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Abstract

Intergenerational persistence estimates are susceptible to several well-documented biases

arising from income measurement, and it has become standard practice to construct income

measures in a way to mitigate these. We show in this paper that even when these strategies are

used, remaining bias can cause a spurious grandparent coefficient estimate in multigenerational

income regressions. Our simulation results show that the remaining bias in OLS estimates even

after using a 30-year average leads to an upward bias in the grandfather coefficient estimate.

We also use an IV approach that is not susceptible to this remaining bias, but is more sensitive

to lifecycle bias, though this is easily tested and can provide bounds on the estimates. With ad-

ministrative data from Norway, we empirically reveal a positive spillover bias in the grandfather

coefficient, and the combined evidence from our OLS and IV approaches suggest the positive

OLS estimate could be spurious.

∗We are grateful to Bhash Mazumder, Gary Solon, seminar participants at Michigan State University and partic-
ipants at the 2016 Southern Economic Association meetings and the 2018 EALE meetings for helpful comments and
suggestions.
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1 Introduction

Societies throughout the world are concerned with the extent to which poverty (or privilege) persists

across generations. Studies have established general levels of intergenerational mobility, and now are

beginning to look at multigenerational mobility. Although researchers have acknowledged potential

influences of measurement error in this setting, we formalize the econometric implications in this

paper, and show with simulations and empirical evidence the notable result that grandparent

coefficients are often biased upward.

There is a large descriptive literature examining the extent to which socioeconomic status is

passed on from one generation to the next.1 Estimating a basic model of the form

yi0 = β1xi1 + εi, (1)

where yi0 is an outcome for a child in family i and xi1 the same outcome for the parent, gives an

estimate of the summary statistic, β1, describing associations across generations.2 Although this

provides a useful description of mobility, researchers are now attempting to explore whether there

is more to the process—i.e., additional generations—that we should add to our general depiction

of mobility. To paint a more complete picture one can add another generation to equation (1),

estimating:

yi0 = γ1xi1 + γ2xi2 + εi (2)

In this case, γ1 still describes transmission from parents (though now conditional on grandparents)

and γ2 describes the persistence from grandparents to their grandchildren, conditional on parents.

Even a small positive γ2 can have important implications for mobility, indicating slower mobility

than implied by equation (1). Recent advances in both methods and data allow such extensions to

additional generations, with studies generally focusing on outcomes such as income, education and

occupation.

The income mobility literature has a rich history of understanding biases from income mea-

1See Solon (1999) and Black & Devereux (2011) for thorough reviews of the literature on two-generation mobility.
2Intercepts are omitted to simplify presentation; the variables should be considered to be in deviation-from-mean

form.
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surement issues, and although we know our estimates are not perfect, we have a reasonable un-

derstanding of the remaining bias. It has become standard practice to minimize bias by averaging

long timespans of annual incomes during midlife, but this is not yet feasible for three generations

in most datasets. Furthermore, the nature of remaining bias arising from such limitations is more

complicated in the multigenerational setting, and has distinct consequences for the grandparent

coefficient estimate, which is typically the focus of multigenerational mobility studies. As noted in

Solon (2018), measurement error could explain a small positive coefficient estimates on grandpar-

ents’ income in equation (2).

In this paper, we explicitly show with theory and simulations how the biases from well known

income measurement issues play out in the multigenerational income mobility estimates, in partic-

ular highlighting how bias spillover can produce such a false grandparent effect. Our simulations

show that even using long-term averages of income during midlife for all three generations does not

eliminate the possibility of estimating a spurious grandparent coefficient. We also propose an IV

approach that has the advantage of requiring a shorter timespan of incomes to obtain consistent

estimates. In addition to our simulation evidence, we also use administrative tax data from Norway

to provide an empirical illustration of the bias spillover in the OLS and IV estimates, showing how

it inflates the grandparent coefficient in the multigenerational regression. Our empirical results are

consistent with the patterns in our simulation results, and our preferred estimates of the grandpar-

ent coefficient using methods to mitigate bias are not statistically significantly different from zero.

So although we find small positive coefficient estimates, we cannot rule out the possibility these

are spurious.

Why is a small positive grandparent coefficient so important? Because it implies that mobility

across generations is slower than previously believed. If the model in (1) represents the true under-

lying transmission process, then we could use our estimates of β1 to approximate the association

for further generations. For example, under simplifying assumptions, the persistence between the

outcomes for children and their grandparents could be approximated by β21 . This approximation

implies that persistence declines geometrically, so we would observe fairly rapid mobility across gen-

erations.3 However, several recent multigenerational mobility studies find a positive grandparental

coefficient in (2) (e.g., Clark, 2014; Clark & Cummins, 2015; Long & Ferrie, 2018; Lindahl et al.,

3See Stuhler (2014) for further discussion of this approximation.
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2015; Zeng & Xie, 2014; Hällsten, 2014; Olivetti et al., 2014; Modalsli, 2016), which implies a slower

than geometric rate of decline in persistence, or lower mobility.4 For example, for Norway, the true

β1 may be around 0.4,5 which in a regression where log income is the outcome (so β1 is an inter-

generational income elasticity), a child whose parents have income 50% above the mean in their

generation would be expected to have income around 20% above the mean in the child’s generation.

Conversely, if the grandparents had income, say, 75% above the mean in their generation, and γ2

is about 0.1 (assuming γ1 is 0.4), would imply the child’s income would be about 27.5% above the

mean.

Many recent multigenerational studies focus on outcomes such as education, occupation, or

wealth, though a few have used data on individual’s income.6 Lindahl et al. (2014, 2015) estimate

unconditional and conditional (on parents) effects of grandparents for income and education in

Malmö, Sweden, finding positive effects of grandparents for both outcomes. Modalsli (2016) uses

administrative data on occupations and incomes for Norway, finding that grandparents do matter

conditional on parents. Lucas & Kerr (2013) use a small subset of national data on income for

three generations in Finland, but their results for grandparents are mixed.

There are a number of mechanisms that could explain a positive grandparent coefficient, ranging

from biological to social influences or through resources.7 Grandparents may have frequent interac-

tions with grandchildren due to close geographic proximity, or have labor market connections from

which the child may benefit, or they may make direct financial investments on behalf of the child

(in a manner distinctive to how the parents would choose). Of course, identifying mechanisms is

4Early studies did not find strong evidence of a conditional grandparent effect, but these datasets were often for
a peculiar or non-representative sample (e.g., Warren & Hauser (1997), Hodge (1966) ).

5Nilsen et al. (2012) find an estimate of 0.34 based on measuring income with a 15-year average, implying a
potential attenuation factor of about 0.85 from Mazumder (2005); this implies β1 = 0.42.

6Hertel & Groh-Samberg (2014) use the Panel Study of Income Dynamics (PSID) to study persistence in oc-
cupational class in the U.S.; Long & Ferrie (2018) use wealth-based occupational status measures constructed from
U.S. Census data; Boserup et al. (2014) estimate multigenerational wealth elasticities using Danish administrative
records; Pfeffer (2014) uses the PSID to study educational mobility in the U.S.; Ferrie et al. (2016) further explore
educational mobility in the U.S. using Census data. All of these studies find evidence of a small positive grandparent
effect, and Ferrie et al. (2016) consider the possibility that their estimate could be a consequence of measurement
error.

7The seminal theoretical work by Becker & Tomes (1979) arrives at the perhaps counter intuitive prediction of
a negative effect of grandparents conditional on parent income, which implies persistence declines at a faster than
geometric rate, or more rapid mobility. The intuition behind a negative coefficient is that if the increased income of
grandparents did not raise the parents’ income, this implies the parent got a poor draw on human capital endowment,
and some of this is passed on to the child. Solon (2014) and Stuhler (2014) also adapt this theoretical framework,
providing further discussion of how and why we might find a conditional grandparental effect, whether negative or
positive.
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always challenging, whether considering the intergenerational or multigenerational settings. And,

while we by no means wish to decry the potential for these mechanisms to cause a positive grand-

father coefficient, it is important to recognize the limitations of our empirical estimates given the

data available to us.

Measurement issues play an important role in the descriptive mobility literature, and have

received particular attention in the context of income mobility (e.g., Solon, 1992; Mazumder, 2005;

Haider & Solon, 2006; Nybom & Stuhler, 2014). Whether using administrative or survey data,

we do not observe the long-term (or lifetime) component of income (xig in the equations above).

Rather we observe annual income measures that contain a transitory component in addition to

the long-term component. Studies have long recognized the attenuation bias in estimates of β1

arising from transitory fluctuations in annual income of the parent generation. Considering the

transitory fluctuations to be a source of (approximately) classical measurement error means using

even a five-year average can lead to dramatic increases in estimates of intergenerational persistence,

or substantially lower rates of mobility (Solon, 1992; Zimmerman, 1992). Also accounting for the

persistence in these transitory components over time implies longer-term averages are needed to

mitigate the attenuation bias, again leading to lower estimates of mobility (Mazumder, 2005).

Timing during the lifecycle at which income is measured is also an important factor. Considering

the lifecycle patterns in the importance of the transitory components as well as in the association

between the annual incomes and the permanent component motivates the importance of measuring

the long timespans of income during mid-life (Mazumder, 2005; Haider & Solon, 2006; Nybom &

Stuhler, 2014).

In this paper, we extend the literature on these income measurement issues—which are well

documented for the child-parent regression of equation (1)—to the multigenerational regression in

(2). The implications are more complicated because correlation between the regressors xi1 and xi2

leads to spillover of bias from measurement error. For example, in the case where the true γ2 is

zero, such spillover arising from measurement error in xi1 would lead to a positive estimate of γ2.

Further, we show that this potential for measurement error to lead to a spurious grandparent effect

is still plausible even when the income measures are constructed as multi-year averages during

mid-life, as has become standard practice. This paper also adds to the empirical multigenerational

literature for Norway, providing empirical estimates of three-generation income elasticities.
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In the next section, we summarize the existing results on measurement issues and associated

biases in the intergenerational (parent-child) literature, and then discuss the consequences of these

same issues for the multigenerational regression. We also conduct a simulation to illustrate the

biases in the multigenerational estimates and present these results in Section 3. Section 4 describes

our data and approach, followed by the empirical results. We provide conclusions in Section 5.

2 Biases from Measurement Issues

Measurement of income has long been known to introduce several different biases in intergener-

ational regressions. The measurement issues stem from the fact that, although we would like to

estimate the intergenerational persistence in “permanent” or “lifetime” income, we do not observe

this. Instead we rely on observed annual incomes, either from self-reported survey data or admin-

istrative records. The sources of bias that can arise from using such measures include transitory

fluctuations in annual income (which we will consider to implicitly include any measurement error

in annual reports) and lifecycle variation in both the relationship between permanent and annual

incomes as well as in the share of annual income variation due to the transitory components.8 With

these issues, the timing and duration of the lifespan for which we observe annual incomes are crucial

to mitigating potential biases.

We begin this section by reviewing results from the existing literature on resulting biases in

OLS and IV estimation of the intergenerational regression in equation (1). In Section 3.2, we then

briefly note how these biases might affect extrapolations of the intergenerational coefficients to

make inferences regarding multigenerational mobility. We turn to multigenerational regressions in

Section 3.3, showing how the income measurement issues play out in OLS and IV estimation of

equation (2).

2.1 Biases in the intergenerational regression

Measurement error (or transitory fluctuations) in annual income along with the life-cycle profile

in income are two well documented sources of bias in intergenerational mobility studies, both of

8For studies relying on retrospective questions in surveys (about own income in previous periods or about parents’
economic status a generation back) the possibility of recall error introduces yet another bias. This will not be directly
addressed here, as an increasing number of studies (including the present one) rely on administrative data that is
collected during or shortly after the year the income is accrued.
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which can be mitigated with how income is measured. Measuring income during mid-life minimizes

bias from the latter (Haider & Solon, 2006; Nybom & Stuhler, 2014). When income is measured

in this timespan, averaging over several years of income has been shown to substantially reduce

attenuation bias from measurement error or transitory fluctuations (Solon, 1992; Mazumder, 2005).

We begin our summary with the simple case of classical measurement error and no lifecycle

effects, where parental log annual income in year t, x1t, is decomposed into a permanent component

x1 and a white noise error or transitory component, v1t:

xi1t = xi1 + vi1t (3)

In this case, we know that the OLS estimate of β1 is attenuated:

plim(β̂1,OLS) = β1
σ2x1

σ2x1 + σ2v1
(4)

where σ2x1 = var(xi1) and σ2v1 = var(vi1t). Taking the average over T years of log income reduces

the attenuation bias because σ2v1 is then replaced by σ2v1 /T in (4). Note that in this simple setting,

taking averages over several years for offspring income (the dependent variable yi0) reduces the

error variance.

Under the strong assumptions of classical measurement error, instrumental variables estimation

(IV) (with a valid instrument) provides consistent estimates of β1. Early intergenerational studies

use father’s education to instrument for father’s income (e.g., Solon, 1992) as well as annual income

to instrument for multi-year averages (Altonji & Dunn, 1991), though both studies acknowledge

the tenuousness of instrument exogeneity. In the latter approach, a valid instrument can only

affect offspring income through the permanent component of the parental income average (so the

transitory components cannot be correlated over time). Altonji & Dunn (1991) note that this

may not hold because their IV estimates are consistent with some persistence in the transitory

component of income.

Mazumder (2005) subsequently showed that such persistence implies worse attenuation bias

even when time-averaging with OLS estimation. Suppose the transitory component, vi1t, follows

an AR(1) process:
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vi1t = δvi1t−1 + ei1t (5)

Then the OLS estimate converges to:

plim(β̂1,OLS) = β1
σ2x1

σ2x1 +
σ2
v1
T φ

(6)

where

φ = 1 + 2δ
T − 1−δT

1−δ
T (1− δ)

(7)

In this case, the attenuation bias is not reduced to the same extent by taking multi-year averages

(since 0 > δ > 1), and an IV approach using an annual income measure in year s to instrument

for income in year t (or an average ending in year t) no longer provides a consistent estimate,

though the bias shrinks as s gets further from t. Defining T = s− t, the probability limit of the IV

estimator is:

plim(β̂1,IV ) = β1
σ2x1

σ2x1 + δT
σ2
e1

1−δ2
(8)

Further complicating things is the lifecycle variation in the size of σ2v1, which has been found to

be U-shaped with the smallest level being in the early 40’s (e.g., Mazumder, 2001, 2005).9 When

taking longer term averages of annual income, σ2v/T can potentially get larger if σ2v1t grows fast

enough, thus exacerbating attenuation bias rather than reducing it.

Other studies have pointed out that the relationship between annual incomes and permanent

income changes over the lifecycle, and this can lead to attenuation or amplification bias (e.g., Haider

& Solon, 2006). To model this lifecycle variation, equation (3) becomes xi1t = λ1txi1 + vi1t. λ1t

tends to be less than one at younger ages, reaches one around the early 40s when annual income

is a reasonable measure of average lifetime income, and then is greater than one at older ages.

Incorporating λ1t leads to

plim(β̂1,OLS) = β1
λ1tσ

2
x1

λ21tσ
2
x1 + σ2v1

(9)

9For Norway, Nilsen et al. (2012) do not find the full U-shape pattern found for other countries, rather they find
the typical incline beginning in the early 40’s, but with a stable level at younger ages. We discuss the implications of
this further with our empirical results.
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for OLS estimates from using an annual income measure for parents. If an annual measure is used

for offspring as well, plim(β̂1) in (9) is multiplied by λ0τ (the analogous parameter relating annual

income in year τ to permanent income for offspring). When a T-year average of income is used,

again σ2v1 is replaced by σ2v1/T and λ1t is replaced by the average over the included years, λ̄1T .

And, in the case of IV using an annual income to instrument for another, plim(β̂1) simplifies to

β1
λ0τ
λ1t

.

So for OLS and IV, the lifecycle related bias can now be attenuating or amplifying in nature, as

shown by studies emphasizing the importance of measuring annual incomes during the age ranges

for which λ1t and λ0τ (or λ̄1T ) are approximately 1 (Haider & Solon, 2006; Nybom & Stuhler,

2014).

Many of the aforementioned intergenerational results have been documented in the literature

(e.g., Zimmerman, 1992; Mazumder, 2001, 2005; Haider & Solon, 2006; Nilsen et al., 2012; Nybom

& Stuhler, 2014). And some of these methods for mitigating bias, such as measuring income at

midlife and averaging over several years, have become standard practice. However, even when these

practices are implemented, some bias still remains. In the two-generation setting, this may not be

very problematic because it is generally believed that we know the direction of bias and often it

is fairly small in magnitude. Still, we note in the next section that using these estimates to make

inferences about multigenerational mobility could be misleading if we ignore the leftover bias.

2.2 Comparing estimates from two-generation regressions

As previously mentioned, studies sometimes extrapolate intergenerational regression estimates to

approximate multigenerational mobility, and the above noted biases could lead to false conclusions

of a grandparent effect. For instance, some studies compare estimates of the offspring-grandparent

association (β3) with (β̂1)
2. If β̂3 > (β̂1)

2, this has been interpreted as evidence in favor of a

grandparent effect (e.g., Lindahl et al., 2015). If we consider the results above on attenuation bias,

it is not clear that comparing β̂3 and (β̂1)
2 is strong enough evidence, even after properly accounting

for estimation error, because of the attenuation bias that is present in the estimates. Define these

attenuation factors θ∗1 and θ∗3 such that β̂1 = θ∗1β1 and β̂3 = θ∗3β3. Then it is simple to show that

even if β3 = (β1)
2, we would find that β̂3 > (β̂1)

2 when the attenuation factors satisfy θ∗3 > (θ∗1)2.

How likely is this to occur? Using the preferred estimates of attenuation factors in Table 1 of
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Mazumder (2005), if we use a 20-year average for parents’ income (θ∗1 = .88 so (θ∗1)2 = .77), then

a 9-year (or longer) average (θ∗3 = .78) for grandparents’ income will give θ∗3 > (θ∗1)2, and thus

β̂3 > (β̂1)
2.

Another analogous comparison studies consider is whether β̂3 > β̂1 · β̂2, where β̂2 is an estimate

of the parent-grandparent association (e.g., Lindahl et al., 2015; Adermon et al., 2018). In this

case, if we again consider attenuation bias, we will mistakenly conclude that β̂3 > β̂1 · β̂2 (despite

the true relationship being β3 = β1 ·β2) if the attenuation factors satisfy θ∗3 > θ∗1 ·θ∗2. Since the same

grandparent income measure is typically used in the offspring-grandparent and parent-grandparent

regressions, θ∗3 = θ∗2, meaning any θ∗1 < 1 will lead us to mistakenly conclude that β̂3 > β̂1 · β̂2.

Although the biases can be complicated by lifecycle effects as discussed above, if income is measured

during midlife so λ̄t ≈ 1, then it is almost certain that θ∗1 < 1 for any long-term average of income;

even using a 30-year average leaves an attenuation factor of 0.91 in the simulations in Mazumder

(2005).

Although it is feasible that biases may affect the comparisons of intergenerational estimates,

these comparisons were generally made due to data limitations. Now that it is possible to run the

full multigenerational regression, we show in the next section that this presents unique challenges

even with small amounts of bias remaining from parental income measures, as this bias spills over

into—and has the opposite effect on—the grandparent coefficient in equation (2).

2.3 Multigenerational regression

We next turn to the multigenerational regression, showing the distinct implications of the measure-

ment issues discussed above, including the consequences from bias that remains even after taking

standard approaches to mitigate the measurement issues. The intergenerational correlation between

parents’ and grandparents’ permanent components of income leads to spillover of these biases, a

standard econometric result. Such spillover is often ignored because the affected coefficient is not

for a variable of interest, but the opposite is true in this case—we are primarily interested in the

grandparent coefficient. Notably, this spillover bias can produce a small positive coefficient esti-

mate when the true parameter for grandparents is zero—or even negative—in the multigenerational

equation in (2).

For intuition, first consider the simple setting where only parental income is measured with
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error and the measurement error is classical, but we perfectly observe grandparents’ income (xi2).

Then the coefficient estimate on parents’ income is attenuated, but the coefficient estimate on

grandparents’ income is actually biased upward because the underlying permanent component of

parents’ earnings is positively related to that of the grandparents.

To see the potential effects of bias spillover more precisely, we extend the simple scenario

of classical measurement error to both generations. Consider annual income measures for both

generations that follow equation (3), where now it also matters that vi1t is orthogonal to vi2t, so

annual income is only related across generations through the permanent component of income.

This is reflected below by ρ = corr(xi1, xi2). For simplicity, consider the case of stationarity where

var(xi1t) = var(xi2t) = σ2x and var(vi1t) = var(vi2t) = σ2v . The probability limits of the OLS

estimators from using annual income measures in the multigenerational equation (2) are:

plim(γ̂1,OLS) = γ1
σ2x

σ2x + σ2v

(
σ2
x+σ

2
v

σ2
x(1−ρ2)+σ2

v

)
︸ ︷︷ ︸

attenuation, θ1

+γ2
σ2x

(
ρσ2
v

σ2
x(1−ρ2)+σ2

v

)
σ2x + σ2v

(
σ2
x+σ

2
v

σ2
x(1−ρ2)+σ2

v

)
︸ ︷︷ ︸

spillover, ω1

(10a)

plim(γ̂2,OLS) = γ1
σ2x

(
ρσ2
v

σ2
x(1−ρ2)+σ2

v

)
σ2x + σ2v

(
σ2
x+σ

2
v

σ2
x(1−ρ2)+σ2

v

)
︸ ︷︷ ︸

spillover, ω2

+γ2
σ2x

σ2x + σ2v

(
σ2
x+σ

2
v

σ2
x(1−ρ2)+σ2

v

) .
︸ ︷︷ ︸

attenuation, θ2

(10b)

These equations show that even if grandparents do not have an effect on grandchildren’s income

conditional on parents, so γ2 = 0 in equation (2), the second element of the plim(γ̂2,OLS) sum will

be zero, but the first element (γ1ω2) will be positive. Hence, despite the true γ2 = 0, one would still

estimate a small positive coefficient. Even with the common practice of using multi-year averages

of income, where then the σ2v in equations (10a) and (10b) are replaced by (σ2v/T ), some bias

still remains—and will still cause upward bias in the other coefficient estimate—leaving open the

possibility of estimating a spurious grandparent effect.

The size of the spillover bias in plim(γ̂2) is largely driven by the size of γ1 and is also increasing

in ρ, so we would expect it to be more substantial in countries with higher levels of intergenerational

persistence. Conversely, since we expect the grandfather coefficient γ2 to be small (if it is not zero),
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we do not expect spillover to be a major contributor to bias in the parental coefficient estimate

γ̂1,OLS . Rather, attenuation bias will still be the primary concern, and since
(

σ2
x+σ

2
v

σ2
x(1−ρ2)+σ2

v

)
> 1,

attenuation bias in the parental coefficient will be at least slightly worse in the multigenerational

setting than it was in the intergenerational regression. In this case with stationarity, the attenuation

factors and spillover factors are the same for parents and grandparents, so ω1 = ω2 and θ1 = θ2.

In theory, these could differ across generations without stationarity, and with some of the more

realistic earnings processes we consider.10

Given that the equations above are based on the simple case of classical measurement error, IV

using annual income in one year to instrument for another year would yield consistent estimates

of γ1 and γ2. In fact, multigenerational studies have used IV approaches to address measurement

error, but have done so by using the outcome for grandparents to instrument for that for parents

(Boserup et al., 2014) or similarly have used great-grandparents to instrument for grandparents

(Lindahl et al., 2014). The instrument validity in these cases relies on the assumption that the

grandparents’ (great-grandparents’) outcome does not affect the child’s outcome except via the

parents’ (grandparents’) outcome. Considering the theoretical mechanisms through which grand-

parents could exert a direct effect (after conditioning on parents), and the findings in recent research

supporting such mechanisms (e.g., Zeng & Xie, 2014), it is unclear whether this assumption holds

for the case of using a grandparent outcome to instrument for parents.

And, while the classical errors in variables scenario has been useful for exposition and for

identifying methods to reduce bias in the intergenerational regression setting, studies recognize this

is not realistic for the actual earnings process, especially to the extent that IV using consecutive

annual incomes would provide consistent estimates. Considering the more realistic AR(1) process

for the transitory component for parent and grandparent earnings, then σ2v is replaced with σ2
e

1−δ2 in

the probability limits for the OLS estimators in (10a) and (10b). Or when we use T-year averages

of annual income, each σ2v is replaced with (σ2v/T )φ, where φ is from equation (7).

Studies have shown that the transitory components are correlated over time, but generally

disappear after about 3 years.11 This means that annual earnings measures 4 or 5 (or more)

10The probability limits from the multigenerational regression without assuming stationarity are provided in the
Appendix.

11Moffitt & Gottschalk (1995) use the PSID data from 1969-87 and find that the transitory component is composed
of serially correlated shocks that die out within 3 years. Using later years of the PSID, Haider (2001) notes that less
than 15% of transitory shock remains after 3 years.

12



years apart can be used to instrument for each other, as it seems reasonable to assume that the

measurement errors in these years are uncorrelated with each other and are also uncorrelated with

child’s earnings. Hence, one approach we take is similar to Altonji & Dunn (1991), using parental

annual earnings from one year to instrument for parents’ earnings in a different year, and do the

same for grandparents’ earnings. Again using T = s − t to denote the number of years between

the annual earnings measure used as an instrument (year s) and treated as endogenous (year t),

the probability limits of the IV estimators for γ1 and γ2 are identical to equations (10a) and (10b)

except that each σ2v is replaced with δT
(

σ2
e

1−δ2

)
. As with the intergenerational case, increasing T

(years between the instrument and endogenous income measures) reduces attenuation bias.

We next turn to lifecycle related biases. The implications of age-related variation in the as-

sociation between annual and permanent income for offspring is straightforward. Assuming we

observe parents’ and grandparents’ permanent income, the multiplicative bias is the same as in

the two generation regression, plim(γ̂1) = λ0τγ1 and plim(γ̂2) = λ0τγ2, so to the extent that λ0τ

is different from 1, both coefficient estimates are biased in the same direction by the same pro-

portion. However, lifecycle bias arising from measurement of parent and grandparent income is

more complicated, again leaving open the possibilities of attenuation or amplification bias. In this

case, now assuming we observe permanent income for the offspring (and still maintaining station-

arity), we distinguish between lifecycle effects with λgt for each generation (g = 1, 2 for parents,

grandparents):

plim(γ̂1,OLS) = γ1
λ1tσ

2
x

λ21tσ
2
x + σ2v

(
λ22tσ

2
x+σ

2
v

λ22tσ
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When using T -year averages of income, λgt and σ2v are replaced with λ̄gT and σ2v/T , respectively.

So taking long-term averages during midlife helps to ensure that λ̄gT ≈ 1. The other source of age-

related bias is the U-shaped pattern in the size of σ2v . If the increase in σ2v is steep enough, then σ2v/T

may grow as one averages over more years, worsening attenuation bias. In the multigenerational
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case, such a scenario would also lead to larger spillover bias for larger T .

For IV, the noisier earnings measures with larger σ2v also leads to larger spillover and atten-

uation factors. And when considering lifecycle changes in λgt, the probability limits are slightly

more complicated because we have to separately consider λgt for the income measure treated as

endogenous and λgs for the income measure used as an instrument:

plim(γ̂1,IV ) = γ1
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Although λgs appears in these equations, it is λgt (for the endogenous measure) that matters more

for lifecycle bias in IV estimates. So for both estimators it is important to measure income during

the periods of life for which λgt ≈ 1 for each generation, which we do in our empirical approach.

The implications of lifecycle bias are similar to what has been found for the intergenerational

case; measuring income at too old of ages (λgt > 1) leads to downward bias or at too young

of ages (λgt < 1) leads to amplification bias. We further discuss the implications of all of these

measurement issues in the next section, where we perform simulations to illustrate the consequences

of these biases in different scenarios.

3 Simulation

To quantify the implications of these biases in multigenerational regressions, we conduct simple

simulations based on equations (10a)-(12b). We vary the parameters ρ, δ, and λgt to gauge the

extent of these biases in a variety of plausible data generating scenarios, and assess the likelihood

of estimating a spurious grandparent coefficient. Recall, ρ is the correlation between xig across

generations and hence reflects different levels of intergenerational persistence in different societies.

The parameters δ and λ determine underlying earnings dynamics. δ is the autocorrelation coeffi-

cient in the transitory component of earnings (so a value of zero corresponds to classical errors in

variables), and is an important factor determining researchers’ ability to reduce attenuation bias
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with time-averaging or IV estimation. λgt reflects lifecycle variation in the association between

lifetime and annual income in year t for generation g.

As above, we maintain stationarity. And similar to Mazumder (2005), we multiply through

the above probability limits by the total variance of annual earnings, σ2xt, so that we only need to

make assumptions about the variance shares σ2
v

σ2
xt

and σ2
x

σ2
xt

to calculate the attenuation and spillover

factors (θ and ω).12

3.1 Illustrating attenuation and spillover bias

We consider several different scenarios, varying δ (0.3, 0.5, 0.7), ρ (0.2, 0.4, 0.6), and λgt (0.8, 1,

1.2). We set the variance shares at σ2
v

σ2
xt

= σ2
x

σ2
xt

= 0.5 for our base case, but also set σ2
v

σ2
xt

= 0.7 for

a robustness check. For a given set of these parameters, we vary the number of years we average

over for parents (T1) and grandparents (T2) for OLS, or similarly, the number of years between

the endogenous and instrument earnings measures for IV. We present results for a subset of these

scenarios for pedagogical purposes, focusing on biases in the grandparent coefficient using ρ = 0.4,

δ = 0.5, and all λgt = 1 as a base case. These scenarios are in the middle columns of Figures

1 (OLS) and Figure 2 (IV), where each dotted line corresponds to a different T2 (changing the

grandparent income measure) whereas moving along one of these dotted lines from left to right

corresponds to increasing T1 (improving the parental income measure).

Figure 1 shows the bias factors in the OLS estimate of the grandparent coefficient when we use

time-averages of income. For our base case of ρ = 0.4, δ = 0.5, time-averaging reduces attenuation

bias from about 52% (θ2=0.48) when using annual income (T2 = 1) to about 10% (θ2=0.90) with

a 30-year average (T2 = 30). The set of graphs in the top row of Figure 1 shows the calculated

attenuation coefficient for grandparents (θ2) for different values of δ. On the left, we can see

that a smaller δ (0.3) implies that time-averaging is more effective at reducing attenuation bias,

a result that has already been shown for intergenerational regressions (Mazumder, 2005). The

graph on the right shows that a larger δ means time averaging is less effective. In all cases, as we

improve grandparents’ income measure (going from one line to another), attenuation bias is reduced.

Improving the parental income measure (going from left to right along each line, increasing T1),

does not help reduce attenuation bias in the grandparent coefficient. Similarly, ρ has little impact

12Also following Mazumder (2005), we assume σ2
e adjusts so that σ2

v =
σ2
e

1−δ2 holds.
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Figure 1: Attenuation (θ2) and spillover (ω2) bias in OLS coefficient for grandparent
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on the attenuation bias, so we do not show the attenuation coefficients with different ρ here, though

these results are available upon request.

The issue of spillover bias in the grandparent coefficient, however, is present because of ρ. For

our base case of ρ = 0.4, δ = 0.5, time-averaging reduces the spillover coefficient from about 10%

(ω2=0.1) when using annual incomes for both generations to about 4% (ω2=0.04) with a 30-year

average for each generation. We know ρ > 0 from the well documented results on parent-child

mobility in many countries. The size of ρ, along with the parent coefficient γ1, determine the size

of the overall spillover bias. As shown in the bottom row of Figure 1, when ρ is small (0.2), the

spillover coefficient ω2 is also somewhat small. When we triple ρ to 0.6 the extent of spillover also

approximately triples for shorter-term averages of parent’s income (i.e, small T1). This combined

with the fact that γ1 is also likely larger for countries with large ρ implies that OLS estimates for

such societies are more susceptible to spurious grandparent effects.

There are other important patterns to note also. First, for a given parental income measure,

attempting to reduce potential attenuation bias in the grandparent coefficient by including more
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years in the average income measure for grandparents actually worsens the spillover bias. In ω2,

time-averaging for the grandparent implies replacing the only σ2v outside of parenthesis by σ2v/T2,

which effectively shrinks the denominator thereby increasing ω2. (This can be seen explicitly in the

more detailed probability limits in the Appendix.) So if the true γ2 = 0, there is no attenuation to

be concerned about, and the time-averaging for grandparents is actually creating a spurious small

positive grandparent coefficient. This is illustrated below in Figure 3(b). Second, in countries with

large ρ it takes far more years of observed income for parents to eliminate/mitigate the spillover bias.

When ρ = 0.6, for example, even using 30-year averages of income for parents and grandparents—

which is not yet possible in any datasets we know of—the spillover bias is not eliminated.

Although this can be problematic for OLS estimation, there are more promising results for

relatively small T with IV estimation. Figure 2 presents the computed attenuation (θ2) and spillover

(ω2) factors for IV estimation using an annual income measure in year s to instrument for that

in year t. In the figures, Tg indicates the difference in years (s-t) between the instrument and

endogenous measure for parents (g = 1) and grandparents (g = 2). First, although attenuation

bias is again worse the larger δ is, it can be nearly eliminated using income measures in a relatively

short time period (up to about 10 years with high δ). When T1 = T2 = 1, θ2 is about 0.65 and

reaches about 0.99 at T1 = T2 = 6. Second, the spillover bias is only slightly smaller than OLS

with very small Tg, at about 0.1, but is nearly eliminated with only about a 6-year timespan of

income for parents and grandparents, giving ω2 < 0.01. Although the spillover is again worse with

larger ρ, it is still eliminated with relatively short timespans of income.

These simulation results are enlightening for multigenerational regressions, but have abstracted

from the two age-related sources of bias: the lifecycle variation in σ2v and in the association between

annual and lifetime income (λgt). The implications of the former are fairly straightforward. A larger

transitory variance share means a noisier income measure, so for each Tg, the attenuation factor is

smaller (meaning worse attenuation bias). The spillover factor tends to be similar for small T, but

then increase for large T. For example, if we set σ2
v

σ2
xt

= 0.7 so σ2
x

σ2
xt

= 0.3, then time-averaging over

30 years for OLS only reduces the attenuation bias to 20%. And the spillover coefficient is only

reduced to 0.07 with a 30-year average income measure. For IV, the implications are less severe.

At Tg = 6, the spillover coefficient is below 0.02 and the attenuation coefficient reaches 0.98.

The implications of lifecycle variation in the association between annual and lifetime income,
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Figure 2: Attenuation (θ2) and spillover (ω2) bias in IV coefficient for grandparent
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reflected by λgt, are more complicated. See Appendix Figures B.1-B.4 for the attenuation and

spillover factors. The attenuation coefficient for OLS follows the same patterns found in previous

studies for the intergenerational regression. When λgt > 1, as is the case for annual incomes

measured at older ages, attenuation bias is worse (θg is smaller). When income is measured at

younger ages, so λgt < 1, θ2 can be larger than one which means there is amplification bias rather

than attenuation.

The spillover factor (ωg) is larger when λgt < 1 and smaller when λgt > 1, reinforcing the

attenuation or amplification bias from θg. Considering the combined effect of the lifecycle effects

on θg and ωg, the OLS coefficient estimates of γg are possibly biased upward when λgt < 1 and likely

biased downward when λgt > 1. Standard practice is to measure income at ages when λgt ≈ 1,

but taking long-term averages of income can extend into age ranges where λgt 6= 1, although when

extending ages symmetrically in both directions it is plausible that the λ̄gT remains around one.

With IV estimation, it is the age at which the endogenous earnings is measured that drives

lifecycle bias. If λgt < 1, this can result in substantial amplification bias even after increasing Tg,
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while λgt > 1 exacerbates attenuation bias. A simple way to test for this source of lifecycle bias in

IV estimates—and potentially bound the true coefficient—is to do IV estimation twice, where the

instrument and endogenous measures are reversed.

We focused most of our discussion here on the biases in the grandparent coefficient, which is

of primary interest here. The analogous results for θ1 and ω1 for parents are the same by design

(available upon request). However, the extent to which the spillover (ω1) bias affects the magnitude

of our coefficient estimate depends on the size of γ2. Since this is presumably small relative to γ1,

spillover bias will not generally be extremely problematic for the parent coefficient so changing T2

does not have appreciable impacts on our estimate of γ1. Rather, addressing the attenuation bias

is the main issue, as is customary with intergenerational income regressions.

3.2 Illustrating a spurious grandfather coefficient

To illustrate the consequences of the biases in Figures 1 and 2 for the actual estimates researchers

obtain, we next present figures with the corresponding coefficient estimates of γ1 and γ2 for our

base case where ρ = 0.4, δ = 0.5. We choose γ1 = 0.3 and γ2 = 0 to be the underlying population

parameters as these are plausible population values for our sample from Norway and reveal the

potential for a spurious grandparent coefficient in this setting.

In Figure 3, the x-axis indicates the number of years used in the time-averages of income for

OLS or the difference in years between the instrument and endogenous earnings measure for IV.

For 3(a) and 3(d), we treat the measures for parents and grandparents symmetrically so T1=T2.

The estimates in Figure 3(a) show that simultaneously averaging over more years for parents and

grandparents both reduces attenuation bias in γ̂1,OLS as well as the spillover bias in γ̂2,OLS . (We

know there is no attenuation bias in γ̂2,OLS because we set γ2 = 0.) However, even with a 25-

year average of income for parents, attenuation bias still remains. In 3(b), we isolate the effects

of changing the grandparent measure by using what would be considered a reasonable measure

for parent’s income—a 10-year average. This illustrates the fact that improving the grandparent

income measure is causing an increase in γ̂2, a result that would typically be interpreted as reducing

attenuation bias. In our controlled setting here, we know that this is actually increasing the size of

ω2, hence increasing the size of the spurious grandparent coefficient. Figure 3(c) presents estimates

from the opposite exercise, where we use a 10-year average for grandparents’ income, but vary T1
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Figure 3: IV and OLS coefficients when ρ = 0.4, δ = 0.5, γ1 = 0.3, γ2 = 0
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for parents. The coefficient for parents increases as we reduce attenuation bias by averaging over

more years, while the coefficient estimate for grandparents decreases as the spillover bias is reduced.

Turning to the IV estimates in 3(f), we see that instrumenting essentially eliminates the at-

tenuation and spillover around T = 6 years, and this holds across the other two treatments of

solely changing the income measures for parents and grandparents in 3(d) and 3(f) as well. For

IV, using a satisfactory instrument for parents (e.g., T1 = 6) eliminates bias. In 3(f) we see that

using a “good” measure for grandparents causes worse spillover when we do not use a good enough

instrument for fathers (T1 is not large enough). While these simulation results are useful to show

the nature of the biases under a known data generating process, we now turn to our administrative

data to illustrate these implications of these biases in practice.
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4 Data and empirical results

4.1 Data

For our empirical analysis, we use administrative data from Norway. This data has a uniquely long

full-population coverage of tax data, making it possible to follow individual incomes annually from

1967 onwards. We use data on labor income (pensjonsgivende inntekt, income that qualifies for the

Norwegian public pension system). This includes wages and income from self employment. The

tax files include an individual identifying number that allows linkage to the Central Population

Register, which has information on family links (fathers’ and mothers’ ID) for most individuals

born in the 1940s or later.

The offspring generation is comprised of men born 1974-1978, with incomes measured at ages

32-36 (until 2014). This age range is selected to minimize lifecycle bias, while also allowing for

averaging over multiple years of annual income to reduce error variance. Fathers and paternal

grandfathers are then identified using the population register. We use a slightly higher age range

(see below) for fathers and grandfathers because of data availability and the ages are consistent

with attempting to avoid lifecycle bias (λgt ∼ 1) based on evidence in Nilsen et al. (2012). To avoid

sample composition differences across specifications and approaches, we present results based on a

balanced sample where all three generations meet the following income requirements.

Sons must have positive income in at least three of five years from ages 32-36. The income

measures are based on the log of annual labor income so we exclude observations with non-positive

earnings. Included in our various constructions of earnings measures for fathers and grandfathers

are averages over 2, 3, 4, 5, 6, 10, 15, 20, and 25 years (requiring 3 or more years of positive earnings,

although in practice there are at least 7 years of positive incomes for the longer-term averages). Our

final analysis sample is comprised of 5,064 sons matched to their fathers and paternal grandfathers.

Table 1 provides descriptive statistics for this sample, along with the general population weighted

by the sample birth year distribution, as well as the unweighted population.

The average labor income of sons in our sample in the year they turn 34 (during 2004-2008)

is 371,326 NOK (inflation adjusted to 1998). This is slightly higher than the population average

shown in the second set of columns. One possible reason for the discrepancy is the role of immigrant

background. Immigrants do in general have lower incomes than natives, and because of the strict
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Population Population
Sample (weighted) (unweighted)

Men M+W Men M+W Men M+W

Mean income 371,326 318,171 357,248 304,896 356,160 303,053
Std. dev of income 178,604 162,742 216,022 191,711 217,213 191,891
N (unique individuals) 5,064 9,831 171,939 335,155 171,939 335,155

Fathers’ generation (Birth year range: 1950-1958)

Mean income 281,787 284,347 267,366 269,213
Std. dev of income 136,513 137,667 195,184 199,443
N (unique individuals) 4,673 8,451 292,288 292,288

Father’s fathers’ generation (Birth year range: 1928-1935)

Mean income 201,850 202,197 194,142 203,323
Std. dev of income 70,656 70,299 90,290 96,932
N (unique individuals) 4,455 7,790 164,825 164,825

Table 1: Descriptive statistics. Sample restriction: Birth cohorts 1974-1978, with income in at
least 3 years during ages 32-36, with fathers and grandfathers fulfilling the income requirements
described in the text. Incomes shown are at age 34 for the index generation and at age 40 for the
father and grandfather generations. Income is CPI-adjusted (1998 NOK; 1 NOK = 0.13 USD).
Birth year ranges for fathers and grandfathers refer to the 5th and 95th percentile of the birth year
distribution.

requirement that both fathers’ and grandfathers’ identities are known in the registers, there are

very few immigrants in our data set. The distribution of incomes (as measured by the standard

deviation) is also somewhat lower in our sample than for the full population.

The fathers in our sample were born in the 1950s, so the corresponding “population” information

is for all men born in the same period (weighted by the distribution of birth years in the sample),

regardless of whether they have children. The slightly lower mean income in the general population

is likely a reflection of the fact that lower-income men have a lower probability of starting a family.

We see a similar difference in the distribution of grandfathers, born in the late 1920s and early

1930s. The birth year distribution of grandfathers is more skewed than that of fathers; because

grandfathers have to be born after 1928 in order to be young enough to have an observed income

at age 39 (in 1967 when the income data start), we cut off a tail of older grandfathers while there is

still a tail of younger grandfathers born in the 1930s. This also means that the average father-son

age difference in our sample is likely to be lower than in the general population.

Although it would be nice to have larger and unquestionably representative sample for Norway,

it is not necessary for one of our primary purposes in this paper—to illustrate how bias from income

measurement can inflate the grandparent coefficient or even produce a spurious grandparent effect.
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For this, it is most important to maintain a balanced sample across methods to avoid sample com-

position issues driving different patterns in our results. Additionally, we present results for males

only. The tendency to omit females (especially mothers and grandmothers) from intergenerational

income analyses arises in large part from female labor force participation patterns and the inability

to observe outcomes. In our case, given that the rationale for our methodological choices is based

on earnings processes for males, it is most appropriate to focus on sons, fathers and grandfathers

in our analysis.13

4.2 Empirical approach

We estimate a series of intergenerational and multigenerational regressions to examine the influence

of grandparents on their grandchildren’s earnings, and, in particular, look at the implications of the

income measurement issues in the multigenerational model. In all models, the dependent variable

is the 5-year average of log income for sons over ages 32-36. We also include dummy variables

for the index generation’s year of birth. We begin by estimating two-generation models including

son-father regressions, father-grandfather regressions, as well as son-grandfather regressions:

yi0 = β1 xi1 + εi (13)

yi1 = β2 xi2 + εi (14)

yi0 = β3 xi2 + εi (15)

From these, we obtain several estimates of father-son associations, grandfather-father associa-

tions, as well as grandfather-son associations that are not conditional on fathers’ income. Since

we are using log income (or averages of log income) as our income measures, these coefficients also

have the convenient interpretation of intergenerational income elasticities (IGEs). To examine the

effects of income measurement choices on our estimates, we vary the estimation method as well as

the measures we use for xi1 and xi2. We first estimate these models using OLS with annual log

income measures, and then proceed to average over 2 - 6 years of annual log income, as well as

10, 15, 20, and 25 year averages for longer-term measures. Next, we turn to IV estimation using

13The results for samples including daughters are similar, and are discussed below (Section 4.4).
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annual log income measures 2 - 6 years apart as the instrument and endogenous regressors, again

extending to 10, 15, 20, and 25 years for longer time distances between incomes. While many of

the two-generation OLS results have been shown in prior studies, we use these regressions to show

consistency of our results with these and to compare them to our IV estimates as well as to our

estimates from the multigenerational regressions.

The multigenerational regression we estimate for the conditional association between grandfa-

thers’ income and their grandchild’s income is:

yi0 = γ1 xi1 + γ2 xi2 + εi (16)

We vary the income measures and estimation method used for this model in the same way de-

scribed for the two-generation models. Then, to clearly illustrate the bias spillover implications

in the multigenerational regression, we also vary the income measures separately for fathers and

grandfathers as done in the simulations. First, we consider the case where we have a “good”

measure of father’s income—in our case, the 10-year average of log income—and then vary how

grandfather’s income is measured as described above, using OLS to estimate the models. Second,

we do the same exercise using the long-term average of grandfather’s log income, but varying how

father’s income is measured.

Next we use analogous approaches with IV estimation. We first vary the instruments from 2-6

years (and 10+ years when sufficient samples sizes remain) simultaneously for both fathers and

grandfathers. Then we isolate the effects of changing the grandfather IV approach by using the

6-year instrument for fathers while varying that for grandfathers. Finally we illustrate the spillover

bias in the grandfather coefficient by using the 6-year instrument for grandfathers while varying

the instrument for fathers.

4.3 Main results

To examine income mobility across generations in Norway, we begin by showing results for two

generation regressions to illustrate the results of various approaches in this well known setting.

Then we turn to the multigenerational setting, which is of primary interest in this paper, to show

how the biases and methods to alleviate them play out in these models. The three-generation
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results exhibit similar consequences for fathers’ coefficients in the multigenerational setting, but

also show that bias spills over into the coefficient for grandfathers.

For both the two- and three-generation models, we begin with the naive approach of using

OLS to estimate models with single annual income measures for fathers and grandfathers, and

then proceed to use the now standard approach of using long-term averages of income, which has

been shown to reduce attenuation bias from the transitory components. Finally, we use our IV

approaches which allow for varying degrees of persistence in the transitory component of annual

income. All results presented are based on a balanced sample of 5,064 sons matched to their fathers

and paternal grandfathers, unless otherwise noted, and use sons’ average log income over ages 32-36

as the dependent variable.

4.3.1 Two-generation regression results

Figure 4: OLS and IV estimates from two-generation regressions

0
.1

.2
.3

.4
.5

.6

0 5 10 15 20 25

(a) Two-gen (S+F) - OLS

0
.1

.2
.3

.4
.5

.6

0 5 10 15 20 25

(b) Two-gen (S+G) - OLS

0
.1

.2
.3

.4
.5

.6

0 5 10 15 20 25

(c) Two-gen (S+F) - IV

0
.1

.2
.3

.4
.5

.6

0 5 10 15 20 25

(d) Two-gen (S+G) - IV

father coefficient father 95% CI
grandfather coefficient grandfather 95% CI

Figure 4 provides OLS estimates (top panel) and IV estimates (bottom panel), along with

95% confidence intervals, from the two-generation models in equations (13) and (15). Figure 4(a)
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provides father-son intergenerational income elasticities, starting with the first estimate based on

using annual log income measures for fathers, and then proceeding to the right with log income

averaged over an increasing number of years. Each of the income measures is centered around age

43, expanding symmetrically as the number of years in the average increases. As we average over

more years of log income for fathers, we see the expected pattern of IGEs increasing (ranging from

about 0.10 to 0.21). This illustrates the established result that averaging mitigates the attenuation

bias from using annual or short-term income measures as a proxy for permanent income.

One concern that remains even after taking long-term averages of log income is that this does

not eliminate bias from the persistence in the transitory component of annual income. Therefor, we

next use an IV approach using one log annual income measure to instrument for another. If there

is no persistence in vitg, this method produces consistent estimates regardless of the years serving

as the instrument or endogenous variable (assuming they are mid-life to avoid lifecycle bias). To

further allow for varying degrees of persistence, we vary how many years apart the instrument

and endogenous measure are. Essentially, we are using the first annual log income measure in

the corresponding multi-year average as our instrument, and the measure T years later as our

instrument. The x-axis indexes the number of years after the “endogenous” income measure that

we measure the “instrument” income, with all being centered around age 43 to minimize lifecycle

bias.

To the extent that the transitory component is persistent over time, we expect the estimates

to increase as we proceed left to right across Figure 4(c); increasing the years between the endoge-

nous measure and instrument will reduce the attenuation bias as the correlation in the transitory

component falls over time. In general, this is what we see for the father-son persistence estimates.

The estimates range from 0.12 for the case using income only one year later as the instrument to

0.24 when using income measures 6 years apart, and 0.32 when using measures 10 years apart.

Although these estimates are substantially higher than our OLS estimates, they are less precise as

is characteristic of IV estimates, and they are comparable in magnitude to prior IGE estimates of

about 0.34 found for Norway by Nilsen et al. (2012).14

The longer term estimates are based on subsets of our main sample which contributes to the im-

14Modalsli (2016) found slightly lower persistence (0.14) in rank-rank intergenerational regressions, but these
estimates were based on incomes at younger ages (28-32) so the smaller estimate is expected.
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precision (97.3%, 94.7%, 92.5%, 87.3%, respectively, for the 10-, 15-, 20-, and 25-year estimates).15

With these longer timespans possibly extending into ranges where λgt < 1 (as the endogenous age

decreases), the estimates around 0.4 may suffer from amplification bias. Our “reverse IV” results

(using the younger age as the instrument) support this, as the estimates are substantially smaller

around 0.3, and these may be attenuated. Taken together, our IV and reverse IV estimates could be

considered lower and upper bounds on the true parameter, and this range of 0.3 to 0.4 is consistent

with existing evidence for Norway.16

Figures 4(b) and 4(d) provide the analogous results for equation (15) relating sons’ income to

grandfathers’ income. We see the expected pattern of OLS estimates increasing as we average over

more annual log income measures, with the estimates ranging from 0.05 when using annual log

income to about 0.08 when using longer term averages. There is a slight decline in the estimate

based on the 25-year averages of log income to 0.07, which may arise from lifecycle effects, whether

in the form of increasing λ̄2T or increasing σ2vt for these cohorts found by Nilsen et al. (2012).

The IV estimates in Figure 4(d) exhibit a similar pattern, with estimates growing as the years

between the endogenous and instrument income measures increases from one to six years, ranging

from 0.07 to 0.11. The estimate based on a 10-year distance between measures is similar at 0.13,

but the sample is substantially smaller (N=3,535, 69.0%). The samples were even smaller for the

15-, 20-, and 25-year estimates so we omit these results out of concern regarding strong sample

composition effects.

Naturally the grandfather-son associations should be smaller than the father-son associations.

We can compare these results though, using the simple extrapolation discussed earlier, where

β21 is used to approximate longer term persistence. If we use our largest OLS estimate, we get

0.212 = 0.04, or with the largest IV estimate, 0.402 = 0.16. Comparing these to our largest OLS

and IV estimates from the son-grandfather regressions, which are 0.08 and 0.13, respectively, we

cannot conclusively say whether the mobility predicted by the traditional intergenerational model

understates persistence.

15Sensitivity checks do not indicate that sample composition is driving these higher estimates.
16The results for fathers and grandfathers based on equation (14) are very similar to the father-son regressions

(results available upon request). The OLS estimates range from 0.11 to 0.21 and the IV estimates range 0.15 to 0.25
for the 1 to 6 years between income measures, and rise to 0.46 with 10 years, though this is based on a smaller sample
(N=3,262).
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4.3.2 Three-generation regression results

Figure 5: OLS and IV estimates from three-generation regressions
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We now turn to the multigenerational regression results. First, we conduct the same exercise as

in Figure 4, where we take averages of log income, increasing the number of years that we average

over symmetrically for fathers and grandfathers income. However, it is less clear what we expect

to see in the grandfather coefficients because there are two competing biases. There is attenuation

bias from measurement error in “own” income, yet there is an upward bias from measurement error

in fathers’ income. In our simulation, we found that the reduction in the attenuation factor (θ)

from improving one’s own income measure was more meaningful than the reduction in the spillover

factor (ω) from improving the other generation’s income measure. Empirically, as shown in Figure

5, the attenuation bias decreases in the coefficient on fathers’ income, as the coefficient estimate

increases from about 0.09 to 0.21 as we average over more years. These estimates are also similar

to what we found for the father-son regression results. But the coefficient on grandfathers’ income

fluctuates around 0.04-0.05, when going from annual measures to averaging over 15 years of income.

The point estimates decrease slightly to 0.03 and 0.02 for the 20- and 25-year measures, and neither
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of these is statistically significantly different from zero.

Given the strong similarity between the father coefficient estimates for the three generation mod-

els to the analogous estimates from the father-son models—for both the OLS and IV estimates—it

appears that there is little or no spillover bias in the father coefficients from the measurement error

in the grandfather income measures. This is also consistent with a very small (or zero) grandfather

coefficient in the population. To disentangle the two sources of bias (attenuation from own income

measure versus amplification from the other generation’s income measure), we next present results

where we change only one generation’s income measure at a time. We first use a “good” measure

of father’s income (10-year average) throughout all models, while changing grandfathers’ income

measure as before. This allows us to focus on how changing the grandfather measure affects the

coefficient estimate for fathers. The OLS coefficient estimate for fathers remains essentially con-

stant at 0.17 as we go from using annual income to longer-term averages for grandfathers income,

indicating no spillover bias in the coefficient estimate for fathers, which again is consistent with the

true γ2 being zero (or very small).

Further, comparing these OLS results in 5(b) to the results in 5(a) from simultaneously im-

proving fathers’ income measures, we can confirm that spillover bias is present in the grandfather

coefficient estimate. First, note that the estimates in 5(b) for using the 10-year average (so T2 = 10

also) are identical to the 10-year average results in 5(a) by construction. Focusing on Tg < 10, we

see the grandfather coefficient estimates are larger when T1 also varied from 1 to 10 compared to

when the 10-year average is used for fathers throughout. This implies the spillover bias from using

the worse income measure for fathers (T1 < 10) led to a larger grandfather coefficient estimate in

5(a). The grandfather coefficient estimates for Tg > 10 are consistent with this as well, as they

are smaller than when the better income measures ( i.e., longer term averages) were also used for

fathers in 5(a). This is clear evidence of spillover bias, and also shows that even using a 10-year

average to measure income for fathers is not sufficient to rule out spillover bias causing a spurious

positive grandfather coefficient.

Next, we perform a similar exercise in 5(c) only now varying fathers’ income measures while

we hold the measure for grandfathers constant at a 10-year average (T2 = 10). By using a “good”

measure of income for grandfathers, we can isolate the attenuation in the coefficient for fathers,

and, more importantly for this setting, the spillover of bias into the coefficient for grandfathers.
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As expected, the coefficient for fathers increases from about 0.09 to about 0.21 as we average over

more years, in line with our results from symmetrically improving income measures for fathers and

grandfathers in 5(a).

For grandfathers, the coefficient of 0.06 in 5(c) when fathers’ income is measured using annual

log income is larger than the 0.04 estimate in 5(a) when an annual measure was also used for

grandfathers and then the estimates decrease as we improve the measure for fathers. These results

again show evidence of spillover bias from measurement error in fathers’ income, and the fact that

for a given T1, spillover is worsened by improving the measure for grandfathers (increasing T2). One

might be tempted to interpret this as lower attenuation bias from using T2 = 10 in 5(c), but the

fact that the grandfather coefficient estimates decrease as we increase T1 (holding T2 constant at

10) indicates that spillover bias is driving the underlying difference. This is also consistent with our

simulation results where the true grandfather effect was zero and we improved father’s measure to

reduce the spillover. Based on our OLS results, we cannot decisively rule out that the grandfather

effect in this sample is spurious and solely an artifact of measurement error in fathers’ (average)

income. If there is persistence in the transitory component of income, even our OLS estimates

based on a 25-year average of log income are likely still biased.

Our IV approach will produce consistent estimates in this setting when Tg is large enough for

the degree of persistence in vitg. The bottom graphs in Figure 5 present the IV results analogous

to those for OLS above. First, in 5(d) we instrument for both fathers’ and grandfathers’ income

at the same age, using, respectively, fathers’ and grandfathers’ annual log income from a later

year, increasing the distance between years measured as indicated on the x-axis. The coefficient

for fathers’ income increases from 0.11 to 0.30 as we increase the number of years between the

endogenous/instrument income measures, similar to the father-son IV results. The coefficient for

grandfathers’ income fluctuates around 0.03-0.05 for the 1-6 year measures, and is not statistically

significant for the 2-6 year estimates. The 10-year estimate is smaller at 0.01 but is also based on

a smaller sample (N=3,449, 68.1%). However, replicating all of Figure 5 for this smaller sample

reveals similar patterns, so sample composition does not appear to be driving this small estimate. In

general though, the pattern of increasing father coefficients and decreasing grandfather coefficients

as we improve the income measures is also consistent with spillover bias from a poor income measure

for fathers causing an upward bias in the grandfather coefficient.
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Next we vary father and grandfather income measures separately to more carefully examine

spillover bias. We first use the 6-year instrument for fathers’ income while changing the instrument

for grandfathers’ income. The pattern of results is similar to the analogous OLS results, with

the coefficient on fathers’ income remaining steady, though at a slightly higher level of 0.23. The

coefficient for grandfathers is never statistically significantly different from zero, but does increase

slightly as we increase T2. To check for lifecycle effects, we turn to our reverse IV results (Appendix

Figure C.6). With the income measure at older ages treated as endogenous (so λt > 1), the pattern

is reversed and the grandfather coefficient is declining as we increase T2 (and is closer to zero).

We next isolate the effects of measurement issues arising from fathers’ income measures by

using a “good” measure for grandfathers’ (the 6-year instrument) in all estimations, while varying

the instrument for fathers’ income. In Figure 5(f) the coefficient on fathers’ income rises from

0.11 to 0.32 as we increase the years between the endogenous and instrument income measures

from 1 to 10 years, which is nearly identical to the IV results in 5(d). Although the coefficient

on grandfathers’ income fluctuates, on average we do see it decreasing as we improve the measure

for fathers’ income, ranging from 0.08 to -0.03. Notably the coefficient is negative in sign for a

couple of the longer-term scenarios, but the grandfather coefficient is not statistically significantly

different from zero in any of these regressions. The reverse IV results are similar though the father

coefficient fluctuates around 0.3 for the longer-term averages, similar to the father-son reverse IV

results.

Overall, our OLS and IV results do not decisively reject that that true grandfather coefficient

is zero or very small. The OLS estimates based on longer-term averages are around 0.02-0.03. The

IV estimates based on longer-term instruments are also near zero, with some being negative in

sign. None of the longer-term estimates are statistically significantly different from zero, and the

IV estimates are quite imprecise. More importantly, the patterns in our empirical results mirror

those found in the simulation, especially for OLS. Our IV estimates fluctuate more, likely due to

sensitivity to lifecycle effects, and also suggest persistence in the transitory component of income

matters. Regardless, our results show that empirically researchers must be aware of the potential

for a misleadingly large grandfather coefficient estimate.
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4.4 Robustness checks

The above analysis is conducted with only men in all three generations. This allows us to focus on

a single lineage and avoid measurement issues related to the relatively low labor force participation

of women in the initial two generations. However, for the offspring generation, there are fewer

differences between men and women. To examine whether our results are sensitive to only including

men, we have also conducted our analyses on the sample with both men and women in the final

generation, as well as on a grandfather-father-daughter sample.

Figures 4 and 5 are replicated in the Appendix for the full sample (Figures C.7 and C.8). In

general, the coefficients for the full sample (men and women) are slightly lower than for men only,

and more precise. The reduced level reflects generally lower intergenerational persistence typically

found for samples including women, while the higher precision follows from the increased sample

size. The patterns in the coefficients are nearly identical to our results based on sons only. The

only divergence is the 10-year IV estimates, and based on the reverse IV results for this sample,

this appears to be an artifact of lifecycle bias.

5 Conclusion

The role of measurement error in estimating intergenerational income regressions has been ad-

dressed extensively in the literature, and the resulting biases are fairly well understood—it has

become standard to take steps to mitigate these biases. Even though some bias remains, we often

have a sense of the size or at least direction of the remaining bias. However, the implications of

measurement error in the multigenerational regression are more complicated and are becoming in-

creasingly important as studies focus on estimating the conditional effect of grandparents to better

understand the rate of mobility over generations. This paper illustrates the implications of mea-

surement error in this setting, showing that the spillover of bias from measurement error in the

parents’ income measures could lead to misleading conclusions regarding the effects of grandparents.

Our simulations show that even using a long-term average of income over 10 years during mid-life

does not eliminate the potential for estimating a spurious grandfather coefficient. In addition, even

when the true grandparent coefficient is zero, for a given measure of fathers’ income, increasing the

years we average over for grandfathers actually worsens the spillover leading to increasing coeffi-
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cient estimates; this could be misinterpreted as reducing attenuation bias in actual data settings

where we do not know the true grandparent coefficient is zero. The IV approach we propose has

the advantage of mitigating (or eliminating) these biases with relatively short timespans of income,

depending on the degree of persistence in the transitory component of income. And, although the

IV estimator is more susceptible to lifecycle bias, once can easily test for this using the “reverse IV”

approach, which combined with the original IV estimates also provides bounds on the coefficients.

With our administrative data, we see the expected result that time-averaging reduces atten-

uation bias in OLS estimates, and we also show similar results for IV approaches that allow for

persistence in the transitory component of annual income measures. Our sample is a subset from

Norway that had data sufficient for our empirical approach, but our intergenerational results are

in line with prior studies using larger samples from Norway. In the multigenerational setting, we

showed how the spillover of bias from measurement issues in fathers’ income causes upward bias

in the coefficient for grandfathers’ income. Our OLS results based on averaging over log incomes

indicates that spillover bias may be causing a spurious grandfather coefficient estimate. Our IV

approach is also consistent with this, and, although the estimates are imprecise, they leave open

the possibility of a zero grandfather coefficient, or even a negative one, as predicted by Becker &

Tomes (1979).

Exploring transmission of socioeconomic status beyond two generations is an important direc-

tion in the literature, but researchers need to be even more cautious about biases from measurement

error than in the intergenerational setting. We focused on measurement issues with income in this

paper, but measurement issues arise with all other status measures used as well. So, although

the theoretical results presented here are based on models specific to earnings dynamics, the is-

sue of spillover bias from measurement issues is not unique to income and should be taken into

consideration in any multigenerational regression setting.
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Appendix (for online publication)

A Derivations

The following provides derivations of the probability limits shown in the main text of the paper,

though here we do not assume stationarity as done in the paper. This means that below σ2xg and

σ2vg are allowed to vary across generations (g = 1, 2).

In the population, the true multigenerational process is:

yi0 = γ1xi1 + γ2xi2 + εi. (17)

We observe annual earnings measures, x∗it1 for fathers and x∗it2 for grandfathers:

x∗it1 = xi1 + vit1, (18a)

x∗it2 = xi2 + vit2. (18b)

So the equation we estimate with our data is:

yi0 = γ1x
∗
it1 + γ2x

∗
it2 + ε∗it. (19)
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A.1 OLS estimation

We can derive the OLS estimator of γ1 using the Frisch-Waugh-Lovell theorem and some algebra:
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Similarly, for γ2, we get:
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Taking the probability limits gives us:

plim(γ̂1,OLS) =
cov(y, x∗1)var(x

∗
2)− cov(y, x∗2)cov(x∗1, x

∗
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2
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Now we substitute equations (18a) and (18b) and use assumptions underlying classical-errors-

in-variables (CEV): x1 and x2 are orthogonal to v1 and v2 as well as orthogonality between v1 and

v2. For notation, we define σ2xg ≡ var(xig) and σ2vg ≡ var(vitg) for g = 1, 2 and ρ ≡ corr(x1, x2).
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Then the elements of the probability limits are:

var(x∗g) = σ2xg + σ2vg (23a)

cov(x∗1, x
∗
2) = ρσx1σx2 (23b)

cov(y, x∗1) = γ1σ
2
x1 + γ2ρσx1σx2 (23c)

cov(y, x∗2) = γ2σ
2
x2 + γ1ρσx1σx2 (23d)

Substituting these into (22a) and (22b) and rearranging gives us:

plim(γ̂1,OLS) = γ1
σ2x1

σ2x1 + σ2v1

(
σ2
x2

+σ2
v2

σ2
x2

(1−ρ2)+σ2
v2

) + γ2

σx1σx2

(
ρσ2
v2

σ2
x2

(1−ρ2)+σ2
v2

)
σ2x1 + σ2v1

(
σ2
x2

+σ2
v2

σ2
x2

(1−ρ2)+σ2
v2

) (24a)

plim(γ̂2,OLS) = γ1

σx1σx2

(
ρσ2
v1

σ2
x1

(1−ρ2)+σ2
v1

)
σ2x2 + σ2v2

(
σ2
x1

+σ2
v1

σ2
x1

(1−ρ2)+σ2
v1

) + γ2
σ2x2

σ2x2 + σ2v2

(
σ2
x1

+σ2
v1

σ2
x1

(1−ρ2)+σ2
v1

) (24b)

Although assuming that the transitory components are sources of classical measurement error

does lend to the simplicity of these probability limits, it is generally believed that there is some

persistence in the vitg over time. So we can write the AR(1) process for the vit where δ is the

autocorrelation coefficient,

vitg = δvit−1g + eit. (25)

With this process for vitg, each σ2vg is replaced with σ2
e

1−δ2 in the probability limits above. Or

when we use T-year averages of annual income, each σ2vg is replaced with:

1

Tg

σ2e
1− δ2

[
1 + 2δ

(
Tg − 1−δTg

1−δ
Tg(1− δ)

)]
. (26)

A.2 Instrumental variables (IV) estimation

Our IV approach uses log annual earnings in year s (z∗isg) to instrument for log annual earnings in

year t (x∗itg) for that individual. So, in addition to equations (18a) and (18b) above, we have for
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our instruments:

z∗is1 = xi1 + vis1, (27a)

z∗is2 = xi2 + vis2. (27b)

We define A2 = I − x∗2(z∗
′

2 x
∗
2)

−1z∗
′

2 , and again use the Frisch-Waugh-Lovell theorem and some

algebra to derive the IV estimators:

γ̂1,IV = (z∗
′

1 A2x
∗
1)

−1z∗
′

1 A2y (28a)

= [z∗
′

1 (I − x∗2(z∗
′

2 x
∗
2)

−1z∗
′

2 )x∗1]
−1z∗

′
1 (I − x∗2(z∗

′
2 x

∗
2)

−1z∗
′

2 )y (28b)

= [z∗
′

1 x
∗
1 − z∗

′
1 x

∗
2(z

∗′
2 x

∗
2)

−1z∗
′

2 x
∗
1]
−1[z∗

′
1 y − z∗

′
1 x

∗
2(z

∗′
2 x

∗
2)

−1z∗
′

2 y] (28c)

=

 N∑
i=1

z∗i1x
∗
i1 −

N∑
i=1

z∗i1x
∗
i2

(
N∑
i=1

z∗i2x
∗
i2

)−1 N∑
i=1

z∗i2x
∗
i1

−1  N∑
i=1

z∗i1yi −
N∑
i=1

z∗i1x
∗
i2

(
N∑
i=1

z∗i2x
∗
i2

)−1 N∑
i=1

z∗i2yi


(28d)

...

γ̂1,IV =

∑N
i=1 z

∗
i1yi

∑N
i=1 z

∗
i2x

∗
i2 −

∑N
i=1 z

∗
i1x

∗
i2

∑N
i=1 z

∗
i2yi∑N

i=1 z
∗
i1x

∗
i1

∑N
i=1 z

∗
i2x

∗
i2 −

∑N
i=1 z

∗
i1x

∗
i2

∑N
i=1 z

∗
i2x

∗
i1

(28e)

Similarly, for γ2, we get:

γ̂2,IV =

∑N
i=1 z

∗
i2yi

∑N
i=1 z

∗
i1x

∗
i1 −

∑N
i=1 z

∗
i2x

∗
i1

∑N
i=1 z

∗
i1yi∑N

i=1 z
∗
i2x

∗
i2

∑N
i=1 z

∗
i1x

∗
i1 −

∑N
i=1 z

∗
i2x

∗
i1

∑N
i=1 z

∗
i1x

∗
i2

(29)

Taking the probability limits we get:

plim(γ̂1,IV ) =
cov(z∗1 , y)cov(z∗2 , x

∗
2)− cov(z∗1 , x

∗
2)cov(z∗2 , y)

cov(z∗1 , x
∗
1)cov(z∗2 , x

∗
2)− cov(z∗1 , x

∗
2)cov(z∗2 , x

∗
1)

(30a)

plim(γ̂2,IV ) =
cov(z∗2 , y)cov(z∗1 , x

∗
1)− cov(z∗2 , x

∗
1)cov(z∗1 , y)

cov(z∗2 , x
∗
2)cov(z∗1 , x

∗
1)− cov(z∗2 , x

∗
1)cov(z∗1 , x

∗
2)

(30b)

Now we substitute equations (18a), (18b), (27a), and (27b) and use assumptions underlying

classical-errors-in-variables (CEV): x1 and x2 are orthogonal to v1 and v2; vit1 and vit2 are uncor-

related; vitg and visg are uncorrelated. For notation, we define σ2xg ≡ var(xig) and σ2vg ≡ var(vitg)
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for g = 1, 2 and ρ ≡ corr(x1, x2), allowing us to write the elements of the probability limits as:

cov(z∗g , x
∗
g) = σ2xg + cov(visg, vitg) = σ2xg + σ2vg (31a)

cov(x∗1, z
∗
2) = cov(x∗2, z

∗
1) = ρσx1σx2 (31b)

cov(y, z∗1) = γ1σ
2
x1 + γ2ρσx1σx2 (31c)

cov(y, z∗2) = γ2σ
2
x2 + γ1ρσx1σx2 (31d)

Substituting these into the probability limits in (30a) and (30b), and then doing some algebra

shows that plim(γ̂1,IV ) = γ1 and plim(γ̂2,IV ) = γ2. However, if we consider the case of an AR(1)

process for vitg, then (31a) does not hold. Rather, cov(visg, vitg) = δTg
σ2
eg

1−δ2 where Tg = t − s is

the years between the earnings measures xitg and zisg. In this case, the probability limits of the

IV estimators are the same as those for the OLS estimators in (24a) and (24b) except that σ2vg is

replaced with δTg
σ2
eg

1−δ2 .

Table A.1 summarizes what takes the place of σ2vg under the two different scenarios for the

transitory component (CEV or AR(1)) for each of our estimation approaches.

Table A.1: Elements that take place of σ2vg in plim(γ̂1) and plim(γ̂2)

Estimation method vitg ∼ CEV vitg ∼AR(1)

OLS using annual income measures σ2vg
σ2
e1

1−δ2

OLS using Tg-year averages of income
σ2
vg

Tg
1
Tg

σ2
e1

1−δ2

[
1 + 2δ

(
Tg−

1−δTg
1−δ

Tg(1−δ)

)]

IV using annual incomes Tg years apart n.a. δTg
σ2
e1

1−δ2

41



A.3 Lifecycle Effects

We can also consider lifecycle profiles in income for fathers and grandfathers, where the relationship

between annual and lifetime or permanent income is written

x∗it1 = λt1xi1 + vit1, (32a)

x∗it2 = λ2txi2 + vit2. (32b)

Considering again the probability limits in equations (24a) and (24b), we can use the equations

in (32a) and (32b) to write the elements of the probability limits as:

var(x∗g) = λtgσ
2
xg + σ2vg (33a)

cov(x∗1, x
∗
2) = λt1λt2ρσx1σx2 (33b)

cov(y, x∗1) = λt1γ1σ
2
x1 + λt1γ2ρσx1σx2 (33c)

cov(y, x∗2) = λt2γ2σ
2
x2 + λt2γ1ρσx1σx2 (33d)

Then the OLS probability limits in equations (24a) and (24b) are now:

plim(γ̂1,OLS) = γ1
λ1tσ

2
x1

λ21tσ
2
x1 + σ2v1

(
λ22tσ

2
x2

+σ2
v2

λ22tσ
2
x2

(1−ρ2)+σ2
v2

) + γ2

λ1tσx1σx2

(
ρσ2
v2

λ22tσ
2
x2

(1−ρ2)+σ2
v2

)
λ21tσ

2
x1 + σ2v1

(
λ22tσ

2
x2

+σ2
v2

λ22tσ
2
x2

(1−ρ2)+σ2
v2

) (34a)

plim(γ̂2,OLS) = γ1

λ2tσx1σx2

(
ρσ2
v1

λ21tσ
2
x1

(1−ρ2)+σ2
v

)
λ22tσ

2
x2 + σ2v2

(
λ21tσ

2
x1

+σ2
v1

λ21tσ
2
x1

(1−ρ2)+σ2
v1

) + γ2
λ2tσ

2
x2

λ22tσ
2
x2 + σ2v2

(
λ21tσ

2
x1

+σ2
v1

λ21tσ
2
x1

(1−ρ2)+σ2
v1

) . (34b)

The equations for our instruments can now be written:

z∗is1 = λ1sxi1 + vis1, (35a)

z∗is2 = λ2sxi2 + vis2. (35b)

With IV estimation, if we assume the vitg are essentially white noise error, then the elements
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of the probability limits are:

cov(z∗g , x
∗
g) = σ2xg + cov(visg, vitg) = λgtλgsσ

2
xg (36a)

cov(x∗1, z
∗
2) = λ1tλ2sρσx1σx2 (36b)

cov(x∗2, z
∗
1) = λ2tλ1sρσx1σx2 (36c)

cov(y, z∗1) = λ1sγ1σ
2
x1 + λ1sγ2ρσx1σx2 (36d)

cov(y, z∗2) = λ2sγ2σ
2
x2 + λ2sγ1ρσx1σx2 (36e)

And the probability limits of the estimators are:

plim(γ̂1,IV ) = γ1
1

λ1t
(37a)

plim(γ̂2,IV ) = γ2
1

λ2t
(37b)

With IV estimation and an AR(1) process for vitg, the elements of the probability limits can be

written:

cov(z∗g , x
∗
g) = σ2xg + cov(visg, vitg) = λgtλgsσ

2
xg + δ

Tg
g

(
σ2e

1− δg

)
(38a)

cov(x∗1, z
∗
2) = λ1tλ2sρσx1σx2 (38b)

cov(x∗2, z
∗
1) = λ2tλ1sρσx1σx2 (38c)

cov(y, z∗1) = λ1sγ1σ
2
x1 + λ1sγ2ρσx1σx2 (38d)

cov(y, z∗2) = λ2sγ2σ
2
x2 + λ2sγ1ρσx1σx2 (38e)
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The probability limits of the IV estimators are below, except that σ2vg is replaced by δ
Tg
g

(
σ2
e

1−δg

)
:

plim(γ̂1,IV ) = γ1
λ1sσ

2
x1

λ1sλ1tσ2x1 + σ2v1

(
λ2sλ2tσ2

x2
+σ2

v2
λ2sλ2tσ2

x2
(1−ρ2)+σ2

v2

) + γ2

λ1sσx1σx2

(
ρσ2
v2

λ2sλ2tσ2
x2

(1−ρ2)+σ2
v2

)
λ1sλ1tσ2x1 + σ2v1

(
λ2sλ2tσ2

x2
+σ2

v2
λ2sλ2tσ2

x2
(1−ρ2)+σ2

v2

)
(39a)

plim(γ̂2,IV ) = γ1

λ2sσx1σx2

(
ρσ2
v1

λ1sλ1tσ2
x1

(1−ρ2)+σ2
v1

)
λ2sλ2tσ2x2 + σ2v2

(
λ1sλ1tσ2

x1
+σ2

v1
λ1sλ1tσ2

x1
(1−ρ2)+σ2

v1

) + γ2
λ2sσ

2
x2

λ2sλ2tσ2x2 + σ2v2

(
λ1sλ1tσ2

x1
+σ2

v1
λ1sλ1tσ2

x1
(1−ρ2)+σ2

v1

) .
(39b)
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B Simulations

B.1 Simulation results with lifecycle effects

Figure B.1: Attenuation and spillover in OLS estimates when λ1 = λ2 = 1.2
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Figure B.2: Attenuation and spillover in OLS estimates when λ1 = λ2 = 0.8
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Figure B.3: Attenuation and spillover in IV estimates when λ1t = λ2t = 1.2, λ1s = λ2s = 1
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Figure B.4: Attenuation and spillover in IV estimates when λ1t = λ2t = 0.8, λ1s = λ2s = 1
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C Empirical results

C.1 Reverse IV results for main sample

Figure C.5: Attenuation and spillover in 2 generation IV estimates when income at older age is
used as the endogenous measure
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Figure C.6: Attenuation and spillover in 3 generation IV estimates when income at older age is
used as the endogenous measure
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C.2 Figures using men+women sample

Figure C.7: OLS and IV estimates from two-generation regressions. Men and women in final
generation.
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Figure C.8: OLS and IV estimates from three-generation regressions. Men and women in final
generation.
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C.3 Tables of regression coefficients

Men only (for men and women, see below).

See Tables C.2-C.10
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(a) Sons and fathers

Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.137 0.119 0.107 0.091 0.097 0.086 0.100
(0.020) (0.017) (0.016) (0.015) (0.014) (0.015) (0.015)

2 years 0.148 0.131 0.117 0.108 0.105 0.108
(0.019) (0.018) (0.017) (0.015) (0.015) (0.015)

3 years 0.153 0.136 0.124 0.114 0.119
(0.020) (0.018) (0.017) (0.016) (0.016)

4 years 0.155 0.141 0.128 0.126
(0.019) (0.018) (0.017) (0.016)

5 years 0.158 0.142 0.137
(0.019) (0.018) (0.017)

6 years 0.158 0.149
(0.019) (0.018)

10 years 0.174
(0.019)

15 years 0.190
(0.019)

20 years 0.209
(0.020)

25 years 0.214
(0.020)

(b) Sons and grandfathers

Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.070 0.054 0.043 0.048 0.054 0.045 0.041
(0.019) (0.020) (0.019) (0.015) (0.016) (0.016) (0.013)

2 years 0.073 0.058 0.054 0.059 0.059 0.051
(0.020) (0.021) (0.018) (0.016) (0.017) (0.016)

3 years 0.071 0.063 0.062 0.063 0.060
(0.022) (0.020) (0.018) (0.018) (0.017)

4 years 0.073 0.068 0.066 0.065
(0.021) (0.019) (0.019) (0.018)

5 years 0.077 0.071 0.067
(0.020) (0.020) (0.019)

6 years 0.078 0.072
(0.021) (0.020)

10 years 0.079
(0.021)

15 years 0.082
(0.021)

20 years 0.075
(0.020)

25 years 0.065
(0.019)

Table C.2: OLS estimates from two-generation models. Note: 10-year averages start at age 38 and
15-year averages start at age 36.
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(a) Sons and fathers

Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.154 0.147 0.138 0.133 0.115 0.149 0.127
(0.022) (0.024) (0.021) (0.020) (0.018) (0.023) (0.018)

2 years 0.167 0.167 0.172 0.146 0.177 0.159
(0.026) (0.025) (0.025) (0.023) (0.027) (0.023)

3 years 0.180 0.199 0.174 0.214 0.171
(0.027) (0.030) (0.028) (0.033) (0.025)

4 years 0.207 0.191 0.248 0.192
(0.031) (0.031) (0.037) (0.028)

5 years 0.202 0.261 0.224
(0.032) (0.039) (0.031)

6 years 0.270 0.237
(0.041) (0.034)

10 years 0.318
(0.053)

15 years 0.414
(0.057)

20 years 0.386
(0.068)

25 years 0.440
(0.076)

(b) Sons and grandfathers

Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.086 0.059 0.077 0.077 0.067 0.067 0.059
(0.034) (0.027) (0.024) (0.022) (0.024) (0.021) (0.021)

2 years 0.072 0.088 0.103 0.082 0.076 0.072
(0.033) (0.027) (0.029) (0.030) (0.024) (0.025)

3 years 0.105 0.109 0.101 0.093 0.083
(0.034) (0.031) (0.036) (0.028) (0.029)

4 years 0.128 0.103 0.117 0.092
(0.037) (0.037) (0.035) (0.033)

5 years 0.114 0.116 0.114
(0.040) (0.035) (0.039)

6 years 0.135 0.105
(0.040) (0.038)

10 years 0.133
(0.077)

15 years

20 years

25 years

Table C.3: IV estimates from two-generation models. Note: 10-year averages start at age 38 and
15-year averages start at age 36.
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(a) Sons and fathers

Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.192 0.164 0.147 0.119 0.130 0.109 0.121
(0.026) (0.024) (0.022) (0.018) (0.019) (0.017) (0.017)

2 years 0.232 0.199 0.163 0.147 0.145 0.132
(0.032) (0.029) (0.025) (0.022) (0.021) (0.021)

3 years 0.265 0.212 0.186 0.157 0.162
(0.036) (0.031) (0.029) (0.023) (0.024)

4 years 0.274 0.228 0.194 0.161
(0.037) (0.034) (0.029) (0.025)

5 years 0.300 0.227 0.200
(0.041) (0.033) (0.031)

6 years 0.292 0.234
(0.040) (0.035)

10 years 0.256
(0.041)

15 years 0.301
(0.050)

20 years 0.308
(0.056)

25 years 0.272
(0.050)

(b) Sons and grandfathers

Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.092 0.083 0.053 0.064 0.079 0.059 0.064
(0.025) (0.032) (0.023) (0.020) (0.023) (0.022) (0.020)

2 years 0.109 0.085 0.059 0.081 0.079 0.071
(0.029) (0.033) (0.026) (0.027) (0.024) (0.025)

3 years 0.109 0.088 0.068 0.080 0.086
(0.029) (0.034) (0.031) (0.027) (0.028)

4 years 0.111 0.098 0.069 0.083
(0.030) (0.038) (0.031) (0.030)

5 years 0.116 0.097 0.074
(0.031) (0.038) (0.034)

6 years 0.120 0.091
(0.033) (0.039)

10 years 0.073
(0.051)

15 years

20 years

25 years

Table C.4: “Reverse IV” estimates from two-generation models. Note: 10-year averages start at
age 38 and 15-year averages start at age 36.
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.133 0.116 0.105 0.088 0.093 0.083 0.097
(0.020) (0.017) (0.016) (0.015) (0.014) (0.015) (0.015)
0.048 0.039 0.027 0.036 0.043 0.037 0.030

(0.019) (0.020) (0.019) (0.015) (0.015) (0.016) (0.013)
2 years 0.143 0.127 0.113 0.103 0.100 0.105

(0.020) (0.018) (0.017) (0.015) (0.015) (0.016)
0.047 0.037 0.034 0.044 0.046 0.038

(0.021) (0.021) (0.018) (0.016) (0.017) (0.016)
3 years 0.148 0.131 0.119 0.109 0.114

(0.020) (0.018) (0.017) (0.016) (0.016)
0.043 0.039 0.041 0.047 0.044

(0.022) (0.020) (0.018) (0.018) (0.017)
4 years 0.150 0.135 0.123 0.121

(0.020) (0.018) (0.017) (0.016)
0.043 0.044 0.045 0.046

(0.021) (0.020) (0.019) (0.017)
5 years 0.152 0.136 0.132

(0.019) (0.018) (0.017)
0.046 0.046 0.044

(0.021) (0.020) (0.019)
6 years 0.152 0.143

(0.019) (0.018)
0.047 0.045

(0.021) (0.020)
10 years 0.167

(0.019)
0.044

(0.021)
15 years 0.183

(0.020)
0.043

(0.021)
20 years 0.204

(0.021)
0.032

(0.020)
25 years 0.210

(0.021)
0.023

(0.019)

Table C.5: OLS estimates from three-generation models. Note: 10-year averages start at age 38
and 15-year averages start at age 36. Men in final generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.132 0.114 0.101 0.086 0.092 0.081 0.096
(0.020) (0.017) (0.016) (0.015) (0.014) (0.015) (0.015)
0.048 0.055 0.058 0.062 0.061 0.064 0.059

(0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021)
2 years 0.142 0.125 0.110 0.102 0.099 0.103

(0.020) (0.018) (0.017) (0.015) (0.015) (0.016)
0.047 0.053 0.056 0.059 0.060 0.059

(0.021) (0.021) (0.021) (0.021) (0.021) (0.021)
3 years 0.147 0.129 0.118 0.108 0.113

(0.020) (0.018) (0.017) (0.016) (0.016)
0.047 0.052 0.055 0.058 0.057

(0.021) (0.021) (0.021) (0.021) (0.021)
4 years 0.149 0.134 0.122 0.120

(0.020) (0.018) (0.017) (0.016)
0.047 0.052 0.055 0.055

(0.021) (0.021) (0.021) (0.021)
5 years 0.151 0.136 0.131

(0.019) (0.018) (0.017)
0.047 0.052 0.053

(0.021) (0.021) (0.021)
6 years 0.152 0.143

(0.019) (0.018)
0.048 0.050

(0.021) (0.021)
10 years 0.167

(0.019)
0.044

(0.021)
15 years 0.184

(0.020)
0.040

(0.021)
20 years 0.203

(0.021)
0.036

(0.021)
25 years 0.208

(0.021)
0.035

(0.021)

Table C.6: OLS estimates from three-generation models, long-term average for grandfathers. Note:
10-year averages start at age 38 and 15-year averages start at age 36. Men in final generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.168 0.170 0.171 0.170 0.169 0.170 0.170
(0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)
0.043 0.032 0.016 0.023 0.033 0.025 0.023

(0.019) (0.020) (0.019) (0.015) (0.015) (0.016) (0.013)
2 years 0.168 0.170 0.170 0.168 0.168 0.169

(0.019) (0.019) (0.019) (0.019) (0.019) (0.019)
0.044 0.030 0.024 0.033 0.035 0.029

(0.021) (0.021) (0.018) (0.016) (0.017) (0.015)
3 years 0.169 0.169 0.169 0.168 0.168

(0.019) (0.019) (0.019) (0.019) (0.019)
0.039 0.032 0.032 0.036 0.035

(0.022) (0.020) (0.018) (0.018) (0.017)
4 years 0.168 0.168 0.168 0.168

(0.019) (0.019) (0.019) (0.019)
0.039 0.037 0.035 0.036

(0.021) (0.020) (0.019) (0.017)
5 years 0.168 0.168 0.168

(0.019) (0.019) (0.019)
0.042 0.039 0.036

(0.021) (0.020) (0.019)
6 years 0.167 0.168

(0.019) (0.019)
0.043 0.040

(0.021) (0.020)
10 years 0.167

(0.019)
0.044

(0.021)
15 years 0.167

(0.019)
0.048

(0.021)
20 years 0.168

(0.019)
0.041

(0.020)
25 years 0.169

(0.019)
0.033

(0.019)

Table C.7: OLS estimates from three-generation models, long-term average for fathers. Note:
10-year averages start at age 38 and 15-year averages start at age 36. Men in final generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.148 0.144 0.132 0.127 0.110 0.144 0.119
(0.023) (0.024) (0.021) (0.020) (0.018) (0.023) (0.018)
0.051 0.028 0.048 0.054 0.050 0.043 0.045

(0.034) (0.027) (0.024) (0.022) (0.024) (0.021) (0.022)
2 years 0.164 0.161 0.162 0.138 0.171 0.149

(0.027) (0.026) (0.025) (0.024) (0.028) (0.024)
0.025 0.046 0.064 0.054 0.045 0.050

(0.034) (0.029) (0.029) (0.030) (0.024) (0.026)
3 years 0.172 0.190 0.166 0.206 0.160

(0.028) (0.031) (0.029) (0.034) (0.026)
0.044 0.064 0.055 0.045 0.056

(0.036) (0.032) (0.037) (0.030) (0.031)
4 years 0.197 0.183 0.243 0.178

(0.032) (0.033) (0.039) (0.029)
0.065 0.053 0.032 0.061

(0.039) (0.039) (0.038) (0.036)
5 years 0.193 0.255 0.213

(0.034) (0.041) (0.034)
0.053 0.036 0.051

(0.043) (0.038) (0.042)
6 years 0.263 0.227

(0.044) (0.036)
0.036 0.050

(0.047) (0.044)
10 years 0.295

(0.052)
0.014

(0.084)
15 years

20 years

25 years

Table C.8: IV estimates from three-generation models. Note: 10-year averages start at age 38 and
15-year averages start at age 36. Men in final generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.146 0.140 0.131 0.125 0.109 0.142 0.118
(0.023) (0.024) (0.021) (0.020) (0.018) (0.024) (0.018)
0.057 0.066 0.068 0.075 0.081 0.071 0.086

(0.040) (0.038) (0.038) (0.038) (0.038) (0.038) (0.041)
2 years 0.159 0.161 0.164 0.140 0.168 0.148

(0.027) (0.027) (0.026) (0.023) (0.028) (0.024)
0.053 0.059 0.059 0.071 0.067 0.079

(0.041) (0.039) (0.038) (0.038) (0.038) (0.042)
3 years 0.173 0.193 0.170 0.206 0.161

(0.028) (0.032) (0.028) (0.034) (0.026)
0.048 0.050 0.057 0.055 0.077

(0.042) (0.039) (0.038) (0.039) (0.042)
4 years 0.201 0.190 0.243 0.182

(0.033) (0.032) (0.040) (0.029)
0.039 0.051 0.037 0.071

(0.043) (0.039) (0.039) (0.042)
5 years 0.199 0.260 0.215

(0.033) (0.043) (0.033)
0.039 0.031 0.051

(0.043) (0.040) (0.043)
6 years 0.265 0.227

(0.044) (0.036)
0.018 0.050

(0.045) (0.044)
10 years 0.315

(0.056)
0.024

(0.047)
15 years 0.430

(0.062)
-0.032
(0.049)

20 years 0.373
(0.072)
0.016

(0.049)
25 years 0.438

(0.085)
-0.012
(0.051)

Table C.9: IV estimates from three-generation models, long-term average for grandfathers. Note:
10-year averages start at age 38 and 15-year averages start at age 36. Men in final generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.229 0.236 0.232 0.227 0.231 0.231 0.229
(0.036) (0.035) (0.035) (0.035) (0.035) (0.035) (0.036)
0.043 0.010 0.030 0.044 0.027 0.027 0.026

(0.036) (0.029) (0.026) (0.023) (0.026) (0.022) (0.023)
2 years 0.235 0.232 0.227 0.229 0.231 0.228

(0.036) (0.035) (0.035) (0.036) (0.036) (0.036)
0.012 0.036 0.058 0.034 0.032 0.031

(0.036) (0.031) (0.031) (0.032) (0.026) (0.027)
3 years 0.229 0.228 0.230 0.228 0.227

(0.036) (0.035) (0.036) (0.036) (0.036)
0.042 0.063 0.041 0.040 0.037

(0.038) (0.033) (0.038) (0.032) (0.032)
4 years 0.223 0.231 0.228 0.224

(0.036) (0.035) (0.036) (0.037)
0.074 0.043 0.048 0.043

(0.040) (0.040) (0.039) (0.038)
5 years 0.228 0.230 0.225

(0.036) (0.036) (0.037)
0.048 0.050 0.049

(0.044) (0.040) (0.043)
6 years 0.226 0.227

(0.037) (0.036)
0.058 0.050

(0.046) (0.044)
10 years 0.198

(0.042)
0.058

(0.082)
15 years

20 years

25 years

Table C.10: IV estimates from three-generation models, long-term average for fathers. Note: 10-
year averages start at age 38 and 15-year averages start at age 36. Men in final generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.185 0.157 0.143 0.114 0.124 0.104 0.116
(0.027) (0.025) (0.023) (0.018) (0.019) (0.018) (0.017)
0.053 0.053 0.025 0.044 0.058 0.044 0.050

(0.025) (0.032) (0.024) (0.020) (0.023) (0.022) (0.020)
2 years 0.222 0.189 0.159 0.140 0.137 0.129

(0.032) (0.030) (0.025) (0.022) (0.021) (0.021)
0.061 0.049 0.025 0.051 0.056 0.050

(0.030) (0.034) (0.027) (0.026) (0.024) (0.027)
3 years 0.256 0.204 0.180 0.149 0.155

(0.037) (0.032) (0.030) (0.024) (0.025)
0.043 0.046 0.031 0.044 0.061

(0.032) (0.034) (0.032) (0.027) (0.030)
4 years 0.264 0.218 0.188 0.156

(0.039) (0.035) (0.031) (0.026)
0.045 0.051 0.023 0.049

(0.032) (0.039) (0.033) (0.033)
5 years 0.290 0.216 0.195

(0.043) (0.035) (0.033)
0.045 0.049 0.027

(0.034) (0.040) (0.037)
6 years 0.283 0.222

(0.042) (0.036)
0.038 0.060

(0.036) (0.045)
10 years 0.265

(0.048)
-0.004
(0.056)

15 years

20 years

25 years

Table C.11: “Reverse IV” estimates from three-generation models. Note: 10-year averages start at
age 38 and 15-year averages start at age 36. Men in final generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.182 0.154 0.136 0.111 0.123 0.103 0.113
(0.028) (0.026) (0.024) (0.019) (0.020) (0.017) (0.018)
0.049 0.058 0.064 0.067 0.066 0.070 0.081

(0.040) (0.039) (0.040) (0.039) (0.039) (0.039) (0.044)
2 years 0.220 0.187 0.153 0.139 0.137 0.126

(0.033) (0.030) (0.026) (0.023) (0.022) (0.021)
0.045 0.053 0.058 0.062 0.062 0.079

(0.039) (0.040) (0.039) (0.039) (0.040) (0.044)
3 years 0.252 0.200 0.176 0.148 0.154

(0.038) (0.033) (0.031) (0.024) (0.025)
0.040 0.048 0.055 0.060 0.073

(0.040) (0.039) (0.040) (0.040) (0.044)
4 years 0.262 0.220 0.183 0.153

(0.040) (0.036) (0.031) (0.026)
0.034 0.046 0.053 0.074

(0.039) (0.040) (0.040) (0.044)
5 years 0.290 0.219 0.187

(0.045) (0.035) (0.033)
0.031 0.045 0.067

(0.040) (0.040) (0.045)
6 years 0.280 0.222

(0.042) (0.036)
0.033 0.060

(0.040) (0.045)
10 years 0.242

(0.044)
0.057

(0.046)
15 years 0.309

(0.055)
0.011

(0.048)
20 years 0.302

(0.061)
0.044

(0.048)
25 years 0.270

(0.056)
0.019

(0.054)

Table C.12: “Reverse IV” estimates from three-generation models, long-term average for grandfa-
thers. Note: 10-year averages start at age 38 and 15-year averages start at age 36. Men in final
generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.227 0.225 0.232 0.230 0.226 0.229 0.227
(0.036) (0.035) (0.036) (0.035) (0.036) (0.035) (0.036)
0.045 0.050 0.011 0.021 0.041 0.024 0.034

(0.027) (0.034) (0.025) (0.022) (0.024) (0.023) (0.021)
2 years 0.225 0.223 0.232 0.229 0.225 0.228

(0.036) (0.036) (0.036) (0.036) (0.036) (0.036)
0.052 0.054 0.013 0.027 0.042 0.031

(0.032) (0.036) (0.028) (0.029) (0.025) (0.027)
3 years 0.223 0.224 0.231 0.228 0.225

(0.036) (0.036) (0.036) (0.036) (0.036)
0.054 0.055 0.015 0.028 0.046

(0.033) (0.037) (0.033) (0.030) (0.030)
4 years 0.224 0.222 0.231 0.228

(0.036) (0.036) (0.036) (0.036)
0.055 0.061 0.015 0.028

(0.033) (0.042) (0.034) (0.033)
5 years 0.223 0.220 0.230

(0.036) (0.036) (0.036)
0.057 0.063 0.018

(0.035) (0.043) (0.037)
6 years 0.220 0.222

(0.037) (0.036)
0.061 0.060

(0.037) (0.045)
10 years 0.249

(0.043)
-0.020
(0.056)

15 years

20 years

25 years

Table C.13: “Reverse IV” estimates from three-generation models, long-term average for fathers.
Note: 10-year averages start at age 38 and 15-year averages start at age 36. Men in final generation
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C.4 Tables for sample of men+women

See Tables C.14-C.21

65



(a) Sons/daughters and fathers

Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.126 0.100 0.094 0.086 0.098 0.080 0.084
(0.013) (0.012) (0.011) (0.011) (0.011) (0.010) (0.011)

2 years 0.130 0.113 0.105 0.105 0.102 0.094
(0.013) (0.012) (0.011) (0.011) (0.011) (0.011)

3 years 0.134 0.120 0.117 0.110 0.109
(0.013) (0.012) (0.012) (0.011) (0.011)

4 years 0.137 0.128 0.120 0.116
(0.013) (0.012) (0.012) (0.012)

5 years 0.143 0.130 0.125
(0.013) (0.012) (0.012)

6 years 0.144 0.134
(0.013) (0.012)

10 years 0.155
(0.013)

15 years 0.169
(0.014)

20 years 0.181
(0.014)

25 years 0.188
(0.014)

(b) Sons/daughters and grandfathers

Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.056 0.053 0.043 0.049 0.044 0.048 0.040
(0.017) (0.015) (0.014) (0.012) (0.012) (0.012) (0.010)

2 years 0.065 0.057 0.054 0.054 0.055 0.052
(0.016) (0.015) (0.014) (0.013) (0.013) (0.011)

3 years 0.065 0.062 0.058 0.061 0.058
(0.016) (0.015) (0.014) (0.013) (0.012)

4 years 0.069 0.064 0.063 0.063
(0.016) (0.015) (0.014) (0.013)

5 years 0.070 0.068 0.065
(0.015) (0.015) (0.014)

6 years 0.073 0.070
(0.015) (0.014)

10 years 0.073
(0.015)

15 years 0.082
(0.016)

20 years 0.081
(0.016)

25 years 0.074
(0.015)

Table C.14: OLS estimates from two-generation models. Note: 10-year averages start at age 38
and 15-year averages start at age 36.
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(a) Sons/daughters and fathers

Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.137 0.130 0.119 0.131 0.111 0.121 0.106
(0.015) (0.016) (0.014) (0.015) (0.014) (0.016) (0.014)

2 years 0.153 0.142 0.161 0.137 0.152 0.129
(0.017) (0.017) (0.018) (0.017) (0.019) (0.017)

3 years 0.158 0.180 0.153 0.176 0.143
(0.018) (0.021) (0.019) (0.022) (0.019)

4 years 0.196 0.165 0.193 0.155
(0.022) (0.021) (0.024) (0.021)

5 years 0.181 0.202 0.170
(0.022) (0.024) (0.022)

6 years 0.218 0.181
(0.027) (0.024)

10 years 0.256
(0.034)

15 years 0.335
(0.039)

20 years 0.402
(0.054)

25 years 0.372
(0.054)

(b) Sons/daughters and grandfathers

Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.083 0.060 0.076 0.064 0.073 0.066 0.047
(0.024) (0.019) (0.018) (0.016) (0.017) (0.016) (0.015)

2 years 0.072 0.087 0.081 0.087 0.080 0.058
(0.023) (0.020) (0.020) (0.021) (0.019) (0.018)

3 years 0.101 0.087 0.102 0.094 0.069
(0.025) (0.022) (0.024) (0.021) (0.021)

4 years 0.100 0.108 0.110 0.076
(0.026) (0.025) (0.025) (0.023)

5 years 0.121 0.115 0.090
(0.028) (0.026) (0.028)

6 years 0.133 0.088
(0.030) (0.027)

10 years 0.178
(0.052)

15 years

20 years

25 years

Table C.15: IV estimates from two-generation models. Note: 10-year averages start at age 38 and
15-year averages start at age 36.

67



Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.123 0.097 0.092 0.083 0.095 0.077 0.081
(0.013) (0.012) (0.011) (0.011) (0.011) (0.010) (0.011)
0.039 0.040 0.030 0.039 0.034 0.041 0.032

(0.016) (0.015) (0.014) (0.012) (0.011) (0.011) (0.009)
2 years 0.126 0.110 0.102 0.101 0.098 0.091

(0.013) (0.012) (0.012) (0.011) (0.011) (0.011)
0.045 0.040 0.039 0.041 0.043 0.042

(0.016) (0.015) (0.014) (0.012) (0.012) (0.011)
3 years 0.130 0.115 0.113 0.105 0.105

(0.013) (0.012) (0.012) (0.011) (0.011)
0.043 0.043 0.040 0.046 0.044

(0.016) (0.015) (0.014) (0.013) (0.012)
4 years 0.133 0.123 0.115 0.111

(0.013) (0.012) (0.012) (0.012)
0.045 0.044 0.045 0.047

(0.016) (0.015) (0.014) (0.013)
5 years 0.138 0.125 0.120

(0.013) (0.012) (0.012)
0.045 0.047 0.046

(0.015) (0.015) (0.014)
6 years 0.139 0.129

(0.013) (0.012)
0.048 0.048

(0.015) (0.014)
10 years 0.149

(0.013)
0.044

(0.015)
15 years 0.162

(0.014)
0.049

(0.016)
20 years 0.174

(0.014)
0.045

(0.016)
25 years 0.181

(0.015)
0.038

(0.015)

Table C.16: OLS estimates from three-generation models. Note: 10-year averages start at age 38
and 15-year averages start at age 36. Men and women in final generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.122 0.096 0.090 0.082 0.093 0.075 0.079
(0.013) (0.012) (0.011) (0.011) (0.011) (0.010) (0.011)
0.050 0.055 0.056 0.059 0.056 0.060 0.058

(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)
2 years 0.125 0.108 0.100 0.100 0.097 0.089

(0.013) (0.012) (0.011) (0.011) (0.011) (0.011)
0.050 0.053 0.055 0.055 0.055 0.056

(0.015) (0.015) (0.015) (0.015) (0.015) (0.015)
3 years 0.129 0.114 0.111 0.104 0.104

(0.013) (0.012) (0.012) (0.012) (0.011)
0.049 0.052 0.052 0.054 0.054

(0.015) (0.015) (0.015) (0.015) (0.015)
4 years 0.132 0.123 0.115 0.111

(0.013) (0.012) (0.012) (0.012)
0.049 0.050 0.052 0.052

(0.015) (0.015) (0.015) (0.015)
5 years 0.138 0.125 0.120

(0.013) (0.012) (0.012)
0.047 0.050 0.051

(0.015) (0.015) (0.015)
6 years 0.139 0.129

(0.013) (0.013)
0.047 0.049

(0.015) (0.015)
10 years 0.149

(0.013)
0.044

(0.015)
15 years 0.163

(0.014)
0.041

(0.015)
20 years 0.175

(0.014)
0.039

(0.015)
25 years 0.182

(0.015)
0.037

(0.015)

Table C.17: OLS estimates from three-generation models, long-term average for grandfathers. Note:
10-year averages start at age 38 and 15-year averages start at age 36. Men and women in final
generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.151 0.151 0.153 0.151 0.152 0.151 0.151
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
0.034 0.033 0.021 0.029 0.028 0.033 0.026

(0.016) (0.015) (0.013) (0.012) (0.011) (0.011) (0.009)
2 years 0.150 0.151 0.151 0.151 0.151 0.150

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
0.040 0.032 0.030 0.033 0.036 0.034

(0.016) (0.015) (0.014) (0.012) (0.012) (0.011)
3 years 0.150 0.150 0.151 0.150 0.150

(0.013) (0.013) (0.013) (0.013) (0.013)
0.038 0.036 0.034 0.039 0.038

(0.016) (0.015) (0.014) (0.013) (0.012)
4 years 0.150 0.150 0.150 0.150

(0.013) (0.013) (0.013) (0.013)
0.041 0.038 0.039 0.040

(0.016) (0.015) (0.014) (0.013)
5 years 0.150 0.150 0.150

(0.013) (0.013) (0.013)
0.042 0.042 0.040

(0.015) (0.015) (0.014)
6 years 0.150 0.150

(0.013) (0.013)
0.045 0.043

(0.015) (0.014)
10 years 0.149

(0.013)
0.044

(0.015)
15 years 0.148

(0.013)
0.052

(0.016)
20 years 0.148

(0.013)
0.052

(0.016)
25 years 0.149

(0.013)
0.046

(0.015)

Table C.18: OLS estimates from three-generation models, long-term average for fathers. Note:
10-year averages start at age 38 and 15-year averages start at age 36. Men and women in final
generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.132 0.127 0.113 0.126 0.105 0.117 0.101
(0.015) (0.016) (0.014) (0.015) (0.014) (0.016) (0.014)
0.057 0.036 0.054 0.045 0.057 0.049 0.034

(0.024) (0.019) (0.018) (0.016) (0.017) (0.016) (0.015)
2 years 0.150 0.135 0.154 0.128 0.146 0.122

(0.018) (0.017) (0.019) (0.017) (0.019) (0.018)
0.037 0.057 0.048 0.064 0.053 0.040

(0.023) (0.021) (0.021) (0.021) (0.019) (0.019)
3 years 0.150 0.172 0.144 0.167 0.135

(0.019) (0.021) (0.020) (0.023) (0.019)
0.059 0.056 0.070 0.058 0.043

(0.025) (0.022) (0.024) (0.022) (0.022)
4 years 0.188 0.154 0.184 0.145

(0.023) (0.021) (0.025) (0.022)
0.056 0.074 0.056 0.048

(0.027) (0.026) (0.026) (0.025)
5 years 0.169 0.192 0.160

(0.023) (0.025) (0.024)
0.078 0.061 0.045

(0.029) (0.028) (0.029)
6 years 0.206 0.171

(0.029) (0.025)
0.070 0.044

(0.032) (0.030)
10 years 0.200

(0.035)
0.104

(0.055)
15 years

20 years

25 years

Table C.19: IV estimates from three-generation models. Note: 10-year averages start at age 38 and
15-year averages start at age 36. Men and women in final generation

71



Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.125 0.122 0.110 0.122 0.104 0.111 0.098
(0.015) (0.016) (0.014) (0.015) (0.014) (0.016) (0.014)
0.054 0.054 0.057 0.059 0.062 0.061 0.067

(0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.029)
2 years 0.143 0.133 0.153 0.128 0.140 0.119

(0.018) (0.017) (0.019) (0.017) (0.019) (0.018)
0.049 0.051 0.045 0.057 0.053 0.063

(0.028) (0.027) (0.028) (0.027) (0.027) (0.029)
3 years 0.147 0.172 0.146 0.162 0.133

(0.019) (0.022) (0.020) (0.023) (0.019)
0.048 0.040 0.047 0.049 0.057

(0.028) (0.028) (0.028) (0.028) (0.029)
4 years 0.187 0.158 0.180 0.145

(0.023) (0.021) (0.025) (0.022)
0.037 0.044 0.038 0.057

(0.028) (0.028) (0.028) (0.029)
5 years 0.173 0.192 0.160

(0.023) (0.026) (0.024)
0.041 0.035 0.046

(0.028) (0.028) (0.030)
6 years 0.204 0.171

(0.028) (0.025)
0.033 0.044

(0.029) (0.030)
10 years 0.247

(0.036)
0.024

(0.031)
15 years 0.336

(0.042)
-0.013
(0.033)

20 years 0.387
(0.056)
-0.008
(0.034)

25 years 0.363
(0.058)
-0.005
(0.035)

Table C.20: IV estimates from three-generation models, long-term average for grandfathers. Note:
10-year averages start at age 38 and 15-year averages start at age 36. Men and women in final
generation
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Income averaged Age starting from...
over ... 39 40 41 42 43 44 45

1 years 0.172 0.176 0.173 0.172 0.173 0.174 0.174
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.025)
0.051 0.027 0.045 0.044 0.046 0.039 0.022

(0.025) (0.020) (0.019) (0.017) (0.017) (0.016) (0.016)
2 years 0.175 0.172 0.171 0.170 0.173 0.173

(0.025) (0.024) (0.024) (0.024) (0.024) (0.025)
0.033 0.053 0.055 0.056 0.047 0.027

(0.024) (0.022) (0.021) (0.021) (0.019) (0.019)
3 years 0.170 0.171 0.169 0.169 0.172

(0.025) (0.024) (0.025) (0.025) (0.025)
0.062 0.060 0.065 0.056 0.033

(0.026) (0.023) (0.025) (0.023) (0.023)
4 years 0.169 0.169 0.169 0.171

(0.025) (0.024) (0.025) (0.025)
0.069 0.070 0.065 0.037

(0.027) (0.026) (0.027) (0.026)
5 years 0.167 0.169 0.171

(0.025) (0.025) (0.025)
0.077 0.070 0.043

(0.029) (0.029) (0.029)
6 years 0.167 0.171

(0.025) (0.025)
0.080 0.044

(0.033) (0.030)
10 years 0.146

(0.027)
0.131

(0.055)
15 years

20 years

25 years

Table C.21: IV estimates from three-generation models, long-term average for fathers. Note: 10-
year averages start at age 38 and 15-year averages start at age 36. Men and women in final
generation
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