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Abstract

This paper proposes a moment selection method in the presence of moment condition models with

mixed identification strength. That is moment conditions including moment functions that are local

to zero uniformly over the parameter set. We show that the relevant moment selection procedure

of Hall et al. (2007) is inconsistent in this setting as it does not explicitly account for the rate of

convergence of parameter estimation of the candidate models which may vary. We introduce a new

moment selection procedure based on a criterion that sequentially evaluates the rate of convergence

of the candidate model’s parameter estimate and the entropy of the estimator’s asymptotic distri-

bution. The benchmark estimator that we consider is the two-step efficient generalized method of

moments (GMM) estimator which is known to be efficient in this framework as well. A family of

penalization functions is introduced that guarantees the consistency of the selection procedure. The

finite sample performance of the proposed method is assessed through Monte Carlo simulations.

1 Introduction

The validity of the standard moment condition based inference hinges on strong/point identification.

Strongly identified models are those solved by a unique parameter value. Many estimators have

been proposed including the generalized method of moments (GMM) and the generalized empirical

likelihood (GEL) estimators that are all consistent and asymptotically normal under further regularity

conditions. Moment selection methods have also been developed under standard identification settings.
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The literature on moment selection presents two main approaches. One is based on Lasso-type

penalized estimation procedures in which both the parameter of interest and the best subset of moment

restrictions are jointly estimated. This strand of the literature includes Belloni et al. (2012), Cheng

and Liao (2015), Caner and Fan (2015) and Windmeijer et al. (2018).

The second strand of the literature on moment selection adopt a more classical methodology for

model selection by relying on information criteria. This approach includes Andrews (1999), Donald

and Newey (2001), Andrews and Lu (2001), Hall and Peixe (2003), Hall et al. (2007). The selection

problem in these papers consists in selecting the best subset of moment restrictions among those useful

to estimate a given parameter as the one minimizing an information criterion. In this framework, all the

candidate models are expressed in terms of that same parameter of interest and the selection methods

proposed in these papers differ by their choice of information measure. Andrews (1999) and Andrews

and Lu (2001) rely on the GMM overidentification test statistic with the aim to select correct moment

restrictions. Donald and Newey (2001) rely on the mean square error of some estimators including

the two-stage least square estimator, its bias corrected version and the limited information maximum

likelihood estimator whereas Hall et al. (2007) consider an entropy-based moment selection criterion

with the focus on selecting from a set of correct moment restrictions, the relevant ones. This is a set

of moment restrictions that does not contain a subset of restrictions with equal amount of information

about the model parameter nor is included in a set of moment restrictions that carry more information

about the parameter. In some sense, RMSC of Hall et al. (2007) and the J-statistic selection criterion

of Andrews (1999) are complementary.

Common to all the papers cited above is the requirement of strong identification for the consistency

of the selection procedure and to ensure valid inference using the selected model. Nevertheless, strong

identification is not always guaranteed for moment condition models and a still growing literature is

devoted to inference in models that do not have point identification property. Identification properties

are outlined by considering on the one hand strong identification and on the other hand the extreme

identification pattern where the model is uninformative about the parameter of interest. In the latter,

consistent estimation is not possible and identification is deemed weak. Between weak and strong

identification lies a wide range of identification patterns. The strength of a moment restriction is

captured by how fast it potentially vanishes over the whole parameter space as the sample size grows.

The faster the moment function of the restriction does vanish, the weaker is the restriction. Weak

restrictions are those vanishing at least at the rate T− 1
2 ; strong ones are those vanishing only at the

true value whereas those vanishing over the parameter set at rate T−α, α ∈ (0, 1/2) are considered

semi-weak (or semi-strong). More importantly, the moment restrictions defining a moment condition

model can have various strengths leading the model to have mixed identification strength. In addition

to the classical linear instrumental variable (IV) model with instruments of possibly mixed strength

analyzed in Sections 3 and 5, further examples of such models can be found in Antoine and Renault

(2012) who study inference in moment condition models with mixed strength. See also Caner (2009)

and Andrews and Cheng (2012). Even though point identification fails for these models in the limit,

the fact that these models, by the central limit theorem, gather information about the parameter of

interest at a faster rate than they lose their potential for identification, consistent estimation becomes

possible. This feature has first been pointed out by Antoine and Renault (2009) who also show - in this
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setting - that consistent estimators may converge at faster rate in some directions of the parameters

space.

This paper proposes a moment selection method for moment condition with mixed identification

strength. We build on the work of Hall et al. (2007) and propose a relevant moment selection procedure

that consistently selects the best model even if this model is of mixed strength. We argue that, in the

configuration of heterogeneity of restrictions’ strength, candidate models must be valued by the rate

of convergence of the estimator that they deliver and, two models with the same rate of estimation

should be differentiated by the amount of information they convey about the model parameter which is

encapsulated in the entropy of the asymptotic distribution of the parameter estimate. The estimator

that we use as benchmark is the GMM estimator which is shown to be asymptotically efficient in

this framework by Dovonon et al. (2019). We propose a feasible selection criterion that has these

properties. This criterion turns out to be a modified version of RMSC that we label mRMSC.

mRMSC conveniently scales the information part of RMSC to provide a sequential estimation of

rate of convergence and entropy. In addition, new penalty terms are introduced that guarantee the con-

sistency of the selection procedure. Conditions under which mRMSC lead to consistent selection are

outlined and we show that the new selection procedure is robust to the presence of uninformative and

weak models. In comparison to RMSC criterion and accounting for the scaling factor, mRMSC penal-

izes more strongly larger models. Indeed, the penalty term of mRMSC is proportional to (1/ lnT )α,

α > 0 while that of the BIC-RMSC - identified as the best performing the RMSC criterion - is

ln
√
T/

√
T . The choice of penalty for mRMSC is guided both by robustness to unknown model iden-

tification strength while guaranteeing selection consistency. In this case, stronger penalization seems

to be required to dissociate possibly weak signals from noise. Simulations are performed to evaluate

the finite sample properties of the proposed method. In support to our theory, the simulations reveal

that, irrespective of the Monte Carlo design considered, mRMSC selects the best model with proba-

bility growing to one as the sample size increases. This exercise also highlights the limits of RMSC

in settings of identification with mixed strength. Specifically, as the identification weakens, there are

many instances where its probability of selecting the best model decreases to 0 with the sample size

or plateaus way below 1 showing evidence of its inconsistency. This issue with RMSC is exacerbated

when the number of parameters increases. Nevertheless, in standard identification settings, RMSC

seems to have a slight advantage over mRMSC as it converges a bit faster. This seems to be the price

for the robustness of mRMSC.

For further relation to the literature, it is worth mentioning the quasi-Bayesian model selection

method recently proposed by Inoue and Shintani (2018). This method aims to select the most par-

simonious model among those with the largest quasi-likelihood. Even though their approach can be

adapted to moment selection, our goal differs from theirs as our quest is to find, among the models with

maximum information about a parameter of interest, the one with the smallest number of moment

restrictions.

The rest of the paper is organized as follows. Section 2 introduces the set up and existing asymp-

totic results on inference on moment condition models with mixed strength. Section 3 analyzes the

performance of RMSC in this setting and reports simulation results exposing some evidence of incon-

sistency of this method. mRMSC is introduced in Section 4 along with its consistency properties.
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Relevant choices of penalty functions are also discussed. Simulations results are reported in Section 5

while Section 6 concludes. Lengthy proofs are relegated to an Appendix.

Throughout the paper, |a| denotes the number of non-zero entries or the determinant of a if a is a

vector or a square matrix and ∥a∥ denotes the Frobenius norm of the matrix a, i.e., ∥a∥ =
√

trace(aa′).

2 Setup and some results

Let us consider the sample {Yt : t = 1, . . . , T} described by the population moment condition

E (ϕ(Yt, θ0)) = 0, (1)

where ϕ(·, ·) is a known Rk-valued function, θ0 is the parameter value of interest which is unknown

but lies in Θ a subset of Rp.

The moment condition model (1) is said to globally identify θ0 if

E (ϕ(Yt, θ)) = 0, θ ∈ Θ ⇔ θ = θ0. (2)

This property plays an important role in the standard theory of generalized method of moments

(GMM) of Hansen (1982) to claim consistency of the GMM estimator. It is also known that moment

condition models are not always so strong at identifying the parameter value of interest. In particular,

various level of identification strength may be expected from component of the estimating function as

stressed by Antoine and Renault (2009, 2012), Caner (2009) and Andrews and Cheng (2012) among

others. We refer to Antoine and Renault (2012) for further examples in addition to the classical linear

IV model with instrumental variables of mixed strength studied in Sections 3 and 5.

The strong/point identification condition in (2) can be challenged in at least two ways. One may

have the configuration where

E(ϕ(Yt, θ)) = 0, ∀θ ∈ Θ

reflecting the fact that the moment restrictions are uninformative about the true parameter value θ0.

Another possibility is that, instead of being nil over Θ, E(ϕ(Yt, θ)) is local to 0:

E(ϕ(Yt, θ)) =
ρ(θ)

T δ
, ρ(θ) ∈ Rk, δ > 0,

with ρ(θ0) = 0. This configuration fits into the setting of weak or nearly weak identification; see

Antoine and Renault (2009).

When 0 < δ < 1/2, the moment condition model is referred to as nearly weak and as weak when

δ = 1/2. The main difference between these two settings is that consistent estimation is possible

in nearly weak models and not in weak models. Of particular interest are configurations where the

moment restrictions carry different level of information about the parameters of interest. A leading

example of such a case is the linear instrumental variables model where the constant instrument

(z = 1) is typically strong whereas some or all the other instruments are only weakly correlated with

the included endogenous regressors.

4



Along this line, we consider the estimating function ϕ(·) to be partitioned into subvectors with

heterogenous strength of identification. Specifically, we assume that:

ϕ ≡ (ϕ′
1, ϕ

′
2)

′ ∈ Rk1 × Rk2 : E(ϕi(Yt, θ)) =
ρi(θ)

T δi
, i = 1, 2, and 0 ≤ δ1 ≤ δ2 < 1/2. (3)

In this representation, ϕ1 has the potential to more strongly identify θ0 - or some of its components -

than ϕ2. Even though this moment condition model is not informative about θ0 in the limit if 0 < δ1,

Antoine and Renault (2009, 2012) show that consistent estimation is possible under the following

mild conditions. The standard identification features of moment condition models pertain to the case

δ1 = δ2 = 0.

Assumption 1 (i) ρ ≡ (ρ′1, ρ
′
2)

′ ∈ Rk1 × Rk2 is continuous on the compact parameter set Θ ⊂ Rp

such that ρ(θ) = 0 ⇔ θ = θ0.

(ii) supθ∈Θ
√
T
∥∥ϕ̄T (θ)− E(ϕ(Yt, θ))

∥∥ = OP (1).

Assumption 1(i) imposes global identification of θ0 by the suitably inflated estimating moment function

while part (ii) of the assumption requires that the sample mean of the estimating function accumu-

lates information about its population mean at a fast rate
√
T . Note that this is the standard rate

of convergence of sample mean guaranteed by the functional central limit theorem. See Davidson

(1994, Theorem 27.14). Under Assumption 1, consistent estimation is possible so long as the rate of

accumulation of information outweighs the rate of dilution of information.

Let the GMM estimator θ̂T be defined by

θ̂T = argmin
θ∈Θ

ϕ̄T (θ)
′WT ϕ̄T (θ), (4)

where WT is a sequence of almost surely symmetric positive definite matrices converging in probability

to W , a symmetric positive definite matrix. Under Assumption 1, Antoine and Renault (2009, 2012)

show that

ρ(θ̂T ) = OP

(
T δ2− 1

2

)
. (5)

Hence, δ2 < 1/2 is sufficient condition to ensure that θ̂T converges in probability to θ0, especially

if we maintain that the parameter set Θ is compact. Note however that δ2 < 1/2 is not necessary

condition for consistency in the sense that a subset of the estimating vector can even be identically

0 and consistent estimation would still be possible. Although, for this, it is important that δ1 < 1/2

and ρ1(θ) = 0 is uniquely solved by θ = θ0.

Under further regularity conditions, the GMM estimator is asymptotically normally distributed.

To introduce these conditions and the main result due to Antoine and Renault (2012), we introduce

some notation. Let s1 = Rank
(
∂ρ1
∂θ′ (θ0)

)
that we assume strictly smaller than p and R = (R1

... R2)

be a (p, p)-non-singular matrix such that R1 is (p, s1)-full column rank matrix and the s2 = p − s1

columns of R2 span the null space of ∂ρ1
∂θ′ (θ0). Define

J =

(
∂ρ1
∂θ′ (θ0)R1 0

0 ∂ρ2
∂θ′ (θ0)R2

)
and ΛT =

(
T

1
2
−δ1Is1 0

0 T
1
2
−δ2Is2

)
. (6)
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The following assumptions are made.

Assumption 2 (i) θ0 is interior to Θ and ϕ(Yt, θ) is continuously differentiable on Θ.

(ii)
√
T ϕ̄T (θ0)

d→ N(0,Σ).

(iii) There exists C = (C ′
1

... C ′
2)

′ a full column rank (k, p)-matrix such that, for i = 1, 2,

E

(
∂ϕi(Yt, θ0)

∂θ′

)
=

Ci

T δi
+ o(T−δi), and

√
T sup

θ∈Nθ0

∥∥∥∥∂ϕ̄iT (θ)

∂θ′
− E

(
∂ϕi(Yt, θ)

∂θ′

)∥∥∥∥ = OP (1),

where Nθ0 is a neighborhood of θ0.

Assumption 3 (i) ϕ1(Yt, θ) is linear in θ or δ2 <
1
4 + δ1

2 .

(ii) θ 7→ ϕ(Yt, θ) is twice continuously differentiable almost everywhere in a neighborhood Nθ0 of θ0

and, with i = 1, 2, we have

∀k : 1 ≤ k ≤ ki, T δi
∂2ϕ̄iT,k

∂θ∂θ′
(θ)

P→ Hi,k(θ),

uniformly over Nθ0, where Hi,k(θ) are (p, p)-matrix functions of θ.

Assumptions 2 and 3 are standard and impose asymptotic normality for the sample mean ϕ̄T (θ) at

θ = θ0 as well as regularity conditions on its first and second-order derivatives that are useful for

its Taylor series expansions. Although immaterial when ϕ1 is linear in the parameter, the condition

δ2 < 1
4 + δ1

2 in Assumption 3(i) implies that the Jacobian of the moment function is big enough to

ensure that the first-order terms in the expansion of ϕ̄T (θ̂T ) around θ0 dominate the higher-order

terms. Note also that under some dominance conditions, the matrix C in Assumption 2 is equal to

∂ρ(θ0)/∂θ
′. We have the following result.

Theorem 2.1 (Antoine and Renault (2009, 2012).) If (3) holds along with Assumptions 1, 2,

3 and 0 < s1 < p, then

(i) For any estimator θ̃T of θ0 such that θ̃T − θ0 = OP (T
δ2− 1

2 ),

√
T
∂ϕ̄T

∂θ′
(θ̃T )RΛ−1

T
P→ J, (7)

and

(ii)

ΛTR
−1(θ̂T − θ0)

d→ N(0, (J ′WJ)−1J ′WΣWJ(J ′WJ)−1), (8)

where θ̂T is the GMM estimator defined by (4) and s1 = Rank(∂ρ1(θ0)/∂θ
′).

Theorem 2.1 effectively provides the asymptotic distribution of η̂T = R−1θ̂T , a linear function of θ̂T

with components converging with a specific rate of convergence. In particular, the first s1 components

of η̂T converge at T
1
2
−δ1 , hence are faster than the remaining s2 = p− s1 components which converge

at rate T
1
2
−δ2 . In general, since θ̂T is typically a linear function of all components of η̂T , we expect

that the slower rate of convergence would prevail for each component of θ̂T . More specifically, (ii)

implies that θ̂T − θ0 = OP (T
δ2− 1

2 ).
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Remark 1 Note that this result holds in the extreme cases where s1 = 0 and s1 = p . In these cases,

R = Ip and for s1 = 0,

J =

(
0

∣∣∣∣ ∂ρ′2
∂θ

(θ0)

)′
and ΛT = T

1
2
−δ2Ip

and for s1 = p,

J =

(
∂ρ1
∂θ′

(θ0)

∣∣∣∣ 0

)′
and ΛT = T

1
2
−δ1Ip.

In the case s1 = p, first-order local identification is ensured by the moment restrictions determined by

ϕ1 which also determine the asymptotic distribution of the GMM estimator. In this case, ϕ2 appears

redundant in the sense that, given ϕ1, the inclusion of the weaker moment conditions in ϕ2 does not

improve inference about θ0. In the case however, where s1 = 0, it is ϕ2 that ensures local identification

and ϕ1 is the irrelevant set of moment restrictions.

It is not hard to see that the asymptotic variance in (8) is smallest for the choice of W = Σ−1 at

which value it is equal to V∗ =
(
J ′Σ−1J

)−1
. Dovonon et al. (2019) actually show that V∗ stands as

the semiparametric efficiency bound for the estimation of η0 = R−1θ0. The properly scaled two-step

efficient GMM estimator using a sequence of weighting matrices WT (converging in probability to Σ−1)

has V∗ as asymptotic variance and they further show that this estimator is asymptotically minimax

optimal with respect to a large class of loss functions.

Regarding inference about θ0 within the GMM framework, one may expect, in the light of Theorem

2.1 that knowing s1, δi’s, R and also the moment function’s partition in (3) is essential. Interestingly

however, Antoine and Renault (2009, 2012) have shown that such a knowledge is not required. In

particular, inference about θ0 using the two-step efficient GMM estimator can validly be carried

out using the standard formula. Specifically, the standard GMM inference is robust to the sorts of

deviations encapsulated in the conditions of Theorem 2.1. (See Antoine and Renault (2009, p.S151).)

This makes relevant the question of moment selection in the context of nearly weak moment

restrictions which is the focus of this paper. Below, we first consider the relevant moment selection

methodology introduced by Hall et al. (2007) and investigate its performance in the presence of nearly

weak moment equalities. We then propose a modified relevant moment selection criterion that robustly

select the best model even when this model does not enjoy a strong identification property.

3 Performance of the standard relevant moment selection procedure

This section investigates the performance of RMSC model selection procedure when the best model

might not be strongly identifying. This is done through Monte Carlo simulations of instrumental

variable (IV) models and we provide some intuition about potential shortcomings that paves the way

for a modified RMSC selection criterion that we introduce in the next section. Before introducing the

simulation setup, let us first introduce the RMSC criterion.

RMSC is a penalized entropy measure that is minimized over candidate models to obtain the most

relevant model. Let ϕ denote the estimating function of the moment condition model

E(ϕ(Yt, θ0)) = 0 (9)
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which is supposed to have standard identification properties. RMSC uses the entropy of the asymptotic

distribution of the efficient estimator θ̂T (ϕ) of θ0 in (9) which, up to a constant, is

entθ(ϕ) ≡
1

2
ln |V (ϕ)| = −1

2
ln
∣∣G(ϕ)′Σ(ϕ)−1G(ϕ)

∣∣ ,
with V (ϕ) =

(
G(ϕ)′Σ(ϕ)−1G(ϕ)

)−1
, whereG(ϕ) = E(∂ϕ(Yt, θ0)/∂θ

′), Σ(ϕ) = limT→∞ V ar(
√
T ϕ̄T (θ0))

and |A| stands for the determinant of A if A is a square matrix or the size of A if A is a vector. The

sample estimate of entθ(ϕ) yields RMSC:

RMSC(ϕ) = − ln
∣∣∣ĜT (ϕ)

′Σ̂(ϕ)−1ĜT (ϕ)
∣∣∣+ κ(|ϕ|, T ) = 1

2
ln
∣∣∣V̂T (ϕ)

∣∣∣+ κ(|ϕ|, T ), (10)

where ĜT (ϕ), Σ̂(ϕ) and V̂T (ϕ) are consistent estimators of G(ϕ), Σ(ϕ) and V (ϕ), respectively and κ

the penalty function. Throughout this section, we will consider the BIC-type penalty function:

κ(k, T ) = (k − p)
ln
√
τT√

τT
(11)

which has been identified by Hall et al. (2007) the best performing one compared to other alternatives

including the Hannan-Quinn penalty. In (11), τT represents the rate of convergence of the estimator

V̂T (ϕ). In particular,

V̂T (ϕ)− V (ϕ) = OP (τ
−1
T ).

Under some regularity conditions, if the process {ϕ(Yt, θ0) : t = 1, . . . , n} is at most finite lag-

dependent, τT =
√
T but if the estimator V̂T (ϕ) involves a kernel estimation of the long run variance,

then τT =
√

T/ℓT where ℓT is the kernel bandwidth. See Andrews (1991).

We now consider the classical linear IV model with possibly nearly weak instrumental variables:

Y = Xθ + U (12)

X = ZΠ+ V, (13)

with Y the T -vector of realizations of the dependent variable, X the (T, p)-matrix of p explanatory

variables, some of which may be endogenous, Z the (T, k)-matrix of instrumental variables (IVs); U

and V are T -vector and (T, p)-matrix of errors, respectively; θ and Π, p-vector and (k, p)-matrix of

parameters, respectively.

To allow for variability in the strength of the instruments we set

Π = L−1
T C ≡

(
T−δ1C1

T−δ2C2

)
, with LT =

(
T δ1Ik1 0

0 T δ2Ik2

)

for some 0 ≤ δ1 ≤ δ2 < 1/2, and Ci, (ki, p)-matrix for i = 1, 2; and k1+k2 = k. Partition Z = [Z1
... Z2]

according to the partition of Π, i.e., Zi, (T, ki)-matrix for i = 1, 2. Thus we can write the system

(12)-(13) as:

Y = Xθ + U (14)

X = Z1
C1

T δ1
+ Z2

C2

T δ2
+ V. (15)
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When δ1 = δ2 the instruments in Z1 and Z2 have equal strength while those in Z1 are stronger than

those in Z2 if δ1 < δ2. We maintain the following assumption.

Assumption 4 (i) {wt ≡ (Yt, Xt, Zt) ∈ R×Rp×Rk : t = 1, . . . , T} is a sample of independent and

identically distributed random vectors with finite second moments.

(ii) C is full column rank and

∆ ≡

(
∆11 ∆12

∆21 ∆22

)
=

(
E(Z1tZ

′
1t) E(Z1tZ

′
2t)

E(Z2tZ
′
1t) E(Z2tZ

′
2t)

)

is nonsingular.

(iii) E(ZtUt) = 0, E(ZtVt) = 0,

1√
T

T∑
t=1

ZtUt
d→ N(0, σ2

u∆), and
Z ′V√
T

= OP (1),

where σ2
u = E(U2

t ).

Assumption 4(i) restrict the sample to be independent and identically distributed. While this

assumption may look restrictive it is only made for simplification purposes. The main points in

this section continue to hold for stationary and ergodic time-dependent data. Assumption 4(ii) is

standard. Nonsingularity of ∆ imposes no linear duplication of instruments while the rank condition

on C amounts to the standard rank condition on E(ZtX
′
t). Assumption 4(iii) requires homoskedasticity

for Ut and exogeneity for Zt as well as some limit properties useful to derive the asymptotic distribution

of the estimators that we will consider. We do not restrict the correlation between Ut and Vt which is

typically different from 0 in presence of endogenous regressors.

The linear IV model (14)-(15) under Assumption 4 implies that the true parameter θ0 solves

E
(
Zt(Yt −X ′

tθ)
)
= 0. (16)

As shown by Antoine and Renault (2009), this moment restriction fits into the framework introduced

in Section 2 if the instruments Z1t and Z2t are orthogonal, that is ∆12 = 0. Actually, write

E[Zt(Yt −X ′
tθ)] =

(
E[Z1t(Yt −X ′

tθ)]

E[Z2t(Yt −X ′
tθ)]

)
=

(
T−δ1ρ1(θ) + T−δ2ν1(θ)

T−δ2ρ2(θ) + T−δ1ν2(θ)

)
, (17)

(18)

with

ρ1(θ) = ∆11C1(θ0 − θ), ν1(θ) = ∆12C2(θ0 − θ),

ρ2(θ) = ∆22C2(θ0 − θ), ν2(θ) = ∆21C1(θ0 − θ).

If ∆12 = ∆′
21 = 0, (18) becomes:

E[ϕi(wt, θ)] = T−δiρi(θ), t = 1, . . . , T ; i = 1, 2, (19)

9



which has the form in (3) with ϕi(wt, θ) = Zit(Yt −X ′
tθ) and ρi(θ) given in (18); i = 1, 2.

The efficient GMM estimator of θ0 from the moment condition (16) is the two-stage least square

estimator:

θ̂T =
(
X ′PZX

)−1
X ′PZY = θ0 +

(
X ′PZX

)−1
X ′PZU. (20)

where PZ = Z(Z ′Z)−1Z ′. Its asymptotic distribution can be obtained readily from Theorem 2.1

if the instruments are orthogonal. The following proposition gives this distribution without such a

restriction.

To introduce this result, let s1 ≡ Rank(C1), and if 0 < s1 < p, let R = (R1
... R2) be a (p, p)-

nonsingular rotation matrix such that R′R = Ip and R2 a (p, p− s1)-matrix satisfying C1R2 = 0.

Proposition 3.1 Under Assumption 4, the following statements hold.

(i) If 0 < s1 < p,

ΛTR
′(θ̂T − θ0)

d→ N(0, V ), with V = σ2
u

[(
R′

1C
′
1 0

0 R′
2C

′
2

)
∆

(
C1R1 0

0 C2R2

)]−1

.

(ii) If s1 = p,

T
1
2
−δ1(θ̂T − θ0)

d→ N(0, V ), with V = σ2
u(C

′
1∆11C1)

−1.

(iii) In cases (i) and (ii), the asymptotic variance is consistently estimated by

ṼT = σ̂2
u

(
Λ−1
T R′X ′PZXRΛ−1

T

)−1
, and ṼT = σ̂2

u

(
T 2δ1−1X ′PZX

)−1
,

respectively, with σ̂2
u = (Y −Xθ̂T )

′(Y −Xθ̂T )/T .

This proposition highlights the expected mixture of rate of convergence of the GMM estimator

when instruments have mixed strength. It also shows that if the stronger instruments locally identify

the parameter of interest, consistency is achieved at a faster rate and the weaker IVs become irrelevant

as they do not affect the asymptotic variance. However, if the stronger set does not identify the true

parameter in all directions (this is the case for instance if we have two endogenous variables and only

one stronger IV), the weaker set of IVs appears relevant to estimate the remaining directions, albeit

at a slower rate of convergence.

The linear IV model offers a suitable framework to investigate the performance of the RMSC

procedure in the presence of moment restrictions with nonstandard or mixed strength. We consider

the following data generating process.

Y = Xθ + U, X = z1π1T + z2π2T + V, πiT =
ci
T δi

, i = 1, 2.

The instruments z1, z2 ∈ RT are independent with common distribution N(0, IT ) and are inde-

pendent of U and V which lie in RT with common distribution N(0, IT ) and Cov(Ut, Vt) = ρ for all

10



t = 1, . . . , T . We consider cases of equal strength for the instruments with δ1 = δ2 = 0, 0.2, 0.3, 0.4

and cases of mixed strength with (δ1, δ2) = (0, 0.4), (0.1, 0.4), (0.2, 0.4), (0.3, 0.4).

We then consider the case of single endogenous variable and set θ0 = 0.1 and c1 = 1.48 and c2 = 1.48

and the case of two endogenous variables with θ0 = (0.1, 0.1)′, c1 = (1.48, 0) and c2 = (0, 1.48).

We include four extra instruments, z3, z4, z5, z6, independent of each other and of z1, z2, U and

V with common distribution N(0, IT ) and proceed to select the best set of instruments using RMSC.

The RMSC of all the 63 (57) combinations of IV has been assessed in the case of the models with 1

(2) endogenous variable(s) and the best model is the one with lowest RMSC. For a given candidate

set of k instruments Z, the RMSC is:

RMSC = ln

∣∣∣∣∣σ̂2
u

(
X ′PZX

T

)−1
∣∣∣∣∣+ (k − p)

ln
√
T√
T

.

In the case of one endogenous variable, if δ1 < δ2 only z1 is relevant while all the other IV are

redundant and if δ1 = δ2 both z1 and z2 determine the best set of IV while all the others are redundant.

In the case of two endogenous variables, z1 and z2 constitute the best set of IV regardless of the values

of δ1 and δ2.

We consider sample sizes T = 100; 200; 500; 1,000; 5,000; 10,000; 20,000; 50,000; 100,000. We

include such large sample sizes because of possibilities of slow rate of convergence. Figures 1 below

plot the proportion of correct model selection (hit rate) by sample size. The number of Monte Carlo

replications is 10,000 throughout.

The results suggest that RMSC consistently selects the best model as the sample size increases in

cases where the instruments are relatively strong (low δi). However, the failure of RMSC is striking in

models with moderately large to large values of δi. The probability of selecting the best model does

not seem to converge to 1 as the sample size grows. Specifically, for cases of δ1 = δ2 = 0.3, the best

model is selected about 50% of the times for sample sizes as large as 50,000 or above. The selection

procedure also fails to converge for (δ1, δ2) = (0.2, 0.4) in models with one endogenous variable even

though the sole relevant instrument in this configuration seems relatively strong. Also striking is the

fact that the hit rate seem to decrease with sample size in many instances of nearly weak instruments.

This is the case when δ1, δ2 ≥ 0.3. Finally, the case of two endogenous variables and δ1 < δ2 appears

to be the most difficult for RMSC to handle since the hit rate drops with the sample size for all

combinations of instruments’ strength including when a strong IV (δ1 = 0) is present.

The failure of RMSC can be related to the fact that the information part of the criterion diverges

to infinity under nearly weak identification as we can see from Proposition 3.1(iii). This makes the

penalty term inappropriate to balance out effectively the noise associated to the selection procedure.

Also of importance is the fact the entropy or the asymptotic variance has to be estimated at a rate at

least as fast as
√
T for consistency to be guaranteed. (See Assumption 4 of Hall et al. (2007).) This

is not guaranteed at all in this simulation exercise. We are rather certain that the entropy cannot be

estimated at such a fast rate and can even have different rate of convergence depending on the set of

instruments being assessed.

Accounting for these shortcomings of RMSC, we further analyze its properties in moment condition

models with mixed identification strength. We then propose a modified version of this criterion which

11



robustly and consistently selects the best model regardless of the identification strength.

Figure 1: Proportion of best model selection (Hit rate) by RMSC for models with one and two endoge-

nous variable. Sample size T = 100; 200; 500; 1,000; 5,000; 10,000; 20,000; 50,000; 100,000.

Number of replications: 10,000.
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4 A robust relevant moment selection procedure

In this section, we propose a moment selection method to consistently select the smallest (in terms

of number of moment restrictions) most relevant model while accounting for the possibility of mixed

identification strength of the moment restrictions. We first motivate and introduce a new criterion

which is a modified version of RMSC with some robustness properties. We then outline the conditions

under which this criterion delivers consistent selection of the best model. The section ends with a

discussion on the robustness of the modified RMSC criterion.

4.1 The selection criterion

The problem that we address is one where we have a finite but possibly large number of moment

candidate restrictions available to carry out inference about a p-vector parameter θ0. These restrictions

possibly do not have the same identification strength and our goal is to propose a criterion useful to

select the best and most relevant moment condition model. As in Hall et al. (2007), we define this

model as one from which it is impossible to improve the inference about θ0 by adding other moment

restrictions. Adding to the difficulty of the problem, we do not know what are the strength of the

moment restrictions a priori and could not even provide a systematic ranking of them.
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To simplify, we assume that the available moment restrictions fit into two categories of strength

and that all the candidate models can be expressed as (3) with 0 ≤ δ1 ≤ δ2 < 1/2. As in the previous

section, we refer a generic candidate model by ϕ, the vector of the estimating functions that it contains.

We shall focus on candidate models ϕ with partition (ϕ′
1, ϕ

′
2)

′ satisfying the conditions of Theorem

2.1. Note that ϕ2 may be empty if all components of ϕ have the same strength. The most restrictive

of these assumptions may be Assumption 1(i). However, we will show that the candidate models for

which this condition fails are ruled out by the proposed selection procedure and as a result it makes

sense to consider that this condition holds without loss of generality.

As established by Dovonon et al. (2019), the efficiency bound on the estimation of θ0 by ϕ is:

Vθ(ϕ) =
(
J(ϕ)′Σ(ϕ)−1J(ϕ)

)−1
,

where

J(ϕ) =

(
∂ρ1
∂θ′ (θ0)R1(ϕ) 0

0 ∂ρ2
∂θ′ (θ0)R2(ϕ)

)
and ΛT (ϕ) =

(
T

1
2
−δ1(ϕ)Is1(ϕ) 0

0 T
1
2
−δ2(ϕ)Is2(ϕ)

)
,

ρi(θ)/T
δi(ϕ) = E(ϕi(θ)), (i = 1, 2) s1(ϕ) = Rank (∂ρ1(θ0)/∂θ

′), R(ϕ) ≡
(
R1(ϕ)

...R2(ϕ)

)
is a

(p, p)-rotation matrix satisfying R(ϕ)′R(ϕ) = Ip and R2(ϕ) is a (p, s2(ϕ))-matrix with column vectors

in the null space of ∂ρ1
∂θ′ (θ0). (See (3) for more details.)

This bounds happens to be the asymptotic variance of the efficient GMM estimator

θ̂(ϕ) ∈ argmin
θ∈Θ

ϕ̄T (θ)
′Σ̂(ϕ)−1ϕ̄T (θ),

where Σ̂(ϕ) is a consistent estimator limT→∞ V ar(
√
T ϕ̄T (θ0)) ≡ Σ(ϕ) and as previously, ϕ̄T (θ) =

1
T

∑T
t=1 ϕ(Yt, θ).

Recall also from Theorem 2.1 that different candidate models may lead to different rates of conver-

gence of the GMM estimator or equivalently to different rates of accumulation of information. In that

respect, letting ϕ(j) (j = 1, 2) be two candidate models, θ̂T (ϕ
(1)) may converge faster than θ̂T (ϕ

(2))

but with a larger information bound. In such a case, it is natural to prefer ϕ(1) over ϕ(2).

Hence, as a matter of fact, any relevant criterion in the current framework shall account for (i)

the amount of information and (ii) the speed of information gathering which should be of first-order

importance.

To account for the efficiency bound, we will follow Hall et al. (2007) who consider the entropy of

the asymptotic distribution of the efficient GMM estimator. This distribution being Gaussian, the

entropy is given by:

entθ(ϕ) =
1

2
p(1 + ln(2π))− 1

2
ln
[∣∣J(ϕ)′Σ(ϕ)−1J(ϕ)

∣∣] .
However, the dependence of J(ϕ) on the choice of parameter rotation matrix R(ϕ) raises the

question of invariance of the entropy. The following proposition shows that regardless of the rotation

matrix chosen, entθ(ϕ) is unchanged. Hence, even though the asymptotic variance may depend on the

choice of rotation, the entropy is rotation-invariant.
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Proposition 4.1 Let D =

(
D1

D2

)
be a (k, p)-matrix of rank p and let s1 denote the rank of D1.

Assume that 0 < s1 < p and let

R =
{
R = (R1

...R2) ∈ Rp×s1 × Rp×p−s1 : R′R = Ip, and D1R2 = 0
}

and, for each R ∈ R, let

J(R) =

(
D1R1 0

0 D2R2

)
.

Then, for any R,S ∈ R and any arbitrary (k, k)-matrix V , we have:∣∣J(R)′V J(R)
∣∣ = ∣∣J(S)′V J(S)

∣∣ .
Proof. Let δ1, δ2 ∈ R such that δ1 < δ2 and R ∈ R. Let

DT =

(
T−δ1D1

T−δ2D2

)
, and ℓT =

(
T δ1Is1 0

0 T δ2Ip−s1

)
.

It is not hard to see that the sequence DTRℓT → J(R) as T → ∞. Hence, by continuity of the

determinant function of a matrix, |ℓ′TR′D′
TV DTRℓT | → |J(R)′V J(R)|. Note that |ℓ′TR′D′

TV DTRℓT | =
|ℓT |2 · |R|2 · |D′

TV DT | = |ℓT |2 · |D′
TV DT | and therefore the sequence of determinants does not depend

on R ∈ R. As a consequence, the limit |J(R)′V J(R)| is also unrelated to R ∈ R and this concludes

the proof.

The information measure entθ(ϕ) has the following additional properties that are worth highlight-

ing. If two candidate models ϕ(1) and ϕ(2) are such that Vθ(ϕ
(2)) − Vθ(ϕ

(1)) is nonzero and positive

semidefinite, then entθ(ϕ
(1)) < entθ(ϕ

(2)). This follows readily by using Magnus and Neudecker (2002,

Theorem 22). In addition, following the definition of Hall et al. (2007), we say that an estimating

function ϕ(2) is irrelevant (or redundant) given the estimating function ϕ(1) if Vθ(ϕ) = Vθ(ϕ
(1)), with

ϕ = (ϕ(1)′ , ϕ(2)′)′. Hence, by definition, adding irrelevant (or redundant) moment restrictions does not

change the level of entropy.

Thanks to these properties, the quest for the optimal model is consistent with the minimization of

entropy as one should expect. However, if the limit amount of information about the true parameter

value θ0 plays an important role in the determination of the optimal model, this information is as

mentioned only of second-order importance to the rate at which this information is gathered.

The setting of Hall et al. (2007) accounts only for cases where, for the best model, that rate is

not heterogenous in the sense that all directions of the parameter space is estimated at the same

standard rate
√
T . In this case, the effect of the rate can be ignored in the selection process and,

as they point out in their Corollary 1(iii), any model yielding estimators that converge more slowly

than the standard rate would have entropy equal to infinity and therefore would not be selected. Our

framework departs from theirs by the fact that the best model may actually not only yield estimators

converging at slower rate than standard but there are also possibilities of having estimators converging

at different rate in various directions.
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For our purposes, the rate of convergence needs to be accounted for in the definition of a meaningful

selection criterion. A natural summary indicator for the rates of convergence from ϕ is the weighted

average of those rates of convergence with weights given by the number of directions in the parameter

space that they characterize. That is:

a(ϕ) ≡ 1

p

(
s1(ϕ)

[
1

2
− δ1(ϕ)

]
+ s2(ϕ)

[
1

2
− δ2(ϕ)

])
.

(The rates of convergence are given by the scaling matrix ΛT (ϕ) defined above.)

In the context of only two possible rates of convergence - say δi(ϕ) = δi (i = 1, 2) for all ϕ -

two models ϕ(1) and ϕ(2) can be compared along the number of fast converging directions that they

estimate and the best model would be the one with the largest s1. Since, in this case s2(ϕ) = p−s1(ϕ),

it is not hard, to see that

s1(ϕ
(1)) ≥ s1(ϕ

(2)) ⇔ a(ϕ(1)) ≥ a(ϕ(2)).

This further validates the choice of a(ϕ) as summary measure of the rates.

Remark 2 In the occurrence of mixed rate estimation involving more than two directions (see Antoine

and Renault (2012)), direct comparison of two models using a(·) becomes problematic as this function

no longer provides a natural ordering of the models. Nonetheless, a(ϕ) is maximized at ϕ = ϕmax,

the largest model available which also yields the best estimation rates. Hence, so long as a(ϕ) is the

dominant term of the selection criterion, the best model selected shall be one that matches a(ϕmax) and

it can be shown that a(ϕ) cannot be maximum without yielding the best estimation rates as well. The

intuition is that estimation rates from ϕmax are determined by its strongest elements. As a result, a(ϕ)

cannot have maximum value if, for instance, the number of fastest estimation directions by ϕ does not

match that of ϕmax. One can proceed iteratively to claim that the map of rates for the estimator from

ϕmax is the same as that of any ϕ such that a(ϕ) = a(ϕmax).

These points make a(ϕ) a compelling summary of rates of convergence as far as model selection is

concerned. As a result, the information-related part of the selection criterion that we shall consider

is:

ιθ(ϕ) = −a(ϕ) + ηT · entθ(ϕ). (21)

The sequence ηT depends on the sample size T and shall converge to 0 as T grows to infinity so that

the rate component dominates the entropy component as one should expect. Nevertheless, ηT shall not

converge too fast as this would destroy the valuable information encapsulated in the entropy function.

In fact, entθ(ϕ) is the component that ranks candidate models with the same rate component a(ϕ).

For example, recall that candidates ϕ that estimate the whole parameter vector θ0 ∈ Rp at rate
√
T are

those with s1(ϕ) = p and δ1(ϕ) = 0. For them, s2(ϕ) = 0 and the leading term reaches its minimum

value possible. The comparison of such candidate models is solely based on their entropies.

The natural question now is about the sample evaluation of ιθ(ϕ). This question is of particular

importance since, for a given model ϕ, si(ϕ) and δi(ϕ) (i = 1, 2) are unknown. Interestingly, ιθ(ϕ) can
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be mimicked by starting off with a naive estimator of the asymptotic variance Vθ(ϕ). Recall that, as

claimed by (7), under some regularity conditions,

√
T
∂ϕ̄T

∂θ′
(θ̂T (ϕ))R(ϕ)ΛT (ϕ)

−1

converges in probability to J(ϕ). Hence,

V̂θ(ϕ) ≡

((√
T
∂ϕ̄T

∂θ′
(θ̂T (ϕ))R(ϕ)ΛT (ϕ)

−1

)′
Σ̂(ϕ)−1

(√
T
∂ϕ̄T

∂θ′
(θ̂T (ϕ))R(ϕ)ΛT (ϕ)

−1

))−1

(22)

consistently estimates the asymptotic variance Vθ(ϕ) = (J(ϕ)′Σ(ϕ)−1J(ϕ))−1. Then, taking the de-

terminant of V̂θ(ϕ), entθ(ϕ) can be estimated by

êntθ(ϕ) =
1

2
p(1 + ln(2π))− (s1(ϕ)δ1(ϕ) + s2(ϕ)δ2(ϕ)) lnT − 1

2
ln

∣∣∣∣∂ϕ̄′
T

∂θ
(θ̂T (ϕ))Σ̂(ϕ)

−1∂ϕ̄T

∂θ′
(θ̂T (ϕ))

∣∣∣∣ .
The choice of ηT = 1/(p lnT ) arises naturally for the definition of ιθ(ϕ) which then can be estimated

by ι̂θ(ϕ) given by:

ι̂θ(ϕ) ≡ −a(ϕ) + ηT · êntθ(ϕ) = −1

2
+

1 + ln(2π)

2 lnT
− 1

2p lnT
ln

∣∣∣∣∂ϕ̄′
T

∂θ
(θ̂T (ϕ))Σ̂(ϕ)

−1∂ϕ̄T

∂θ′
(θ̂T (ϕ))

∣∣∣∣ .
The information-related part of the selection criterion can therefore effectively be considered as:

− 1

lnT
ln

∣∣∣∣∂ϕ̄′
T

∂θ
(θ̂T (ϕ))Σ̂(ϕ)

−1∂ϕ̄T

∂θ′
(θ̂T (ϕ))

∣∣∣∣ .
The resulting family of information criterion for model selection that we label Modified Relevant

Moment Selection Criterion (mRMSC) takes the form:

mRMSC(ϕ) = − 1

lnT
ln
∣∣∣Îθ,T (ϕ)∣∣∣+ κT , with Îθ,T (ϕ) =

∂ϕ̄′
T

∂θ
(θ̂T (ϕ))Σ̂(ϕ)

−1∂ϕ̄T

∂θ′
(θ̂T (ϕ)), (23)

where κT is the usual penalty term aiming to filter out noise without impacting consistent selection

of the correct model. The choice of κT will be discussed in the next section. Despite the similarities,

there are some key differences between mRMSC and RMSC. (a) The term appearing in the logarithm

is not an estimator of the asymptotic variance of the efficient GMM estimator in general. This is

the case only when estimation is done at the standard rate
√
T . (b) The information-related part is

scaled down by the inverse of lnT . This makes the rate component useful for moment selection in

situations of interest where convergence is slower. Without scaling, this information-related term in

mRMSC would explode and standard penalization components would not be as effective at excluding

redundant moment restrictions as illustrated in Section 3.

4.2 Consistency

We now show that the proposed criterion leads to consistent selection of the relevant model. We follow

Andrews (1999) and Hall et al. (2007) by relying on the following notation. Let ϕmax(·) ∈ Rkmax be the

vector of all available candidate moment restrictions. Let the selection vector c ∈ Rkmax with entries

16



0’s and 1’s denote the components of ϕmax(·) included in a particular moment condition model. Any

subvector ϕ(·) of the set of candidates ϕmax(·) is identified by a unique selection vector c with cj = 1

if and only if ϕ(·) contains the jth element of ϕmax(·). |c| = c′c represents the number of moment

restrictions in ϕ(·) and write ϕ(·) = ϕmax(·, c). We, sometimes, omit the subscript ‘max’ for simplicity

of presentation. The set of all possible selection vectors is denoted C and defined as:

C =
{
c = (c1, . . . , ckmax)

′ ∈ Rkmax : cj = 0, 1 for j = 1, . . . , kmax and |c| ≥ p
}
.

For notational simplicity, the statistics of interest are now indexed by c and so, θ̂T (c) denotes the

GMM estimator based on ϕ ≡ ϕmax(·, c); Vθ(c) its asymptotic variance and R(c) the rotation matrix

in which it is expressed; Îθ,T (c) the estimated information matrix (see (23)).

We maintain the following assumption on ϕmax.

Assumption 5 (i) ϕmax(·) satisfies (3) that is: ϕmax ≡ (ϕ′
max,1, ϕ

′
max,2)

′ ∈ Rk1 × Rk2:

E (ϕmax,i(Yt, θ)) =
ρmax(θ)

T δi
,

i = 1, 2, 0 ≤ δ1 ≤ δ2 < 1/2 and ρmax(·) is an Rkmax-valued function defined on the parameter

set Θ ⊂ Rp.

(ii) ρmax ≡ (ρ′max,1, ρ
′
max,2)

′ ∈ Rk1 × Rk2 is continuous on Θ and satisfies over Θ: [ρmax(θ) = 0 ⇔
θ = θ0].

(iii) supθ∈Θ
√
T
∥∥ϕ̄max,T (θ)− E (ϕmax(Yt, θ))

∥∥ = OP (1), where ϕ̄max,T (θ) =
1
T

∑T
t=1 ϕmax(Yt, θ).

(iv) θ0 belongs to the interior of Θ and θ 7→ ϕmax(Yt, θ) is twice continuously differentiable in a

neighborhood Nθ0 of θ0.

(v) Dmax = ∂ρmax

∂θ′ (θ0) is full column-rank and, letting Dmax,i =
∂ρmax,i

∂θ′ (θ0) (i = 1, 2), we have

E
(
∂ϕmax,i(Yt,θ0)

∂θ′

)
=

Dmax,i

T δi
+ o(T−δi) and

√
T supθ∈Nθ0

∥∥∥ ϕ̄max,T (θ)
∂θ′ − E

(
∂ϕmax(Yt,θ)

∂θ′

)∥∥∥ = OP (1),

where ϕ̄max,i,T (θ) =
1
T

∑T
t=1 ϕmax,i(Yt, θ).

(vi) θ 7→ ϕmax,1(Yt, θ) is either linear or δ2 <
1
4 + δ1

2 .

(vii) For all k: 1 ≤ k ≤ ki (i = 1, 2),

T δi
∂2ϕ̄k

max,i,T (θ)

∂θ∂θ′
P→ Hmax,i,k(θ),

uniformly over Nθ0, where Hmax,i,k is a (p, p)-matrix function of θ and ϕ̄k
max,i,T (θ) is the k-th

component of ϕ̄max,i,T (θ).

(viii) Σ(ϕmax) = limT V ar(
√
T ϕ̄max,T (θ0)) is positive definite.

Assumption 5 is a partial collection of Assumptions 1, 2 and 3 omitting Assumption 2(ii). Note that

this latter is useful to establish asymptotic normality of the GMM estimator but not crucial to obtain

consistent selection of moments. The parts of Assumptions 1-3 highlighted by Assumption 5 are those
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useful to establish consistency of the GMM estimator and the Jacobian matrix of the sample mean of

the estimating function.

Since all the components of ϕmax(·) are valid estimating functions, inference based on the whole

vector ϕmax(·) would lead to asymptotic efficiency. However, a plurality of moment restrictions has an

adverse consequence of damaging finite sample properties of GMM inference. Simulation cases have

been reported by Hall and Peixe (2003) showing the negative effect of redundant moment restrictions

on inference. Formal analysis have also been carried out by Newey and Smith (2004) showing that

larger moment condition models inflate finite sample bias. In this regard, researchers are motivated to

select from ϕmax(·), the minimal set of relevant moments that achieves the same asymptotic efficiency

as ϕmax. We next introduce a formal definition of relevance that accounts for the possibility of mixed

rate of convergence.

Letting c be a selection vector, we write c = (c′1, c
′
2)

′ ∈ Rk1 × Rk2 and let sj(c) be the rank of the

Jacobian matrix of ρmax,j(cj) at θ0.

Definition 1 A subset of moment restriction characterized by cr ∈ C is said to be relevant if the

following two properties hold:

(i) s1(cr)δ1+s2(cr)δ2 = s1(ιmax)δ1+s2(ιmax)δ2 and Vθ(ιmax) = Vθ(cr), where ιmax is a kmax-vector

of 1’s.

(ii) For any decomposition cr = cr,1 + cr,2 of cr with cr,1, cr,2 ∈ C , either one of the following holds:

(ii.a) s1(cr)δ1 + s2(cr)δ2 < s1(cr,1)δ1 + s2(cr,1)δ2,

(ii.b) s1(cr)δ1 + s2(cr)δ2 = s1(cr,1)δ1 + s2(cr,1)δ2 and Vθ(cr,1)− Vθ(cr) is positive semidefinite.

This definition is of the same flavor as Definition 2 of Hall et al. (2007) while accounting explicitly

for the rate of convergence. In particular, asymptotic variances can be compared only when rates

of convergence are of the same magnitude. Consistent with our presentation so far, the definition

implicitly assumes that the moment function E(ϕmax(Yt, θ)) partitions at most into two components

with specific rate of convergence to 0 that are T−δ1 and T−δ2 , respectively. We can be more general by

allowing for more possibilities of rates at the cost of notation burden without any substantial added

value.

It is worth mentioning that, because of the dependence of Vθ(c) on the choice of rotation ma-

trix R(c), the statement Vθ(imax) = Vθ(cr) requires some clarification. We recall that R(ιmax) ≡

(R1(ιmax)
... R2(ιmax)) is such that R(ιmax)R(ιmax)

′ = Ip with the columns of R2(ιmax) spanning the

null space of ∂ρmax,1(θ0)/∂θ
′.

Under the condition: s1(cr)δ1 + s2(cr)δ2 = s1(ιmax)δ1 + s2(ιmax)δ2, which is actually equivalent

to s1(cr) = s1(ιmax) so long as s1 + s2 = p, Lemma B.1 in Appendix B claims that R2(ιmax) also

span the null space of ∂ρmax,1(θ0, c)/∂θ
′. Hence the asymptotic distributions of θ̂T (c) and θ̂T (ιmax)

can be explored in terms of the same rotation and their asymptotic variances shall be compared under

this rotation. Vθ(ιmax) and Vθ(cr) in Definition 1(i) are expressed in terms of that common rotation.

Similar arguments can be made about the variance comparison in Definition 1(ii.b) as well.
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We base the determination of cr, the selection vector corresponding to the relevant set of moment

condition on the modified relevant moment selection criterion mRMSC introduced by (23) with a

penalization term κT , a function of sample size and the size of the estimating function. Note that

parsimony is sought relatively to the number of moment restriction and not the number of parameter

estimates which is always p. Specifically, we write:

mRMSC(c) = − 1

lnT
ln
∣∣∣Îθ,T (c)∣∣∣+ κ(|c|, T ),

where Îθ,T (c) is given by (23) with ϕ(·) = ϕmax(·, c). To estimate cr, consider the value ĉT of c

minimizing mRMSC(c) over C :

ĉT = argmin
c∈C

mRMSC(c).

Our next assumption pertains to the set of selection vectors. Let

Ceff = {c ∈ C : s1(c)δ1 + s2(c)δ2 = s1(ιmax)δ1 + s2(ιmax)δ2 ∧ Vθ(c) = Vθ(ιmax)}

and

Cmin = {c ∈ Ceff : |c| ≤ |c̄| for all c̄ ∈ Ceff} .

Assumption 6 (i) cr satisfies Definition 1 and Cmin = {cr}; (ii) ∀c ∈ C , ρmax(θ, c) = 0 ⇔ θ = θ0,

and Rank(∂ρmax(θ0, c)/∂θ
′) = p; (iii) Σ̂(c) converges in probability to limT V ar(

√
T ϕ̄max,T (θ0, c)) ≡

Σ(c), positive definite. (iv) V̂θ(c) = Vθ(c) + OP (τ
−1
T,c), where τT,c → ∞ as T → ∞; (v) ∀ c ∈ C

and c̃, c̄ ∈ C : |c̄| > |c̃|, min(τT,c̃, τT,c̄) · ln(T ) · (κ(|c̄|, T )− κ(|c̃|, T )) → ∞ and lnT · κ(|c|, T ) → 0 as

T → ∞.

This assumption is similar to Assumption 4 of Hall et al. (2007) that we adapt to our configuration.

Part (i) is an identification condition for cr allowing for its consistent estimation. Parts (iv) and (v)

relate the rate of accumulation of information about θ0 to the penalty term. These conditions allow

the selection mechanism to favor, with large probability as the sample size grows, the less sophisticated

model of two with comparable levels of information about θ0. The convergence rate τT,c is tagged to

the model choice c to stress the dependence of rate of estimation on the model under consideration.

In standard problems, the asymptotic variance is estimated at the rate τT =
√
T in the presence

of cross sectional data whereas for weakly dependent data, this rate is slower (τT =
√
T/ℓT , where

ℓT is the bandwidth parameter) due to the use of heteroskedasticity and autocorrelation consistent

estimator of the asymptotic variance (see Andrews (1991)). These rates arise when the parameter itself

is estimated at the rate
√
T which is not the case in our setting. Proposition 4.4 derives the order of

magnitude of V̂θ(c) − Vθ(c) when the parameter is nearly weakly identified. Typically, τT = o(
√
T )

with cross-sectional data and τT = o(
√
T/ℓT ) for weakly dependent data. The choice of penalty terms

will be discussed after the following consistency result.

Assumption 6(ii) looks restrictive by imposing that all candidate models extracted from ϕmax must

globally identify θ0 and must also identify θ0 locally at first-order. This, indeed, needs not be the case.

We will show next that candidate models that violate this assumption cannot score mRMSC as low

as cr asymptotically and, as a result, would not be selected.
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Theorem 4.2 If Assumptions 5 and 6 hold, then ĉT converges in probability to cr as T → ∞.

For completeness, we now analyze mRMSC when C contains candidate models that violate As-

sumption 6(ii). This is the case when point identification fails or when the Jacobian matrix of the

moment function is rank deficient.

For a candidate model c, failure of point identification implies that θ̂T (c) is not consistent. If

ρmax(θ, c) = 0 is solved by a continuum of values around θ0, then the Jacobian matrix of the moment

function is necessarily rank-deficient at θ0.

Besides, point identification may hold while the Jacobian matrix is rank deficient at θ0. In this

case, θ̂T (c) is consistent but the first-order local approximation of the moment function fails to identify

θ0. Dovonon and Renault (2013, 2019), Dovonon and Hall (2018), Dovonon and Atchadé (2019) and

Lee and Liao (2018) among others have studied the behaviour of GMM estimator in this condition.

The expected outcome in this setting is that, overall, θ̂T (c) converges at a slower rate than T
1
2
−δ2 .

We shall examine rank deficiency in these two scenarios. Common to both is that si(c) directions

of the parameter are estimated at the rate T
1
2
−δi (i = 1, 2) with si(c) = Rank

(
∂ρmax,i(θ0,ci)

∂θ′

)
and

s1(c)+ s2(c) = Rank
(
∂ρmax(θ0,c)

∂θ′

)
< p. The remaining directions are estimated at a slower rate in the

latter scenario while inconsistent in the former.

Another possibility is that the moment function is solved at isolated points including θ0. In

this case, we can claim that there is point identification relative to a smaller parameter set around

θ0. Full-rank Jacobian matrix of the moment function at θ0 then fits into Theorem 4.2 while rank

deficient Jacobian matrix at θ0 fits into the second scenario discussed above. The following result

extends Theorem 4.2 and shows that ĉ is consistent for cr even if C includes candidate models with

identification issues.

Assumption 7 Let c = (c′1, c
′
2)

′ ∈ Rk2 × Rk2 be a vector of 1’s and 0’s such that:

(i-a) [ρmax(θ, c) = 0 ⇔ θ = θ0] and Rank (∂ρmax(θ0, c)/∂θ
′) < p, or (i-b) ρmax(θ, c) = 0 on a contin-

uum set containing θ0 and, as T → ∞, ∂ρmax(θ̂T (c), c)/∂θ
′ converges in probability to M with rank

q < p. (ii) For any vector r in the null space of ∂ρmax,1(θ0, c1)/∂θ
′ (in the setting of (i-a)) or the null

space of M (in the setting of (i-b)), [∂ρmax,1(θ̂T (c), c1)/∂θ
′]r = oP (T

δ1−δ2). (iii) Σ̂(c)−1 = OP (1).

(iv) supθ∈Θ
∥∥∂ϕ̄T (θ, c)/∂θ

′ − L−1
T ∂ρmax(θ, c)/∂θ

′∥∥ = OP (T
−1/2), with LT =

(
T δ1Ik1(c) 0

0 T δ2Ik2(c)

)
.

Under Assumption 7(i-a), θ0 is consistently estimated by θ̂T (c) and ∂ρmax(θ̂T (c), c)/∂θ
′ converges

in probability to ∂ρmax(θ0, c)/∂θ
′. The rank deficiency of the latter implies that of the former in the

limit. The second part of Assumption 7(i-b) is not particularly restrictive, even though under its first

part, θ0 is not consistently estimable. Indeed, thanks to Lemma A.4 of Antoine and Renault (2009),

ρmax(θ̂T (c), c) converges to 0 in probability so that θ̂T (c) solves ρmax(θ, c) = 0 in the limit. Under a

mere differentiability assumption, the Jacobian matrix of ρmax(θ, c) at any accumulation point θ∗ ∈ N ,

the set of solutions of this equation, is rank deficient. Under the first part of Assumption 7(i-b), N is

a continuum set and, the fact that θ̂T (c) lies on the closure of N in the limit implies that the Jacobian

matrix at θ̂T (c) is rank deficient in the limit. This provides a motivation to the second part of the

assumption. Of course, if ρmax(θ, c) is linear in θ, the first and second parts of Assumption 7(i-b)
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are trivially redundant. Assumption 7(ii) is useful to control the remainder of the expansion of the

estimated Jacobian matrix. Note that if ρmax(θ, c) is linear in θ, [∂ρmax,1(θ̂T (c), c1)/∂θ
′]r = OP (T

−1/2)

in both (i-a) and (i-b). Assumption 7(iii) is standard whereas Assumption 7(iv) is guaranteed by the

functional central limit theorem.

Theorem 4.3 Let c = (c′1, c
′
2)

′ ∈ C satisfying the identification features in Assumption 7. If Assump-

tion 5 holds; cr satisfies Definition 1; and for a = c, cr, lnT · κ(|a|, T ) = o(1), then:

mRMSC(cr) < mRMSC(c)

with probability approaching 1 as T → ∞.

4.3 Choice of penalty function and robustness

The conditions in Assumptions 6(iii) and (iv) are particularly crucial for the consistency of the model

selection procedure and provide some guidelines for the choice of penalty function. It appears impor-

tant to know the rate of convergence of the estimator of asymptotic variance used and then select the

penalty function κ(·, T ) in such a way that Assumptions 6(iv) holds. The following proposition gives

the rate of convergence of the asymptotic variance estimator V̂θ(ϕ) given by (22) for a model candidate

ϕ. We consider the case where cross-section independent and identically distributed data are involved

and the case of weakly dependent time series data.

In the case of cross-section data, the estimator of the long run variance is the sample variance

given by:

Σ̂iid(ϕ) =
1

T

T∑
t=1

ϕt(θ̂T (ϕ))ϕt(θ̂T (ϕ))
′

whereas in the case of time series data, one shall rely on Σ̂hac(ϕ), any heteroskedasticity and autocor-

relation consistent estimator of the long run variance. See e.g. Andrews (1991). We let ℓT denote the

kernel bandwidth of this estimator,

ct(θ) = V ec

(
∂ϕ

∂θ′
(θ)

)
ϕt(θ)

′, and mt = ϕt(θ0)ϕt(θ0)
′,

where V ec(·) is the standard matrix vectorization operator. We have the following result.

Proposition 4.4 Assume that the model ϕ satisfies (3) and that Assumptions 1 to 3 hold.

(i) If {Yt : t = 1, . . . , T} are independent and identically distributed; 1
T

∑T
t=1 ct(θ) converges uni-

formly to a function c(θ) in a neighborhood of θ0; and
1√
T

∑T
t=1(mt − E(mt)) = OP (1), then

V̂θ(ϕ)− Vθ(ϕ) = OP

(
T (− 1

2
−δ1+2δ2)∨(δ1−δ2)

)
.

If in addition the model is linear in θ, V̂θ(ϕ)− Vθ(ϕ) = OP (T
(− 1

2
+δ2)∨(−δ2+δ1)).

(ii) If {Yt : t = 1, . . . , T} is a weakly dependent time series process, δ2 < 1
6 ; ℓT ∼ T a, with

a ∈ (2δ2,
1
2 − δ2) such that the condition (ii) of Proposition A.1 in Appendix A is satisfied and,

in addition, all the conditions of that proposition hold with δ = δ2, then:

V̂θ(ϕ)− Vθ(ϕ) = OP

(
T (δ1−δ2)∨(− 1

2
(1−a))

)
.
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This proposition shows that the rate of convergence of V̂θ(ϕ) depends on the identification strength

of the model under consideration. In the case of cross-sectional data, the requirement in Assumption

6(iv) translates into:

(lnT )T ( 1
2
−δ2)∨(δ2−δ1)(κ(|c̃|, T )− κ(|c̄|, T )) → ∞,

as T → ∞ and c̃, c̄ ∈ C such that |c̄| > |c̃|. Since δ1, δ2 can take any arbitrary value in [0, 1/2),

the commonly used penalty functions such as the BIC-type information criterion (κ(|c|, T ) = (|c| −
p) ln

√
T/

√
T ) and the Hannan-Quinn-type of criterion (κ(|c|, T ) = (|c| − p)b ln(ln

√
T )/

√
T , b > 2)

would not fulfill this requirement since we can always find some values of δ1 and δ2 in [0, 1/2) that

make these criteria violate the condition.

A natural choice of penalty function to consider is:

κ(|c|, T ) = h(|c|, p)
(lnT )1+α

, for some α > 0 (24)

and h(|c|, p) a positive and strictly increasing function of |c| for all value of p. Examples of function h

include:

h(|c|, p) = 1− p

|c|
and h(|c|, p) = |c| − p.

Thanks to (23), the modified relevant moment selection criterion is given by:

mRMSC(ϕ) =
1

lnT
ln

∣∣∣∣∣
(
∂ϕ̄′

T

∂θ
(θ̂T (ϕ))Σ̂(ϕ)

−1∂ϕ̄T

∂θ′
(θ̂T (ϕ))

)−1
∣∣∣∣∣+ h(|c|, p)

(lnT )1+α
.

Obviously, since T is the same across the models under assessment in selection procedure, we can

simply write:

mRMSC(ϕ) = ln

∣∣∣∣∣
(
∂ϕ̄′

T

∂θ
(θ̂T (ϕ))Σ̂(ϕ)

−1∂ϕ̄T

∂θ′
(θ̂T (ϕ))

)−1
∣∣∣∣∣+ h(|c|, p)

(lnT )α
, (25)

for some α > 0 and h(|c|, p) is as introduced above.

It is not hard to see that such a penalty function satisfies the requirements in Assumption 6(iv)

regardless of the values of δ1 and δ2 and therefore leads to consistent selection of the best model.

This penalty function also works when the data are time series as this can be seen from the order of

magnitude derived in Proposition 4.4(ii) for the asymptotic variance estimator.

While the best choice of α in (24) may be of independent interest that we shall pursue in future

work, it is of interest to mention that α > 0 is important a condition to ensure that the penalty function

is smaller than the information component. Also, note that the higher α, the less “bad” models are

penalized. Since the mixed identification framework is one where signals are by definition weak, it is

even more important to exercise higher penalty on “bad” models to obtain consistent selection. In the

simulation results reported in next section, we have set α = 0.1 and use h(|c|, p) = 1− p
|c| .

5 Simulations results

In this section, we study the finite sample performance of the proposed selection criterion (mRMSC)

through a Monte Carlo experiment. For this purpose, we use the same simulation setup of Section 3,
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and present the results for both the efficient GMM (2SLS in this case) and the limited information

maximum likelihood (LIML) estimators. Since we focus on the classical linear IV model in this

experiment, the inclusion of the results with LIML allows us to explore how our selection criterion

behaves with an alternative k-class estimator other than 2SLS. LIML has been known to have a good

finite-sample performance in IV regressions when identification is strong (see e.g. Bekker (1994)),

and its properties have been contrasted with other k-class estimators under weak instruments, from

the viewpoint of both estimation and testing (see e.g. Nelson and Startz (1990), Staiger and Stock

(1997), Blomquist and Dahlberg (1999), and Wang and Doko Tchatoka (2018)). For the purpose of

comparison results are shown for both mRMSC and RMSC.

Figures 2-5 contain the results. The results for 2SLS estimator are reported in Figures 2 and 3

with one (p = 1) and two (p = 2) endogenous regressor(s), respectively. The results for LIML are

presented in Figures 4-5 and are qualitatively similar to those of 2SLS in most cases presented here.

The subfigures in each case show, for a combination of identification strength (i.e. the values of δi,

i = 1, 2), the plots of the proportion of correct model selection (hit rate) by sample size. Specifically,

the top four subfigures in each case report the results where both instruments z1 and z2 have equal

identification strength (i.e. δ1 = δ2), while the remaining four subfigures plot the hit rates where z1

and z2 have different identification strength (δ1 < δ2). The red curve with pentagram-markers in each

subfigure represents the performance of the modified relevant moment selection criterion (mRMSC),

while the blue curve with circle-markers represents the RMSC of Hall et al. (2007).

Three main results stand out from this exercise. First, the hit rate of mRMSC seems to increase to

one as the sample size grows in all simulation designs regardless the estimator used (2SLS or LIML).

This confirms the consistency result for mRMSC established by Theorems 4.2 and 4.3. While mRMSC

displays evidence of consistency throughout, there are many instances where the hit rate of RMSC

drops to 0 or plateaus way below 1 highlighting the limitation of this criterion to consistently select

the correct model when operating on models with poor identification strength. For p = 1, these cases

are contained in Subfigures ‘δ1 = δ2 = 0.3, δ1 = 0.2, δ2 = 0.4’ and δ1 = 0.3, δ2 = 0.4 of Figures 2 and

4. The lacklustre performance of RMSC is more pronounced for p = 2 (two endogenous variables). In

this case, RMSC seems to be consistent only when the model is strongly identified or close to being

so: ‘δ1 = δ2 = 0’ and ‘δ1 = δ2 = 0.1.’ See Figures 3 and 5.

Second, when θ is strongly identified or close to being so, whether 2SLS or LIML estimator is

employed, RMSC performs better than mRMSC for small sample sizes (T = 100, 200) when p = 1

but this gap vanishes in case of two endogenous variables (p = 2). As the sample size grows, the

proportion of correct model selection of both mRMSC and RMSC converges quickly to 1. See e.g. the

Subfigures ‘δ1 = δ2 = 0’ and ‘δ1 = δ2 = 0.1’ in Figures 2 and 5).

Third, as the identification strength deteriorates, that is δ1 = δ2 ≥ 0.2 or δ2 > δ1 ≥ 0.2, mRMSC

expectedly outperforms RMSC. This dominance of the mRMSC is even more pronounced and sys-

tematic in models with 2 endogenous variables (p = 2), regardless of the estimator used. In this case,

mRMSC largely dominates RMSC.

Overall, this simulation exercise illustrates that our modified relevant moment selection criterion

perform well even with moderately large to large values of δi (i = 1, 2), while the RMSC fails to handle

these cases, as per its decreasing hit rate as the sample size increases for high values of δi.
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Moreover, Tables 1-6 in the appendix show in detail the empirical selection probabilities of the

models that are aggregated to plot the hit rates in Figures 2-5. The tables contain the results of

both RMSC and mRMSC for sample sizes T = 100; 500; 1,000; 10,000; 50,000; 100,000. The results

with one endogenous regressor (p = 1) are presented in Tables 1-3, while those with two endogenous

regressors (p = 2) are shown in Tables 4-6. More specifically, each table indicates, for each sample

size and each estimator (2SLS and LIML), the empirical selection rates of all possible models for a

given criterion (RMSC or mRMSC) and given values of δi (i = 1, 2). The results support our previous

analysis in Figures 2-5.

Considering first the case with one endogenous regressor (Tables 1-3), we see that when δ1 < δ2 =

0.4 (first part of the tables for each sample size), mRMSC outperforms RMSC even for relatively small

sample sizes. For example, when T = 100 and ‘δ1 = 0.2 < δ2 = 0.4’, RMSC only selects the relevant

model (i.e. columns ‘z1’ in Table 1 for T = 100) 44% of the time with 2SLS and 59% with LIML,

while mRMSC selects this model 68% of the time with 2SLS and 79% with LIML. As the sample

size increases to T = 50,000, these empirical selection probabilities bounced to 77% with 2SLS and

79% with LIML for RMSC, and to 100% with both 2SLS and LIML for our mRMSC. Furthermore,

looking at columns ‘z1’ in Tables 1-3 for δ1 < δ2 = 0.4 (first part of the tables), it is obvious that

the dominance of mRMSC is even more pronounced when ‘δ1 = 0.3 < δ2 = 0.4’ regardless of the

estimators or the sample size. The dominance of mRMSC when δ1 < δ2 = 0.4 becomes even more

visible as the sample size increases. For example, when ‘δ1 = 0.3 < δ2 = 0.4’ and T = 100,000 (Table

3), the empirical selection rate of the more relevant model (columns ‘z1’ of Table 3 for T = 100,000) is

4% with 2SLS and 9% LIML for RMSC. Meanwhile, the empirical selection rate of this model is 67%

with 2SLS and 69% with LIML for our mRMSC. Clearly, we see that as identification weakens, RMSC

has a tendency to often select less relevant models (see e.g. the selection probabilities in columns ‘all

I’ in the tables), while mRMSC still has an overall good performance at selecting the more relevant

model. Now, when δ1 = δ2 (second part of the Tables 1-3 for each sample size), both RMSC and

mRMSC perform relatively well in selecting the correct model (i.e. column ‘z1 + z2’ of the tables)

even with moderate identification strength ( δ1 = δ2 ≤ 0.2). As identification deteriorates, the two

criteria perform less in selecting the correct model. We note that when p = 1 and δ1 = δ2, there are

instances where RMSC has a slight edge on mRMSC for sample sizes less than 50,000. However, this

edge vanishes when p = 2 as discussed in the next paragraph.

Now, let us consider the case with two endogenous regressors (Tables 4-6), where the more relevant

model is column ‘z1 + z2’. We see that for both ‘δ1 < δ2 = 04’ and ‘δ1 = δ2’, mRMSC outperforms

RMSC in all combination of identification strength δi (i = 1, 2), regardless the sample size or the

estimator utilized. As in the case of one endogenous regressor, the dominance of mRMSC increases with

the sample size. Again, RMSC shows a tendency to often select less relevant models when identification

deteriorates (i.e. high values of δi, i = 1, 2). In addition, the empirical selection probabilities of the

relevant model increase with the sample size for mRMSC for all combinations of identification strength

used, while that of RMSC often decrease as the sample size increases for high values of δi (i = 1, 2).

This illustrates why the aggregate hit rate of RMSC decreases as the sample size increases for high

values of δi, as shown in Figures 2-5.
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Figure 2: Hit rate of mRMSC and RMSC with 2SLS: model with one endogenous variable (p = 1). Sample

size T = 100; 200; 500; 1,000; 5,000; 10,000; 20,000; 50,000; 100,000. Number of replications: 10,000.
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Figure 3: Hit rate by mRMSC and RMSC using 2SLS: model with two endogenous variables (p = 2). Sample

size T = 100; 200; 500; 1,000; 5,000; 10,000; 20,000; 50,000; 100,000. Number of replications: 10,000.
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Figure 4: Hit rate of mRMSC and RMSC using LIML: model with one endogenous variable (p = 1). Sample

size T = 100; 200; 500; 1,000; 5,000; 10,000; 20,000; 50,000; 100,000. Number of replications: 10,000.
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Figure 5: Hit rate of mRMSC and RMSC using LIML: model with two endogenous variables (p = 2). Sample

size T = 100; 200; 500; 1,000; 5,000; 10,000; 20,000; 50,000; 100,000. Number of replications: 10,000.
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6 Conclusion

In this paper, we study model selection in moment condition models with mixed identification strength.

Our investigation reveals that standard model selection procedures, such as the relevant model selection

criterion (RMSC) of Hall et al. (2007), are inconsistent in this setting as they do not explicitly account

for the rate of convergence of parameter estimation of candidate models which may vary. We thus

propose new entropy-based relevant moment selection criteria and establish their consistency properties

in settings that include moment restrictions with mixed strength. The benchmark estimator that we

consider is the two-step efficient generalized method of moments (GMM) estimator which is known to

be efficient in this framework as well (see Dovonon et al. (2019)). A family of penalization functions is

introduced that guarantees the consistency of the selection procedure. We illustrate the finite sample

performance of the proposed method through Monte Carlo simulations.
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A Convergence rate of HAC using slow parameter estimate

As we have seen, the under mixed strength identifying moment restrictions, the resulting parameter estimator

has a slow rate of convergence (OP (T
1
2−δ)). Standard theories for HAC estimators of the long-run variance apply

to
√
T -consistent parameter estimators. The next proposition gives the rate of convergence of HAC estimators

of the long-run variance, Σ, of ϕ(Yt, θ0): Σ = limT→∞ V ar
(

1√
T

∑T
t=1 ϕ(Yt, θ0)

)
when estimators of θ0 based on

the moment condition E(ϕ(Yt, θ0)) = 0 are available and the components of ϕ have mixed identification strength

for θ0. We know in this case that standard estimators θ̂T are such that T
1
2−δ(θ̂T − θ0) = OP (1) for some δ ≥ 0.

Let Σ̂hac be the HAC estimator of Σ using the kernel function k(x) and bandwidth parameter ℓT . (See

Andrews (1991) for more explicit definitions.) We shall assume that k(·) belong to the class K1, i.e. k(·) is

symmetric, continuous at 0 and at all but a finite number of other points, square integrable and takes values in

[−1, 1], with k(0) = 1.

Let kq = limx→0
1−k(x)
|x|q (see Andrews (1991, p 824)) and R(j) = E(ϕ(Yt, θ0)ϕ(Yt−j , θ0)

′), j ∈ Z the autoco-

variance function of ϕ(Yt, θ0) which is assumed to be covariance stationary. We have the following.

Proposition A.1 Assume that

(i) Assumptions A, B and C of Andrews (1991) hold with V replaced by ϕ and B(i) replaced by

T
1
2−δ(θ̂T − θ0) = OP (1)

for some δ ≥ 0.

(ii) 0 ≤ δ ≤ 1
6 and there exists a ∈ (2δ, 1

2 − δ) such that

kq < ∞, and

+∞∑
j=−∞

|j|q∥R(j)∥ < ∞,

with some q ≥ 1−a
2a .

(iii) ℓT ∼ T a.

Then, √
T

ℓT

(
Σ̂hac − Σ

)
= OP (1).

Proof of Proposition A.1: Let

ΣT (θ0) =

T−1∑
j=−T+1

(
1− |j|

T

)
R(j), Σ =

+∞∑
j=−∞

R(j) with R(j) = E (ϕ(Yt, θ0)ϕ(Yt−j , θ0)
′) .

Note that Σ is the limit of ΣT as T → ∞. We have

∥ΣT (θ0)− Σ∥ =

∥∥∥∥∥ ∑|j|≥T

R(j)− 1
T

∑
|j|≤T−1

|j|R(j)

∥∥∥∥∥ ≤
∑

|j|≥T

∥R(j)∥+ 1
T

∑
|j|≤T−1

|j|∥R(j)∥

≤
∑

|j|≥T

∥R(j)∥+ 1√
T

∑
|j|≤T−1

|j|1/2∥R(j)∥.

Under the condition (ii) of the proposition, q ≥ 1/2 and as a result, we also have

+∞∑
j=−∞

|j|1/2∥R(j)∥ < ∞.
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Thus, from Lemma 4 of Parzen (1957), we have, as T → ∞,
√
T
∑
|j|≥T

∥R(j)∥ → 0.

Hence,
√
T ∥ΣT (θ0)− Σ∥ ≤ C for some C positive and for T large enough. As a result,√

T

ℓT
∥ΣT (θ0)− Σ∥ → 0.

Therefore, to complete the proof, it suffices to show that√
T

ℓT

(
Σ̂hac − ΣT (θ0)

)
= OP (1). (A.1)

This is done by adapting the proof of Andrews (1991, Th. 1(a),(b)) to our setting where T
1
2−δ(θ̂T −θ0) = OP (1).

Following him and without loss of generality, we assume that Σ’s are scalars.

Define Σ̃(θ) similarly to Σ̂hac but with θ̂T replaced by θ and let Σ̃ ≡ Σ̃(θ0). By definition, Σ̂hac = Σ̃(θ̂T ). Un-

der our maintained assumptions, the conditions of Andrews (1991, Th. 1(a),(b)) hold and a close consideration

of his proof reveals that we only need to show that√
T

ℓT
(Σ̂hac − Σ̃) = oP (1)

to conclude (A.1). Similar to Andrews (1991, Eq. (A.11)), a two term Taylor expansion gives:√
T
ℓT

(Σ̂hac − Σ̃) =
(

T δ
√
ℓT

∂
∂θ′ Σ̃(θ0)

)
T

1
2−δ(θ̂T − θ0) +

1
2T

1
2−δ(θ̂T − θ0)

′
[
T 2δ− 1

2√
ℓT

∂2

∂θ∂θ′ Σ̃(θ̄)

]
T

1
2−δ(θ̂T − θ0)

≡ L′
1TT

1
2−δ(θ̂T − θ0) +

1
2T

1
2−δ(θ̂T − θ0)

′L2TT
1
2−δ(θ̂T − θ0),

where θ̄ ∈ (θ0, θ̂T ). Similar treatments leading to Andrews (1991, Eq. (A.12)) yield:

∥L2T ∥ ≤ T 2δ− 1
2√

ℓT

T−1∑
j=−T+1

|k(j/ℓT )| 1T
T∑

t=|j|+1

sup
θ∈Θ

∥∥∥ ∂2

∂θ∂θ′ϕ(Yt, θ)ϕ(Yt−|j|, θ)
∥∥∥

= T 2δ− 1−a
2

(
1
ℓT

T−1∑
j=−T+1

|k(j/ℓT )|

)
OP (1) = OP

(
T 2δ− 1−a

2

)
.

Also, we have:

L1T = T δ
√
ℓT

T−1∑
j=−T+1

k
(

j
ℓT

)
1
T

T∑
t=|j|+1

ϕ(Yt, θ0)
(

∂
∂θϕ(Yt−|j|, θ0)− λ

)

+ T δ
√
ℓT

T−1∑
j=−T+1

k
(

j
ℓT

)
1
T

T∑
t=|j|+1

(
∂
∂θϕ(Yt, θ0)− λ

)
ϕ(Yt−|j|, θ0)

+T δDTλ,

with λ = E(∂/∂θ)ϕ(Yt, θ0) and

DT =
1√
ℓT

T−1∑
j=−T+1

k

(
j

ℓT

)
1

T

T∑
t=|j|+1

(ϕ(Yt, θ0) + ϕ(Yt−|j|, θ0)).

Clearly, the first two terms in the expansion of L1T are of order OP (T
δ/
√
ℓT ). Also, from Andrews (1991, Eq.

(A.15)), we can claim that DT = OP (
√
ℓT /T ). As a result,

L1T = OP

(
T δ− a

2

)
+OP

(
T δ+ a−1

2

)
.
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Since a ∈ (2δ, 1
2 − δ), L2T = oP (1). Also, since δ < 1/6, a < 1 − 4δ and L1T = oP (1) and this completes the

proof. �

B Auxiliary results and proofs

Lemma B.1 Let s1(ιmax) = Rank
(

∂ρmax,1(θ0)
∂θ′

)
and R(ιmax) =

(
R1(ιmax)

...R2(ιmax)

)
such that R(ιmax)R(ιmax)

′ =

Ip and
∂ρmax,1(θ0)

∂θ′ R2(ιmax) = 0.

Let c = (c′1, c
′
2)

′ ∈ C . If s1(c) = s1(ιmax), that is Rank
(

∂ρmax,1(θ0)
∂θ′

)
= Rank

(
∂ρmax,1(θ0,c)

∂θ′

)
, then

∂ρmax,1(θ0,c)
∂θ′ R2(ιmax) = 0.

Proof of Lemma B.1. Omitted. �

Proof of Proposition 3.1. We have θ̂T − θ0 = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′U.

(i) Note that

X ′Z = RR′X ′Z = R
(
R′C ′L−1

T Z ′Z +R′V ′Z
)

and

L−1
T CR =

(
C1R1 0

C2R1T
δ1−δ2 C2R2

)
ℓ−1
T , with ℓT =

(
T δ1Is1 0

0 T δ2Ip−s1

)
.

Hence, X ′Z = Rℓ−1
T AT , with AT =

(
C1R1 0

C2R1T
δ1−δ2 C2R2

)′

Z ′Z + ℓTR
′V ′Z and

√
Tℓ−1

T R′(θ̂T − θ0) =

(
AT (Z

′Z)−1A′
T

T

)−1

AT (Z
′Z)−1Z

′U√
T
. (B.1)

We have:

AT (Z′Z)−1A′
T

T =

(
C1R1 0

C2R1T
δ1−δ2 C2R2

)′
Z′Z
T

(
C1R1 0

C2R1T
δ1−δ2 C2R2

)

+ ℓT√
T
R′ V ′Z√

T

(
C1R1 0

C2R1T
δ1−δ2 C2R2

)

+

(
C1R1 0

C2R1T
δ1−δ2 C2R2

)′
Z′V√

T
R ℓT√

T
+ ℓT√

T
R′ V ′Z√

T

(
Z′Z
T

)−1
Z′V√

T
R ℓT√

T

=

(
C1R1 0

0 C2R2

)′

∆

(
C1R1 0

0 C2R2

)
+ oP (1).

Thus, (
AT (Z

′Z)−1A′
T

T

)−1

=

[(
C1R1 0

0 C2R2

)′

∆

(
C1R1 0

0 C2R2

)]−1

+ oP (1). (B.2)

Also,

AT (Z
′Z)−1 Z′U√

T
=

(
C1R1 0

C2R1T
δ1−δ2 C2R2

)′
Z′U√

T
+ ℓT√

T
R′ V ′Z√

T

(
Z′Z
T

)−1
Z′U√

T

=

(
C1R1 0

0 C2R2

)′
Z′U√

T
+ oP (1).

(B.3)
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(i) follows from (B.1), (B.2), (B.3) and Assumption 4(iii).

(ii) In the case s1 = p, we use the fact that T δ1−1X ′Z =
(

C ′
1 0

)
∆+ oP (1). Therefore,

X ′Z(Z ′Z)−1Z ′X = T 1−2δ1 (C ′
1∆11C1 + oP (1)) (B.4)

and since C1 is of rank p,
(
X ′Z(Z ′Z)−1Z ′X

)−1
= T−1+2δ1

[
(C ′

1∆11C1)
−1 + oP (1)

]
. Also,

X ′Z(Z ′Z)−1Z ′U = T
1
2−δ1

[(
C ′

1 0
)
∆+ oP (1)

]
(∆−1 + oP (1))

Z ′U√
T

As a result,

T
1
2−δ1(θ̂T − θ0) = (C ′

1∆11C1)
−1C ′

1

Z ′
1U√
T

+ oP (1)

and (ii) follows from Assumption 4(iii).

(iii) σ̂2
u converges in probability to σ2

u by the law of large numbers. For the case 0 < s1 < p, we have

(
Λ−1
T R′X ′PZXRΛ−1

T

)−1
=

(
ℓTR

′X ′PZXRℓT
T

)−1

=

(
AT (Z

′Z)−1A′
T

T

)−1

and using (B.2), we have the expected result. For the case s1 = p, the expected result follows from (B.4). �

Proof of Theorem 4.2: Analogue to previous notation, let

V̂θ(c) =

((√
T
∂ϕ̄T

∂θ′
(θ̂T (c))R(c)ΛT (c)

−1

)′

Σ̂(c)−1

(√
T
∂ϕ̄T

∂θ′
(θ̂T (c))R(c)ΛT (c)

−1

))−1

,

where we use ϕ in this definition includes only the components of ϕmax selected by c. Under Assumptions 5

and 6(ii), ∥θ̂T (c) − θ0∥ = OP (T
− 1

2+δ2). Thanks to Lemma A.5 of Antoine and Renault (2009), we can claim

that
√
T ∂ϕ̄T

∂θ′ (θ̂T (c))R(c)ΛT (c)
−1 converges in probability to J(c) and as a result, V̂θ(c) converges in probability

to (J(c)′Σ(c)−1J(c))−1.

Note that

V̂θ(c) =
1

T
ΛT (c)R(c)′

(
Îθ,T

)−1

R(c)ΛT (c).

Hence,

ln
∣∣∣V̂θ(c)

∣∣∣ = −2(s1(c)δ1 + s2(c)δ2) lnT − ln
∣∣∣Îθ,T ∣∣∣ .

Thus,

−
ln
∣∣∣Îθ,T ∣∣∣
lnT

= 2(s1(c)δ1 + s2(c)δ2) +
ln
∣∣∣V̂θ(c)

∣∣∣
lnT

= 2(s1(c)(δ1 − δ2) + pδ2) +
ln
∣∣∣V̂θ(c)

∣∣∣
lnT

and

mRMSC(c) = 2(s1(c)(δ1 − δ2) + pδ2) +
ln
∣∣∣V̂θ(c)

∣∣∣
lnT

+ κ(|c|, T ). (B.5)

Let

∆T (c, cr) = mRMSC(c)−mRMSC(cr).

Thanks to Assumptions 1(i) and (ii), s1(cr) = s1(ιmax). This rules out s1(c) > s1(cr) and we shall distinguish

the following two cases: (1) s1(c) < s1(cr) and (2) s1(c) = s1(cr).

Case (1): s1(c) < s1(cr). Since δ1 − δ2 < 0, we have: s1(cr)(δ1 − δ2) + pδ2 < s1(c)(δ1 − δ2) + pδ2.

Moreover, since V̂θ(c)
P→ Vθ(c), and V̂θ(cr)

P→ Vθ(cr) (with both limits finite) and κ(|c|, T ) → 0 as T → ∞
for all c, we can claim that ∆T (c, cr)

P→ 2(s1(cr)− s1(c))(δ1 − δ2) < 0 meaning that cr will be chosen over c as
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T gets large with probability approaching 1.

Case (2): s1(c) = s1(cr). Lemma B.1 ensures that Vθ(c), Vθ(cr) and Vθ(ιmax) can be expressed in terms

of the same rotation matrix R(ιmax). By definition, Vθ(cr) = Vθ(ιmax) and, considering Vθ(c) as expressed

in terms of R(ιmax) as well, standard results of GMM theory ensure that we either have Vθ(c) = Vθ(cr) or

Vθ(c)− Vθ(cr) is positive semi definite. We further consider these two cases.

Case (2-i): Vθ(c) = Vθ(cr). We have

min(τT,c, τT,cr ) ln(T )∆T (c, cr)

= min(τT,c, τT,cr )
(
ln |V̂θ(c)| − ln |Vθ(c)|

)
−min(τT,c, τT,cr )

(
ln |V̂θ(cr)| − ln |Vθ(cr)|

)
+min(τT,c, τT,cr ) ln(T ) (κ(|c|, T )− κ(|cr|, T ))

= OP (1) + min(τT,c, τT,cr ) ln(T ) (κ(|c|, T )− κ(|cr|, T )) .

Thanks to Assumption 6(iv), this quantity tends to +∞ with probability 1 as T grows and we can deduce that

∆T (c, cr) is positive with probability 1 as T grows. This means that cr is eventually selected over c.

Case (2-ii): Vθ(c)− Vθ(cr) is positive semi definite and different from 0. From Theorem 22 of Magnus and

Neudecker (1999), |Vθ(c)| > |Vθ(cr)| and we have

ln(T )∆T (c, cr) = ln |V̂θ(c)| − ln |V̂θ(cr)|+ ln(T ) (κ(|c|, T )− κ(|cr|, T )) = ln |Vθ(c)| − ln |Vθ(cr)|+ oP (1).

Therefore, ∆T (c, cr) is positive with probability 1 as T grows.

Taken together, Cases (1), (2-i) and (2-ii) establish that ĉ
P→ cr as T → ∞. �

Proof of Theorem 4.3: We have that

∂ϕ̄T (θ̂T (c), c)

∂θ′
=

(
∂ϕ̄T (θ̂T (c), c)

∂θ′
− L−1

T

∂ρmax(θ̂T (c), c)

∂θ′

)
+ L−1

T

(
∂ρmax(θ̂T (c), c)

∂θ′
−M

)
+ L−1

T M,

where M stands for either ∂ρmax(θ0,c)
∂θ′ or M in Assumptions 7(i-a) and (i-b).

Let M1 be the submatrix of M given by its first k1 rows and M2 the submatrix of M given by its last k1 rows.

Let s1(c) = Rank(M1) and R =

(
R1

...R2

...R3

)
the orthogonal matrix (i.e. RR′ = Ip) such that M1R2 = 0 and

MR3 = 0. Note R1 is void if s1(c) = 0 and R2 is void if s2(c) = 0 while R3 has p− q > 0 columns corresponding

to an orthogonal basis of the null space of M . s1(c) + s2(c) = q.

Let ℓT =

 T δ1Is1(c) 0 0

0 T δ2Is2(c) 0

0 0 T δ2Ip−q

 . We have:

∂ϕ̄T (θ̂T (c), c)

∂θ′
RℓT = L−1

T MRℓT+oP (1) =

(
M1R1 0 0

M2R1T
δ1−δ2 M2R2 0

)
+oP (1) =

(
M1R1 0 0

0 M2R2 0

)
+oP (1).

We have

mRMSC(c) = −
ln
∣∣∣Îθ,T (c)∣∣∣
lnT

+ κ(|c|, T ),

with Îθ,T (c) =
∂ϕ̄T (θ̂T (c),c)′

∂θ Σ̂(c)−1 ∂ϕ̄T (θ̂T (c),c)
∂θ′ . We can write:

Îθ,T (c) = Rℓ−1
T

(
ℓTR

′ ∂ϕ̄T (θ̂T (c), c)
′

∂θ
Σ̂(c)−1 ∂ϕ̄T (θ̂T (c), c)

∂θ′
RℓT

)
ℓ−1
T R′ ≡ Rℓ−1

T K̂θ,T ℓ
−1
T R′.

34



Thus,

ln
∣∣∣Îθ,T (c)∣∣∣ = 2 ln

∣∣ℓ−1
T

∣∣+ ln |K̂θ,T |

so that

mRMSC(c) = 2[s1(c)(δ1 − δ2) + pδ2]−
ln |K̂θ,T |
lnT

+ κ(|c|, T ).

Using (B.5), we have

mRMSC(cr) = 2(s1(cr)(δ1 − δ2) + pδ2) +
ln |Vθ(cr) + oP (1)|

lnT
+ κ(|cr|, T ).

Note that lnT · κ(|a|, T ) → 0 as T → ∞ for a = c, cr. Also, since Vθ(cr) is positive definite, ln |Vθ(cr)| ∈ R
whereas − ln |K̂θ,T | → +∞, since K̂θ,T is asymptotically degenerate. Furthermore, by definition of cr,

s1(cr)(δ1 − δ2) + pδ2 = s1(ιmax)(δ1 − δ2) + pδ2

and we have

[s1(ιmax)(δ1 − δ2) + pδ2]− [s1(c)(δ1 − δ2) + pδ2] = (s1(ιmax)− s1(c))(δ1 − δ2) ≤ 0

since s1(ιmax) ≥ s1(c) and p > q. We can therefore conclude that mRMSC(cr) < mRMSC(c) with probability

approaching 1 as T → ∞. �

Proof of Proposition 4.4: Under Assumptions 1 and 2(ii), θ̂T (ϕ) − θ0 = OP (T
− 1

2+δ2). By a mean-value

expansion, we have:
∂ϕ̄T

∂θ′
(θ̂T (ϕ)) =

∂ϕ̄T

∂θ′
(θ0) +

∂2ϕ̄T (θ̈)

V ec(∂θ∂θ′)′
[Ip ⊗ (θ̂T (ϕ)− θ0)],

where θ̈ ∈ (θ̂T (ϕ), θ0) and may vary with the entries of ∂ϕ̄T

∂θ′ (θ), ‘⊗’ is the Kronecker product and V ec(A) trans-

forms the matrix A into a vector by stacking its columns. By post-multiplying this equality by
√
TR(ϕ)ΛT (ϕ)

−1,

we have:
√
T ∂ϕ̄T

∂θ′ (θ̂T (ϕ))R(ϕ)ΛT (ϕ)
−1 =

√
T
(

∂ϕ̄T

∂θ′ (θ0)− E
(

∂ϕ̄T

∂θ′ (θ0)
))

R(ϕ)ΛT (ϕ)
−1 +

√
TE

(
∂ϕt

∂θ′ (θ0)
)
R(ϕ)ΛT (ϕ)

−1

+
√
T ∂2ϕ̄T (θ̈)

V ec(∂θ∂θ′)′ [Ip ⊗ (θ̂T (ϕ)− θ0)]R(ϕ)ΛT (ϕ)
−1

≡ (1) + (2) + (3).

By Assumption 2(ii), (1) = OP (1)OP (T
− 1

2+δ2) = OP (T
− 1

2+δ2). By Assumption 3,

(3) =
√
TOP (T

−δ1)OP (T
− 1

2+δ2)OP (T
− 1

2+δ2) = OP (T
− 1

2−δ1+2δ2).

Besides,

(2) =


∂ρ1(θ0)

∂θ′ R1(ϕ) 0

1
T δ2−δ1

∂ρ2(θ0)
∂θ′ R1(ϕ)

∂ρ2(θ0)
∂θ′ R2(ϕ)

 = J(ϕ) +O(T−δ2+δ1),

where we consider the usual partition of the moment restriction, i.e.

E(ϕj(θ)) =
ρj(θ)

T δj
(j = 1, 2), and R(ϕ) = (R1(ϕ)

...R2(ϕ)),

with the columns of R2(ϕ) spanning the null space of ∂ρ1

∂θ′ (θ0). As a result,

√
T ∂ϕ̄T

∂θ′ (θ̂T (ϕ))R(ϕ)ΛT (ϕ)
−1 = J +OP (T

−δ2+δ1) +OP (T
− 1

2+δ2) +OP (T
− 1

2−δ1+2δ2)

= J +OP (T
(−δ2+δ1)∨(− 1

2−δ1+2δ2)).

(B.6)
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If the model is linear in θ, (3) is not involved and

√
T
∂ϕ̄T

∂θ′
(θ̂T (ϕ))R(ϕ)ΛT (ϕ)

−1 = J +OP (T
(−δ2+δ1)∨(− 1

2−δ2)).

To complete the proof for (i), we derive the asymptotic order of magnitude of Σ̂iid(ϕ) − Σ(ϕ), where

Σ(ϕ) = E(ϕt(θ0)ϕt(θ0)
′). By a mean-value expansion, we have

V ec
(

1
T

∑T
t=1 ϕt(θ̂T (ϕ))ϕt(θ̂T (ϕ))

′
)

= V ec(Σ(ϕ)) + V ec
(

1
T

∑T
t=1 ϕt(θ0)ϕt(θ0)

′ − Σ(ϕ)
)

+ 1
T

∑T
t=1

∂
∂θ′V ec[ϕt(θ)ϕt(θ)

′]
∣∣∣
θ=θ̈

(θ̂T (ϕ)− θ0)

= V ec(Σ(ϕ)) +OP (T
− 1

2+δ2) = Σ(ϕ) +OP (T
− 1

2−δ1+2δ2),

where the last equality follows from the fact that − 1
2 + δ2 ≤ − 1

2 − δ1 +2δ2. Since V̂θ(ϕ) is a smooth function of√
T ∂ϕ̄T

∂θ′ (θ̂T (ϕ))R(ϕ)ΛT (ϕ)
−1 and Σ̂iid(ϕ), the claimed result follows by the delta method. If the model is linear

in θ, we would have V̂θ(ϕ)− Vθ(ϕ) = OP (T
(−δ2+δ1)∨(− 1

2+δ2)).

To complete the proof for (ii), we rely on Proposition A.1 to obtain the asymptotic order of magnitude of

Σ̂hac(ϕ)−Σ(ϕ), where Σ is the long run variance of ϕt(θ0). Under the conditions in (ii), we can claim applying

Proposition A.1 that

Σ̂hac(ϕ)− Σ(ϕ) = OP (T
− 1

2+
α
2 ).

Again, by the delta method, we can claim using (B.6) that

V̂θ(ϕ)− Vθ(ϕ) = OP (T
(−δ2+δ1)∨(− 1

2−δ1+2δ2)∨(− 1
2 (1−α))) = OP (T

(−δ2+δ1)∨(− 1
2 (1−α))). (B.7)

If the model is linear in θ, we have

V̂θ(ϕ)− Vθ(ϕ) = OP (T
(−δ2+δ1)∨(− 1

2+δ2)∨(− 1
2 (1−α)))

which, since 2δ2 < α, also implies (B.7). �
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C Additional Monte Carlo results

Table 1: Empirical selection probabilities: one endogenous regressor (p = 1), T = 100; 500

T = 100

2SLS LIML

δ1 δ2 z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 0.99 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 0.85 0.00 0.11 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 0.44 0.02 0.23 0.17 0.04 0.03 0.00 0.03 0.04 0.00 0.59 0.04 0.27 0.01 0.04 0.00 0.00 0.05 0.01 0.00

0.3 0.4 0.16 0.05 0.16 0.15 0.12 0.03 0.00 0.23 0.10 0.00 0.27 0.10 0.23 0.02 0.05 0.00 0.00 0.33 0.00 0.00

mRMSC 0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 0.97 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 0.68 0.05 0.06 0.02 0.01 0.03 0.03 0.03 0.07 0.01 0.79 0.07 0.05 0.00 0.01 0.00 0.00 0.05 0.02 0.00

0.3 0.4 0.29 0.10 0.04 0.03 0.03 0.03 0.04 0.23 0.19 0.02 0.39 0.16 0.09 0.00 0.01 0.01 0.00 0.33 0.01 0.00

δ1 = δ2

RMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.03 0.03 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.11 0.11 0.67 0.03 0.03 0.04 0.00 0.00 0.01 0.00 0.14 0.14 0.70 0.01 0.01 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.11 0.11 0.29 0.13 0.13 0.06 0.00 0.12 0.07 0.00 0.19 0.18 0.38 0.03 0.03 0.00 0.00 0.18 0.00 0.00

0.4 0.4 0.06 0.06 0.08 0.10 0.11 0.02 0.00 0.47 0.10 0.00 0.12 0.13 0.13 0.03 0.03 0.00 0.00 0.57 0.00 0.00

mRMSC 0 0 0.09 0.09 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.09 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.19 0.18 0.62 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.20 0.19 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.26 0.26 0.33 0.00 0.00 0.07 0.04 0.00 0.03 0.01 0.28 0.29 0.42 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.3 0.3 0.22 0.22 0.10 0.02 0.03 0.06 0.06 0.11 0.15 0.02 0.29 0.30 0.20 0.00 0.00 0.01 0.00 0.19 0.01 0.00

0.4 0.4 0.12 0.12 0.02 0.02 0.03 0.02 0.02 0.46 0.18 0.01 0.18 0.18 0.06 0.00 0.00 0.01 0.00 0.56 0.00 0.00

T = 500

2SLS LIML

δ1 δ2 z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 0.98 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 0.58 0.00 0.28 0.09 0.00 0.03 0.00 0.01 0.01 0.00 0.68 0.00 0.31 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.3 0.4 0.13 0.02 0.21 0.09 0.04 0.06 0.00 0.43 0.04 0.00 0.22 0.05 0.28 0.00 0.01 0.00 0.00 0.44 0.00 0.00

mRMSC 0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 0.96 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.98 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.3 0.4 0.37 0.07 0.07 0.00 0.01 0.02 0.01 0.42 0.02 0.00 0.40 0.10 0.08 0.00 0.00 0.00 0.00 0.42 0.00 0.00

δ1 = δ2

RMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.01 0.01 0.97 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.05 0.05 0.47 0.05 0.05 0.12 0.01 0.17 0.02 0.00 0.10 0.11 0.58 0.01 0.01 0.00 0.00 0.19 0.00 0.00

0.4 0.4 0.02 0.03 0.06 0.03 0.03 0.02 0.00 0.78 0.02 0.00 0.06 0.07 0.10 0.00 0.00 0.00 0.00 0.77 0.00 0.00

mRMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.03 0.03 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.15 0.16 0.68 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.16 0.17 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.23 0.23 0.24 0.00 0.00 0.05 0.03 0.19 0.02 0.00 0.25 0.25 0.30 0.00 0.00 0.00 0.00 0.20 0.00 0.00

0.4 0.4 0.08 0.09 0.03 0.00 0.00 0.01 0.00 0.78 0.01 0.00 0.10 0.10 0.04 0.00 0.00 0.00 0.00 0.76 0.00 0.00

Note: ‘z1 + z2’ denotes models with the 2 instruments z1 and z2; ‘zj+I’ (j = 1, 2) denotes models with zj + 1 irrelevant (i.e. completely unrelated) instrument;

‘z1 + z2 + I’ denotes models with the 2 instruments z1 and z2 + 1 irrelevant instrument; ‘z1 + z2 + 2I’ denotes models with the 2 instruments z1 and z2

+ 2 irrelevant instruments; ‘all I’ denotes models with irrelevant instruments only; ‘zj + more I’ denotes models with zj (j = 1, 2) + more than 1 irrelevant

instrument; ‘All’ denotes model with all instruments. The highlighted columns correspond to the best subset of instruments. This subset depends on the

combination of strengths (δ1, δ2) and the number p of estimated parameters.
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Table 2: Empirical selection probabilities: one endogenous regressor (p = 1), T = 1,000; 10,000

T = 1,000

2SLS LIML

δ1 δ2 z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 0.63 0.00 0.28 0.06 0.00 0.02 0.00 0.00 0.00 0.00 0.71 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.12 0.01 0.23 0.06 0.02 0.06 0.00 0.50 0.02 0.00 0.19 0.03 0.29 0.00 0.01 0.00 0.00 0.49 0.00 0.00

mRMSC 0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.38 0.05 0.08 0.00 0.00 0.01 0.00 0.47 0.01 0.00 0.41 0.07 0.07 0.00 0.00 0.00 0.00 0.46 0.00 0.00

δ1 = δ2

RMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.03 0.03 0.54 0.03 0.03 0.13 0.01 0.21 0.01 0.00 0.07 0.07 0.65 0.00 0.00 0.00 0.00 0.21 0.00 0.00

0.4 0.4 0.02 0.02 0.05 0.02 0.02 0.02 0.00 0.85 0.01 0.00 0.04 0.05 0.08 0.00 0.00 0.00 0.00 0.82 0.00 0.00

mRMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.10 0.10 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.21 0.21 0.33 0.00 0.00 0.03 0.01 0.22 0.00 0.00 0.22 0.22 0.35 0.00 0.00 0.00 0.00 0.21 0.00 0.00

0.4 0.4 0.06 0.06 0.02 0.00 0.00 0.00 0.00 0.84 0.00 0.00 0.07 0.08 0.03 0.00 0.00 0.00 0.00 0.82 0.00 0.00

T = 10,000

2SLS LIML

δ1 δ2 z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 0.75 0.00 0.24 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.07 0.00 0.26 0.02 0.00 0.05 0.00 0.59 0.00 0.00 0.12 0.00 0.34 0.00 0.00 0.00 0.00 0.54 0.00 0.00

mRMSC 0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.45 0.01 0.03 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.48 0.01 0.02 0.00 0.00 0.00 0.00 0.48 0.00 0.00

δ1 = δ2

RMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.00 0.00 0.63 0.00 0.00 0.12 0.00 0.24 0.00 0.00 0.01 0.01 0.76 0.00 0.00 0.00 0.00 0.23 0.00 0.00

0.4 0.4 0.00 0.00 0.04 0.00 0.01 0.02 0.00 0.93 0.00 0.00 0.02 0.02 0.07 0.00 0.00 0.00 0.00 0.89 0.00 0.00

mRMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.11 0.11 0.53 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.12 0.12 0.52 0.00 0.00 0.00 0.00 0.24 0.00 0.00

0.4 0.4 0.03 0.03 0.02 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.00 0.00 0.89 0.00 0.00

Note: See note at Table 1.
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Table 3: Empirical selection probabilities: one endogenous regressor (p = 1), T = 50,000; 100,000

T = 50,000

2SLS LIML

δ1 δ2 z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 0.79 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.05 0.00 0.30 0.02 0.00 0.10 0.00 0.52 0.00 0.00 0.10 0.00 0.43 0.00 0.00 0.00 0.00 0.47 0.00 0.00

mRMSC 0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.58 0.00 0.01 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00

δ1 = δ2

RMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.00 0.00 0.65 0.00 0.00 0.17 0.00 0.18 0.00 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.17 0.00 0.00

0.4 0.4 0.00 0.00 0.03 0.00 0.00 0.03 0.01 0.92 0.01 0.00 0.01 0.01 0.08 0.00 0.00 0.01 0.00 0.88 0.00 0.00

mRMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.05 0.06 0.70 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.06 0.06 0.70 0.00 0.00 0.00 0.00 0.18 0.00 0.00

0.4 0.4 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.88 0.00 0.00

T = 100,000

2SLS LIML

δ1 δ2 z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1 z2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 0.81 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.04 0.00 0.31 0.03 0.00 0.16 0.01 0.45 0.00 0.00 0.09 0.00 0.50 0.00 0.00 0.00 0.00 0.41 0.00 0.00

mRMSC 0 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.4 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00

δ1 = δ2

RMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.00 0.00 0.64 0.00 0.00 0.21 0.01 0.14 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.13 0.00 0.00

0.4 0.4 0.00 0.00 0.02 0.00 0.00 0.04 0.01 0.92 0.01 0.00 0.01 0.01 0.09 0.00 0.00 0.02 0.00 0.87 0.00 0.00

mRMSC 0 0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.03 0.03 0.79 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.04 0.04 0.78 0.00 0.00 0.00 0.00 0.14 0.00 0.00

0.4 0.4 0.03 0.03 0.04 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.04 0.04 0.05 0.00 0.00 0.00 0.00 0.87 0.00 0.00

Note: See note at Table 1.
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Table 4: Empirical selection probabilities: two endogenous regressors (p = 2), T = 100; 500

T = 100

2SLS LIML

δ1 δ2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 0.31 0.03 0.00 0.43 0.15 0.00 0.09 0.00 0.35 0.05 0.00 0.41 0.11 0.00 0.09 0.00

0.1 0.4 0.29 0.03 0.00 0.43 0.16 0.00 0.09 0.00 0.34 0.05 0.00 0.41 0.11 0.00 0.09 0.00

0.2 0.4 0.24 0.02 0.00 0.43 0.20 0.00 0.11 0.00 0.30 0.04 0.00 0.42 0.14 0.00 0.10 0.00

0.3 0.4 0.15 0.01 0.00 0.39 0.29 0.00 0.16 0.00 0.20 0.03 0.00 0.41 0.21 0.00 0.14 0.00

mRMSC 0 0.4 0.36 0.03 0.00 0.23 0.18 0.00 0.16 0.04 0.40 0.06 0.00 0.23 0.15 0.00 0.13 0.02

0.1 0.4 0.34 0.03 0.00 0.22 0.18 0.00 0.17 0.06 0.39 0.06 0.00 0.23 0.16 0.00 0.14 0.03

0.2 0.4 0.29 0.03 0.00 0.19 0.18 0.00 0.21 0.10 0.34 0.05 0.00 0.21 0.17 0.00 0.17 0.05

0.3 0.4 0.18 0.02 0.00 0.15 0.19 0.00 0.28 0.18 0.24 0.04 0.00 0.20 0.20 0.00 0.24 0.08

δ1 = δ2

RMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.82 0.00 0.00 0.17 0.01 0.00 0.00 0.00 0.84 0.00 0.00 0.15 0.01 0.00 0.00 0.00

0.3 0.3 0.32 0.00 0.00 0.44 0.19 0.00 0.05 0.00 0.38 0.00 0.00 0.43 0.14 0.00 0.05 0.00

0.4 0.4 0.07 0.01 0.01 0.30 0.34 0.00 0.27 0.01 0.11 0.02 0.03 0.34 0.25 0.01 0.23 0.00

mRMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.87 0.00 0.00 0.07 0.03 0.00 0.02 0.01 0.90 0.00 0.00 0.06 0.02 0.00 0.01 0.01

0.3 0.3 0.37 0.00 0.00 0.18 0.16 0.00 0.17 0.11 0.44 0.01 0.01 0.20 0.16 0.00 0.14 0.06

0.4 0.4 0.08 0.01 0.01 0.11 0.19 0.00 0.36 0.24 0.14 0.03 0.03 0.16 0.21 0.01 0.32 0.09

T = 500

2SLS LIML

δ1 δ2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 0.25 0.01 0.00 0.44 0.23 0.00 0.07 0.00 0.29 0.01 0.00 0.44 0.19 0.00 0.07 0.00

0.1 0.4 0.24 0.01 0.00 0.44 0.24 0.00 0.07 0.00 0.28 0.01 0.00 0.44 0.19 0.00 0.07 0.00

0.2 0.4 0.22 0.01 0.00 0.42 0.26 0.00 0.08 0.00 0.27 0.01 0.00 0.43 0.21 0.00 0.07 0.00

0.3 0.4 0.13 0.00 0.00 0.37 0.34 0.00 0.14 0.01 0.18 0.01 0.00 0.41 0.28 0.00 0.11 0.01

mRMSC 0 0.4 0.46 0.02 0.00 0.23 0.15 0.00 0.11 0.03 0.51 0.03 0.00 0.23 0.13 0.00 0.09 0.01

0.1 0.4 0.46 0.02 0.00 0.23 0.16 0.00 0.11 0.03 0.50 0.03 0.00 0.23 0.13 0.00 0.09 0.02

0.2 0.4 0.44 0.02 0.00 0.22 0.16 0.00 0.12 0.04 0.48 0.03 0.00 0.23 0.14 0.00 0.10 0.02

0.3 0.4 0.34 0.01 0.00 0.18 0.18 0.00 0.19 0.10 0.40 0.03 0.00 0.21 0.17 0.00 0.14 0.05

δ1 = δ2

RMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.98 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.02 0.00 0.00 0.00 0.00

0.3 0.3 0.40 0.00 0.00 0.42 0.15 0.00 0.02 0.00 0.45 0.00 0.00 0.41 0.12 0.00 0.02 0.00

0.4 0.4 0.05 0.00 0.00 0.22 0.39 0.00 0.29 0.04 0.08 0.01 0.01 0.30 0.35 0.00 0.23 0.02

mRMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.75 0.00 0.00 0.11 0.06 0.00 0.05 0.03 0.78 0.00 0.00 0.11 0.06 0.00 0.04 0.02

0.4 0.4 0.14 0.01 0.00 0.13 0.20 0.00 0.31 0.21 0.20 0.02 0.02 0.19 0.22 0.00 0.26 0.09

Note: See note at Table 1.
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Table 5: Empirical selection probabilities: two endogenous regressors (p = 2), T = 1,000; 10,000

T = 1,000

2SLS LIML

δ1 δ2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 0.22 0.00 0.00 0.43 0.27 0.00 0.08 0.00 0.26 0.01 0.00 0.44 0.23 0.00 0.07 0.00

0.1 0.4 0.22 0.00 0.00 0.42 0.27 0.00 0.08 0.00 0.25 0.01 0.00 0.44 0.23 0.00 0.07 0.00

0.2 0.4 0.20 0.00 0.00 0.42 0.29 0.00 0.09 0.01 0.24 0.01 0.00 0.43 0.25 0.00 0.08 0.00

0.3 0.4 0.12 0.00 0.00 0.36 0.35 0.00 0.15 0.02 0.16 0.01 0.00 0.40 0.31 0.00 0.12 0.01

mRMSC 0 0.4 0.51 0.01 0.00 0.23 0.14 0.00 0.09 0.02 0.55 0.02 0.00 0.22 0.12 0.00 0.07 0.01

0.1 0.4 0.51 0.01 0.00 0.22 0.14 0.00 0.09 0.02 0.55 0.02 0.00 0.22 0.12 0.00 0.07 0.01

0.2 0.4 0.50 0.01 0.00 0.22 0.14 0.00 0.10 0.03 0.54 0.02 0.00 0.22 0.13 0.00 0.08 0.01

0.3 0.4 0.42 0.01 0.00 0.19 0.15 0.00 0.15 0.08 0.47 0.02 0.00 0.20 0.15 0.00 0.12 0.04

δ1 = δ2

RMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 0.99 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.3 0.3 0.44 0.00 0.00 0.41 0.13 0.00 0.02 0.00 0.48 0.00 0.00 0.40 0.11 0.00 0.01 0.00

0.4 0.4 0.03 0.00 0.00 0.20 0.38 0.00 0.31 0.07 0.06 0.01 0.00 0.28 0.38 0.00 0.24 0.03

mRMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.88 0.00 0.00 0.07 0.03 0.00 0.02 0.01 0.90 0.00 0.00 0.06 0.02 0.00 0.01 0.01

0.4 0.4 0.18 0.00 0.00 0.15 0.20 0.00 0.28 0.19 0.24 0.01 0.01 0.19 0.22 0.00 0.24 0.09

T = 10,000

2SLS LIML

δ1 δ2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 0.12 0.00 0.00 0.34 0.36 0.00 0.15 0.02 0.15 0.00 0.00 0.38 0.33 0.00 0.12 0.01

0.1 0.4 0.12 0.00 0.00 0.34 0.36 0.00 0.15 0.02 0.15 0.00 0.00 0.38 0.33 0.00 0.13 0.01

0.2 0.4 0.12 0.00 0.00 0.34 0.36 0.00 0.16 0.02 0.15 0.00 0.00 0.37 0.33 0.00 0.13 0.01

0.3 0.4 0.07 0.00 0.00 0.27 0.38 0.00 0.23 0.04 0.10 0.00 0.00 0.32 0.37 0.00 0.19 0.03

mRMSC 0 0.4 0.70 0.00 0.00 0.17 0.08 0.00 0.04 0.01 0.73 0.00 0.00 0.16 0.07 0.00 0.03 0.01

0.1 0.4 0.70 0.00 0.00 0.17 0.08 0.00 0.04 0.01 0.73 0.00 0.00 0.16 0.07 0.00 0.03 0.01

0.2 0.4 0.70 0.00 0.00 0.17 0.08 0.00 0.04 0.01 0.72 0.00 0.00 0.16 0.07 0.00 0.03 0.01

0.3 0.4 0.67 0.00 0.00 0.17 0.09 0.00 0.06 0.02 0.70 0.00 0.00 0.16 0.07 0.00 0.05 0.01

δ1 = δ2

RMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.51 0.00 0.00 0.37 0.11 0.00 0.01 0.00 0.53 0.00 0.00 0.36 0.09 0.00 0.01 0.00

0.4 0.4 0.01 0.00 0.00 0.10 0.30 0.00 0.41 0.18 0.03 0.00 0.00 0.17 0.36 0.00 0.34 0.10

mRMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.4 0.4 0.36 0.00 0.00 0.17 0.16 0.00 0.19 0.12 0.43 0.00 0.00 0.19 0.16 0.00 0.15 0.06

Note: See note at Table 1.
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Table 6: Empirical selection probabilities: two endogenous regressors (p = 2), T = 50,000; 100,000

T = 50,000

2SLS LIML

δ1 δ2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 0.07 0.00 0.00 0.28 0.38 0.00 0.22 0.05 0.09 0.00 0.00 0.32 0.36 0.00 0.19 0.03

0.1 0.4 0.07 0.00 0.00 0.28 0.38 0.00 0.22 0.05 0.09 0.00 0.00 0.32 0.36 0.00 0.19 0.03

0.2 0.4 0.07 0.00 0.00 0.28 0.38 0.00 0.23 0.05 0.09 0.00 0.00 0.31 0.37 0.00 0.20 0.04

0.3 0.4 0.04 0.00 0.00 0.21 0.37 0.00 0.29 0.08 0.06 0.00 0.00 0.26 0.37 0.00 0.25 0.06

mRMSC 0 0.4 0.81 0.00 0.00 0.12 0.05 0.00 0.02 0.00 0.83 0.00 0.00 0.11 0.04 0.00 0.02 0.00

0.1 0.4 0.81 0.00 0.00 0.12 0.05 0.00 0.02 0.00 0.83 0.00 0.00 0.11 0.04 0.00 0.02 0.00

0.2 0.4 0.81 0.00 0.00 0.12 0.04 0.00 0.02 0.00 0.83 0.00 0.00 0.11 0.04 0.00 0.02 0.00

0.3 0.4 0.80 0.00 0.00 0.12 0.05 0.00 0.02 0.01 0.82 0.00 0.00 0.11 0.04 0.00 0.02 0.00

δ1 = δ2

RMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.51 0.00 0.00 0.38 0.10 0.00 0.01 0.00 0.53 0.00 0.00 0.37 0.09 0.00 0.01 0.00

0.4 0.4 0.00 0.00 0.00 0.05 0.23 0.00 0.43 0.29 0.01 0.00 0.00 0.10 0.32 0.00 0.39 0.18

mRMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.4 0.4 0.53 0.00 0.00 0.16 0.12 0.00 0.12 0.07 0.58 0.00 0.00 0.17 0.12 0.00 0.09 0.04

T = 100,000

2SLS LIML

δ1 δ2 z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All z1+z2 z1+I z2+I z1+z2+I z1+z2+2I all I zj+more I All

δ1 < δ2

RMSC 0 0.4 0.06 0.00 0.00 0.26 0.37 0.00 0.25 0.06 0.08 0.00 0.00 0.29 0.37 0.00 0.21 0.05

0.1 0.4 0.06 0.00 0.00 0.26 0.37 0.00 0.25 0.06 0.08 0.00 0.00 0.29 0.37 0.00 0.21 0.05

0.2 0.4 0.06 0.00 0.00 0.25 0.37 0.00 0.25 0.06 0.07 0.00 0.00 0.29 0.38 0.00 0.22 0.05

0.3 0.4 0.03 0.00 0.00 0.19 0.36 0.00 0.32 0.10 0.05 0.00 0.00 0.24 0.38 0.00 0.27 0.07

mRMSC 0 0.4 0.85 0.00 0.00 0.10 0.03 0.00 0.01 0.00 0.87 0.00 0.00 0.09 0.03 0.00 0.01 0.00

0.1 0.4 0.85 0.00 0.00 0.10 0.03 0.00 0.01 0.00 0.87 0.00 0.00 0.09 0.03 0.00 0.01 0.00

0.2 0.4 0.85 0.00 0.00 0.10 0.04 0.00 0.01 0.00 0.87 0.00 0.00 0.09 0.03 0.00 0.01 0.00

0.3 0.4 0.84 0.00 0.00 0.10 0.04 0.00 0.02 0.00 0.86 0.00 0.00 0.09 0.03 0.00 0.01 0.00

δ1 = δ2

RMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 0.51 0.00 0.00 0.37 0.10 0.00 0.01 0.00 0.53 0.00 0.00 0.36 0.09 0.00 0.01 0.00

0.4 0.4 0.00 0.00 0.00 0.04 0.20 0.00 0.43 0.34 0.01 0.00 0.00 0.08 0.28 0.00 0.41 0.22

mRMSC 0 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.4 0.4 0.61 0.00 0.00 0.15 0.10 0.00 0.09 0.05 0.66 0.00 0.00 0.15 0.09 0.00 0.07 0.03

Note: See note at Table 1.
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