, Diamond and Hainmueller (2010) and Conley and Taber (2011). Precisely why this
happens is explained in MacKinnon and Webb (2017b). Unfortunately, as MacKinnon and
Webb (2017b, 2018) show, the wild cluster bootstrap does not solve the problem. In fact,
the wild cluster bootstrap either greatly under-rejects or greatly over-rejects, depending on
whether or not the null hypothesis is imposed on the bootstrap DGP.

Figure 1, which is taken from MacKinnon and Webb (2017a), illustrates what can happen
in a model where the regressor of interest is a treatment dummy that equals 0 or 1 for every
observation in each cluster. In this case, there are 24 clusters, which vary in size from 32
to 235, for a total of 2400 observations. The �gure shows rejection frequencies at the .05
level for four tests, based on 400,000 replications, as a function of G1, the number of treated
clusters, when clusters are treated from smallest to largest. The usual test, based on the
CV1 covariance matrix (4), over-rejects very severely when G1 is small or large. When there
is just one treated or non-treated cluster, it rejects over 60% of the time. The over-rejection
drops quite sharply as min(G1, G−G1) increases, however. For 8 ≤ G1 ≤ 16, the usual test
always rejects less than 7% of the time.

The two bootstrap tests that do not impose the null hypothesis, WCU and pairs cluster,
also over-reject very severely when there is just one treated or non-treated cluster. However,
their performance improves very rapidly as min(G1, G − G1) increases. The pairs cluster
bootstrap actually under-rejects noticeably for intermediate values of G1, most severely for

1Unfortunately, the tricks that boottest uses to save computer time are not very e�ective for the ordinary
wild bootstrap, and the program can encounter memory limitations with large samples.
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Figure 1: Rejection Frequencies, Treatment Model, G = 24, N = 2400
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G1 = 5 and G1 = 19. The WCU bootstrap never under-rejects, and it works almost perfectly
for 9 ≤ G1 ≤ 15.

The WCR bootstrap performs very di�erently from the other two bootstrap methods. It
never rejects (in 400,000 replications) for G1 = 1 and G1 = 2, and it under-rejects severely
for G1 ≤ 4 and G1 ≥ 22. However, it over-rejects noticeably for 19 ≤ G1 ≤ 21. For most
intermediate values of G1, the WCR and WCU bootstraps perform very similarly here,
something that is generally not true for more complicated models.

The asymmetry that is evident in Figure 1 arises from the facts that cluster sizes vary
and that clusters are treated from smallest to largest. Thus the treated clusters on the
left-hand side of the �gure are relatively small, and the non-treated ones on the right-hand
side are relatively large. The theoretical analysis of treatment models in MacKinnon and
Webb (2017b, 2018) explains how the numbers and sizes of treated and non-treated clusters
a�ect rejection frequencies. In practice, it would rarely be the case that only the smallest
or largest clusters are treated, so the �gure is in some respect unrealistically extreme.

5 An Empirical Example

The impact of alternative assumptions about how the disturbances are clustered can be
striking. In this section, I illustrate this in the context of a simple earnings equation.
The dependent variable yti is the logarithm of weekly earnings for men aged 25 to 65,
conditional on earnings being greater than $20. The key regressors are age, age squared,
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and four education dummies. Ed2 is a dummy for completing high school, Ed3 is a dummy
for completing two years of college or university, Ed4 is a dummy for obtaining a university
degree, and Ed5 is a dummy for obtaining a postgraduate degree. The data come from the
U.S. Current Population Survey (CPS) for the years 1979 through 2015 (37 years). There
are 1,156,597 observations from 51 states (including the District of Columbia). On average,
there are about 31,259 observations per year. The largest state (California) has 87,427
observations, and the smallest (Hawaii) has only 4,068.

The equation that I estimate, using ordinary least squares, is

ygti = β1 +
5∑

j=2

βj EDjgti + β6Agegti + β7Age
2
gti +

36∑
s=1

γsYear
s
t +

50∑
k=1

ηkState
k
g + ugti, (13)

where g denotes the state, t denotes the year, and i denotes the individual. In equation (13),
Years

t is a dummy that equals 1 when s = t, and Statekg is a dummy that equals 1 when
g = k. One year dummy and one state dummy have been omitted to avoid perfect collinear-
ity. This equation could be used to answer various economic questions. For concreteness, I
focus on the value of obtaining a postgraduate degree.2

The coe�cients on Ed4 and Ed5 are β̂4 = 0.67762 and β̂5 = 0.78727. Thus the estimated
percentage increase in earnings associated with having obtained the higher degree is

δ̂ = 100
(
exp(β̂5 − β̂4)− 1

)
= 100

(
exp(0.78727− 0.67762)− 1

)
= 11.589%. (14)

Of course, since people make choices about how much education to obtain, we cannot naively
interpret this number as an estimate of how much more someone who chose to obtain only
an undergraduate degree would earn if they had chosen to obtain a postgraduate degree as
well. At best, it is simply an empirical regularity.

In order to compute a con�dence interval for δ, the population equivalent of δ̂ de�ned in
(14), we need a standard error for the quantity β̂5− β̂4 = 0.10965. The traditional approach
would be to argue that, since the �xed e�ects account for any within-cluster correlation,
we can just use a conventional heteroskedasticity-robust standard error. The HC1 standard
error is 0.001985, which suggests that we have estimated the di�erence between β5 and β4
with great accuracy.

However, including state and year �xed e�ects does not in fact eliminate all within-cluster
correlation. It would only do so if the ugti in (13) followed a random-e�ects model, where
ugti is the sum of a random state e�ect, a random year e�ect, and an individual e�ect. If
there were instead random e�ects at the state-year level, or perhaps some more complicated
pattern, the �xed e�ects could not eliminate all within-cluster correlation. Thus it seems
plausible that there may be within-cluster correlations among the disturbances.

Figure 2 shows six di�erent 95% con�dence intervals for δ. These are based on �ve
di�erent assumptions about how the disturbances are clustered. It is evident that, for this

2This equation was previously estimated using the same dataset in MacKinnon (2016), which contains a
number of results not reported here, but no results for clustering by year or two-way clustering.
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Figure 2: Con�dence Intervals for δ̂
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model and dataset, the assumptions we make about clustering have an enormous impact on
the intervals we obtain.

The topmost interval in the �gure, of which the lower and upper limits are 11.156 and
12.024, respectively, is based on the HC1 standard error 0.001985 given above and the critical
value 1.96, which is the .975 quantile of the standard normal distribution. This is probably
the interval that most investigators would have used until around the year 2000.

The second interval shown in Figure 2 is based on clustering by the intersection of state
and year, which in the �gure is denoted CV1(S∩Y). There are 37 × 51 = 1887 clusters,
so the .975 quantile of the t(1886) distribution is used to obtain the limits of the interval,
which are 10.968 and 12.214. This interval is wider than the �rst one, but not dramatically
so. Some investigators still use intervals like this one, although they have little theoretical
or empirical justi�cation; see Bertrand, Du�o and Mullainathan (2004).

The next two intervals also use one-way clustering, but at a much higher level. For
the third interval, clustering is by state, and for the fourth, it is by year. Each horizontal
line here actually shows two intervals. The narrower one is based on the standard normal
distribution, and the wider ones are based on the t(50) and t(36) distributions for clustering
by state and year, respectively. The numbers of clusters are now small enough that the
di�erences between the standard normal and Student's t distributions are important.

It is not surprising that clustering by state yields a considerably wider interval than
clustering by the intersection of state and year. The number of o�-diagonal elements of Ω
that are allowed to be non-zero is very much greater with 51 big clusters than with 1887
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small ones. However, it may be surprising that clustering by year yields a much wider
interval than clustering by state. Based on results in Bertrand, Du�o and Mullainathan
(2004), it appears to be widely believed that, in the context of data with both a time and
a cross-section component, clustering by the latter (in this case states) is the right thing to
do, because it allows for general patterns of serial correlation within states. Clustering by
time period seems to be much less common.

To allow for both serial correlation within states and contemporaneous correlation across
states, the �fth and sixth intervals use two-way clustering by state and year, where the
middle matrix in the CRVE is (7). The �fth one is a conventional con�dence interval based
on the t(36) distribution, while the sixth is a bootstrap interval using the restricted wild
cluster bootstrap with bootstrap clustering by year; this is denoted WCR(Y) in the �gure.
The bootstrap samples were clustered by year because simulation results in MacKinnon,
Nielsen and Webb (2017) suggest that, with multi-way clustering, it may be desirable to
cluster them by the dimension with the fewest clusters. Clustering the bootstrap samples
by state yielded extremely similar results. In this case, the impact of bootstrapping is quite
modest, because the numbers of clusters in both dimensions are not all that small.

The bootstrap interval in Figure 2 is based on 99,999 bootstrap samples, so that there is
very little simulation error. This may seem like an extraordinarily large number for a sample
of over a million observations, but it was not computationally demanding to compute this
interval using boottest, even though it involved numerically inverting a bootstrap test; see
Roodman, MacKinnon, Nielsen and Webb (2018).

It may seem that we have to choose somewhat arbitrarily among the six intervals in
Figure 2. However, as we discuss below, this is not the case. There appears to be strong,
albeit informal, evidence that the top three intervals are too narrow. Whether we need to use
two-way clustering or one-way clustering by year is not so clear, however. Bootstrapping the
interval based on the latter makes it slightly wider, as expected, but still somewhat narrower
than the bootstrapped two-way interval. These bootstrap intervals are [9.187, 14.088] and
[8.971, 14.328], respectively.

Ideally, we could test which interval is appropriate, and this is an area of active research.
A test between one-way clustering at a low level (or no clustering at all) against one-way
clustering at a higher level has been proposed by Ibragimov and Müller (2016), but it is not
applicable to two-way clustering and requires that the key parameter(s) be identi�able using
the data for each cluster. More widely applicable tests are being developed in MacKinnon,
Nielsen and Webb (2018).

The interval based on HC1 is surely too narrow. Suppose that there were actually
no intra-cluster correlations. Then the matrix Ω would be diagonal, and all the intervals
would be valid. However, because the HC1 interval is the only one that makes use of the
assumption that Ω is diagonal, all the other intervals would be based on standard errors
that are estimated ine�ciently. Consider the matrix in the middle of the CV1 covariance
matrix given in (4). The element of this matrix that corresponds to the kth regressor is

G∑
g=1

Ng∑
i=1

Ng∑
j=1

X2
gi,kX

2
gj,k ûgiûgj. (15)
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When i = j and there is no intra-cluster correlation, this quantity is an estimate of

G∑
g=1

Ng∑
i=1

σ2
giX

2
gi,k. (16)

The corresponding element of the middle matrix in the HC1 covariance matrix is

G∑
g=1

Ng∑
i=1

X2
gi,kû

2
gi =

N∑
i=1

X2
i,kû

2
i , (17)

where the expression on the right-hand side is the one that would normally be used in the
absence of clustering. The di�erence between (15) and (17) is

G∑
g=1

Ng∑
i=1

∑
j 6=i

Xgi,kXgj,k ûgiûgj. (18)

When the Ng are large, this expression may involve a great many terms, but they would all
have expectation zero if the residuals were replaced by disturbances. To highest order, the
residuals and disturbances should have the same properties here. Expression (18) may have
either sign. When G is �xed, both (17) and (18) are O(N). In the former case, there are N
terms, each of them O(1). In the latter case, there are O(N2) terms, each of them O(N1/2)
because they are assumed to have mean zero.

The results in Figure 2 make it clear that, for our empirical example, expression (18)
must be very large when we cluster by state or by year, and the corresponding quantity
for two-way clustering must be very large when we cluster by both of them. Thus it seems
unlikely that the population analogs of these quantities are in fact zero. This conclusion
must be tempered by the fact that, whenG is �xed, we cannot estimate 1/N times expression
(18) consistently using a CRVE.

Although the sample is large, it actually contains much less information than it initially
appears to because the disturbances are clustered. The purple numbers in the upper right of
Figure 2 attempt to quantify this information loss. Each of them corresponds to one of the
displayed intervals, in the same order from top to bottom. The number for a given interval
is the ratio of the sample size that would be needed to obtain an interval of that length if the
disturbances really were uncorrelated to the actual sample size. The smallest number here,
0.0240, tells us that the length of the bootstrap interval with two-way clustering is what we
would expect to obtain using a sample of only 0.0240 × 1,156,597 = 27,758 observations
with uncorrelated disturbances.

The information contained in this sample is thus very much less than it would seem to
be if we did not allow for clustered disturbances. To investigate this issue further, I reduced
the sample size from 1,156,597 to 72,288 by throwing away 15 out of every 16 observations.
The HC1 standard error increased from 0.001985 to 0.007848, a factor of 3.95. This is just
about what we would expect when the sample size is reduced by a factor of 16. However, the
various clustered standard errors increased by much less. For example, the standard error
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based on state-level clustering increased from 0.005206 to 0.009422, a factor of 1.81. Even
more surprisingly, the standard error based on two-way clustering increased from 0.01148
to just 0.01261, a factor of only 1.098. Amazingly, throwing away 15/16 of the sample has
increased the standard error by just under 10%.

Thus, for equation (13) with two-way clustering (and also with one-way clustering by
year), the extra information we gain when we increase the sample size by a factor of 16 is
very modest. But recall expression (10) for the variance of a sample mean when there is
clustering. When we increase N and all the Ng by a factor of 16, the �rst term shrinks by a
factor of 16, but the second term remains essentially the same size. This is also true when
there is two-way clustering. Thus, if the second term is already fairly large relative to the
�rst term, the net e�ect of increasing the sample size, even by a large factor, may be only
a modest reduction in the sampling variance of an estimator.

6 Why Is There Intra-Cluster Correlation?

Precisely why residuals appear to be correlated within clusters in a great many econometric
applications is not entirely clear and probably varies across models and datasets. In many
cases, it seems reasonable to believe that there are unobserved quantities which a�ect all
observations in at least some clusters. For data on educational outcomes, as an example,
there may be unobserved random e�ects at the teacher and/or school and/or district levels;
see Koedel, Parsons, Podgursky and Ehlert (2015).

More generally, all sorts of model misspeci�cation could cause residuals to be correlated
within clusters. There is, of course, a risk that misspeci�cation might also cause residuals
to be correlated across clusters. However, it seems plausible that the parts of any omitted
variables which cannot be explained by cluster �xed e�ects and other regressors should be
more highly correlated within than across clusters.

In the case of the empirical example, the design of the Current Population Survey prob-
ably accounts for some of the state-level intra-cluster correlation. The CPS is a complex
survey. It uses various sampling techniques such as clustering, strati�cation, multiple stages
of selection, and unequal probabilities of selection, in order to achieve a reasonable balance
between the cost and statistical accuracy of the survey. However, the design of the CPS also
ensures that the observations are not entirely independent within states. The basic unit
of sample selection is the census tract, not the household. Once a tract has been selected,
it typically contributes a number of households to the surveys that are done over several
adjacent years. Any sort of dependence within census tracts will then lead to residuals that
are correlated within states both within and across years.

In principle, it may be possible to take account of the features of the design of a particular
survey; see, among others, Binder (1983) and Rao and Wu (1988). Kolenikov (2010) provides
an accessible introduction to this literature along with Stata code for bootstrap inference
when the survey design is known. When the survey design is very complex, however, it would
be extremely di�cult to implement this sort of procedure. When the design is unknown
to the investigator, it would be impossible. In many cases, the best we can do is to use a
CRVE clustered at the appropriate level. A widely recommended rule of thumb is to cluster
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at the highest feasible geographic level (for example, by state in the empirical example of
Section 5), because survey design issues would typically manifest themselves within but not
across large geographic areas.

The other type of intra-cluster correlation observed in the empirical example, namely,
correlation of observations for the same year, is almost certainly a consequence of misspeci-
�cation. Because business cycles at the state or industry levels are not perfectly correlated
with the national business cycle, the year �xed e�ects included in equation (13) cannot pos-
sibly account for all the e�ects of business cycles on earnings. This surely accounts for much
of the clustering by year that we observe. The magnitude of the e�ect, and its consequences
for the accuracy of parameter estimates, are strikingly large.

There is one important issue that this paper has not discussed, and will not discuss in
any depth. All of the analysis has implicitly assumed that the data are actually generated
by the regression model (1), and that the sample is very small relative to the population
being studied. Thus the population contains a very large number of clusters, and the sample
is obtained by choosing a small proportion of them at random. This seems quite reasonable
in the education context, for example, where we are clustering by school, because in a
country of any size there will be a great many schools, and most samples will contain only a
small fraction of them. Conditional on the chosen clusters, the sample may contain all the
observations for each cluster, or just some subset of them.

Formally, the empirical example of Section 5 does not satisfy the assumptions of the
previous paragraph, however. If we think of the �population� as all employed men aged 25 to
65 in the United States between 1979 and 2015, then the number of clusters in the population
(37 years or 51 states) is the same as the number of clusters in the sample. Implicitly, for
the methods we have discussed to make sense, we must be trying to make inferences about
a meta-population of states and a meta-population of years, from which actual states and
actual years have been drawn at random. Whether or not this is a reasonable thing to do
is a matter of opinion. Of course, econometricians do it all the time when they analyze
time-series data.

Abadie, Athey, Imbens and Wooldridge (2017) has recently argued that many economic
datasets do not satisfy the assumption that the sample is very small relative to the popula-
tion being studied. In the context of cross-section studies of treatment e�ects, which may
vary across units, they analyze cases in which the sample is large relative to the population
and contains a large proportion of the clusters. The sample may contain all the observa-
tions in the included clusters, or only some of them. They �nd that, unless the number of
clusters in the sample is very small relative to the number in the population, or there is
no heterogeneity in treatment e�ects, cluster-robust standard errors tend to be too large,
perhaps much too large. In some cases, heteroskedasticity-robust standard errors lead to
more accurate inferences, even though there is considerable intra-cluster correlation.

Whether the conclusions of Abadie et al. (2017) apply to any given case is not at all
clear, however. In the empirical example of Section 5, for example, all clusters are included
in the sample, but the observations presumably come from a very small fraction of the
neighborhoods within those clusters, and we expect much of the within-cluster correlation
to arise from within-neighborhood correlation. Moreover, the example does not concern
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treatment e�ects. Therefore, even if we are interested in the actual 51 states instead of a
meta-population of states, the results of Abadie et al. (2017) do not imply that methods for
cluster-robust inference should be avoided.

7 Conclusions

It has become extremely common in many areas of applied econometrics to �cluster� the
standard errors at an often arbitrarily chosen level with G clusters and rely on the t(G− 1)
distribution for inference. This can be a reasonable thing to do, and failing to allow for
clustering is often much worse. But this approach can also lead to seriously misleading
inferences in many cases.

Even if the appropriate level of clustering is known, there can be serious problems. In
general, standard methods work reasonably well when the number of clusters is reasonably
large (at least 50) and the clusters are fairly homogeneous in terms of the numbers of
observations and the characteristics of the regressors. One situation in which inference based
on cluster-robust standard errors can be extremely misleading is when interest focuses on a
treatment dummy variable and only a few clusters are treated; see MacKinnon and Webb
(2017b, 2018). In this case, of course, the key regressor is very heterogeneous across clusters.

In Section 4, we discussed the large and rapidly growing literature aimed at improving
cluster-robust inference in �nite samples. A wide variety of methods is available, and it
would often make sense to employ two or three of them. In many cases, but not all, the
restricted wild cluster bootstrap works well. It can often be computed remarkably quickly
using the Stata routine boottest; see Roodman, MacKinnon, Nielsen and Webb (2018).

One often overlooked feature of clustered disturbances is that the relationship between
the sample size N and the e�ciency of parameter estimates does not have its usual form.
When the disturbances are correlated within clusters, we saw in Section 3 that information
accumulates at a rate slower than

√
N unless the number of clusters increases at the same

rate as the sample size. Thus, as the empirical example illustrates, �big� datasets may
actually be much smaller than we think they are.

As the empirical example of Section 5 illustrates, clustered standard errors can be very
sensitive to how the observations are clustered. In practice, investigators would therefore be
wise to put a lot of thought into this. When there is more than one natural way to cluster,
it generally makes sense to investigate all of them.
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